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Chapter 1. Introduction

1.1 Fracture Critical Bridges: Background

In the winter of 1967, the Silver Point Bridge in Point Pleasant, West Virginia suddenly
collapsed into the Ohio River (Figure 1.1). The investigation of the failure determined that the
fracture of a single eye-bar connecting the bridge’s suspension chain released the primary load
path, which resulted in the total collapse of the structure (Scheffey, 1971). This event
demonstrated that the failure of individual members could have a significant influence on the
stability of an entire bridge structure, and it led to a reconsideration of code and safety
requirements for bridges theoretically susceptible to this type of failure.

Fracture critical member provisions were first introduced into the American Association
of State Highway Transportation Officials (AASHTO) Bridge Design Specifications in 1978. In
the current draft of that document, a fracture critical member is defined as a “component in
tension whose failure is expected to result in the collapse of the bridge or the inability of the
bridge to perform its function” (AASHTO, 2007). All bridges designed with fracture critical
members or components are designated as fracture critical bridges.

Figure 1.1: The Point Pleasant Bridge (a) In service, (b) After failure

The bridge design process is affected by many factors, including economics, aesthetics,
function, and traffic volume, and many popular bridge structural systems are classified as
fracture critical. In fact, approximately 11% of all steel bridges in the United States have this
designation (Connor, et al., 2005). As long as the risk of a brittle fracture of an integral
component of a bridge’s main load path is minimized, a fracture critical bridge is not inherently
unsafe. For this reason, the design of fracture critical bridges is permitted, but a primary
requirement is that such bridges must undergo a full inspection every two years. Fracture critical
bridge inspections are labor intensive—and therefore costly—requiring the examination of every
welded connection to a fracture critical member. Olson estimated the cost to be approximately
$400,000 per day (Olson, 2008). Similar costs have been estimated by TxDOT.

1.2 Fracture Critical Bridges: In Service

The fracture critical provisions in the AASHTO Bridge Design Specifications (2007)
assume that if a fracture critical member were to fail, the remaining bridge structure would lack a
redundant load path to support its loads. A number of incidents involving the full-depth fracture



of in-service, two-girder bridges (all designated as fracture critical) provide evidence that, in
certain cases, a redundant load path does exist in these structures even though they have not been
given credit for such. In 1976, the US 52 Bridge over the Mississippi River near Savanna,
Illinois sustained a full-depth fracture of one of its two girders, but it remained in service until
static deflections of 6.5 in. prompted an inspection that discovered the fracture (Fisher, 1977). In
1977, a full-depth fracture of one of the two girders on the Neville Island Bridge on I 79 in
Pittsburg, Pennsylvania resulted in deflections so slight that motorists were unaffected, and the
fracture remained unnoticed until it was spotted by a nearby boater (Schwendeman, 1978)
(Figure 1.2). A similar case was documented in 2003, when a bird-watcher noticed a full-depth
fracture in the Brandywine River Bridge on I 95 in Wilmington, Delaware (Quiel, 2003).

. \
Figure 1.2: Opposing views of the Neville Island Bridge girder fracture

Conflicting evidence on how the loss of a fracture critical member affects overall bridge
performance has prompted bridge owners to question the applicability of the fracture critical
provisions. One common concern is that, if a fracture critical bridge’s stability is not always
decisively linked to the performance of its fracture critical members, the increased inspection
requirements for this designation of structure require owners to utilize an unnecessarily large
amount of labor and financial resources.

1.3 Research Initiative

The Texas Department of Transportation (TxDOT) owns and operates a vast inventory of
more than 50,000 bridges throughout the state. Many of these bridges are two-girder bridges and
are classified as fracture critical by the AASHTO guidelines. Under the current schedule,
TxDOT spends over $26 million annually on bridge inspections. A significant portion of this
allocation is spent on the bi-annual inspection of all the fracture critical bridges in the state. If a
substantial proportion of fracture critical bridges do in fact have the redundant capacity to
support their loads in the event of the loss of a fracture critical component, TxXDOT may be over-
utilizing their resources for the frequent inspections of these bridges.

In search of guidance in reevaluating the inspection schedule for fracture critical bridges,
TxDOT and the Federal Highway Administration (FHWA) co-sponsored a large-scale research
program at the Ferguson Structural Engineering Laboratory (FSEL) at The University of Texas
at Austin. The overall goal of the project was to provide bridge engineers with methods for
evaluating the redundancy of fracture critical steel bridges. The research focused specifically on
investigating the redundant capacity of fracture critical box-girder bridges, which are common
throughout the state of Texas (Figure 1.3). Using tools to estimate the load carrying capacities of



their structures in the event of a loss of a fracture critical member, bridge owners would be able
to appropriately tailor their maintenance schedules to their bridge inventory.

Supported by significant experimental, computational, and financial resources, the
comprehensive research program at FSEL continued for four years and consisted of a set of
interrelated experimental and computational initiatives. The techniques used to work toward the
ultimate goal of the project included structural analyses performed through ‘hand-calculation’
methods, analyses performed through detailed computer-based simulations, the testing of
laboratory specimens to quantify experimentally the capacity of specific bridge components, and
the full-scale testing of a twin steel box-girder bridge (i.e., a fracture critical bridge)
reconstructed at FSEL for use in this project.

Figure 1.3: A typical two-box steel girder bridge in Austin, TX

1.4 Scope of Work

The scope of TxDOT Research Project 9-5498 was extensive, and it involved a unique
experimental program that included both laboratory tests and the full-scale destructive testing of
a twin steel box-girder bridge (Figure 1.4). The laboratory tests focused on the pull-out behavior
of shear studs embedded in a concrete deck. These tests provided essential data for quantifying
the response of a component that formed a part of the critical load path essential to the
redundancy of twin steel box-girder bridges. These tests were performed both statically and
dynamically and led to the development of design guidelines that considered the effects of stud
embedment depth, stud spacing, stud positioning, and the presence of a haunch. Details of this
effort can be found in the report “The Tensile Capacity of Welded Shear Studs” (Mouras, 2009).



Figure 1.4: The FSEL test-bridge

Findings from the full-scale bridge tests revealed the inherent redundancy of the bridge
evaluated during this research program. From a perspective of redundancy, the bridge considered
during this project represented one of the worst cases. It was a simply supported bridge and
therefore did not possess any inherent redundancy that is attributed to structures that are
statically indeterminate. Furthermore, all external braces that could have contributed to
redistributing loads from the fractured girder to the intact girder were removed following
construction based on standard TxDOT practice. In addition, the bridge rails were constructed
with expansion joints that limited the capacity that these components could contribute to the
overall strength of the bridge. Finally, the bridge was horizontally curved in plan, and the
exterior girder was the one where a simulated fracture was induced. All of these effects
combined to make the bridge less redundant than it might have otherwise been. Yet, despite
these limitations, the bridge tested in this study performed remarkably well. In the first test, a
linear-shape-charge explosive was used to rapidly cut through the bottom flange of the exterior
girder, simulating what would occur during a fracture. Figure 1.5 shows a sequence of photos
that were taken from the high-speed video that was used to record the event, and Figure 1.6
shows the condition of the bottom flange of the fractured girder following the test. Despite the
equivalent of an HS-20 truck positioned directly above the fracture at the most severe location,
the bridge deflected less than an inch.



(a) Full cut of the bottom flange (b) Detained fracture at web

Figure 1.6: Bottom flange cut of fractured girder

For the second test, when the exterior girder had a full-depth fracture induced and the
applied loads were suddenly released through the use of an explosive acting on a temporary
scissor jack support system (Figure 1.7), the bridge still performed extremely well, with the
fractured girder deflecting only 7.0 inches. Even in its damaged state, the bridge could support
traffic and did not collapse. The third and final test, which was conducted under statically
applied loads, demonstrated that the bridge tested in this study was able to carry 363,000 1bs.—
more than five times greater than the legal truck load (Figure 1.8). Considering the level of
damage that existed prior to this test, the capacity of the bridge was remarkable.

For all three tests, massive amounts of data were collected to capture the response of
various bridge components that were critical to the redundancy of the structure. A detailed report
of each test, the data collected, and the general findings of the experimental research program
can be found in “Evaluating the Redundancy of Steel Bridges: Full-Scale Destructive Testing of
a Fracture Critical Twin Box-Girder Steel Bridge” by Neuman (2009). In the interest of space,
details of that report are not included in this document. The focus of the current report is on
describing methods of modeling that can be used to compute the response of these types of
bridge systems following the fracture of one of the critical tension flanges.



Incremental loading Collapsed bridge

Figure 1.8: Loading process and bridge collapse in third bridge-fracture test

In this report, modeling guidelines and analysis procedures are given that will allow an
engineer to assess the performance of a twin steel box-girder bridge in the event that a fracture
takes place in one of the girders. Two levels of modeling are provided: the first is a simplified
approach that can be conducted using hand-based procedures and simple spreadsheet software,
and the second is a detailed computational approach that is based on the finite element method.
Both of these modeling approaches have been extensively validated against the test data
collected during the experimental research program.

Following this chapter, the simplified approach to modeling the response of fracture
critical twin steel box-girder bridges is provided. It is expected that engineers will utilize this
approach first in all cases. Furthermore, it is expected that the results computed using this
procedure will be sufficient for estimating overall load-carrying capacity for the vast majority of
cases. In some situations, however, the results obtained from the simplified approach may not
provide the level of detail necessary to evaluate the redundancy of these types of bridges. Hence,
on occasion, it may be necessary to carry out a detailed finite element analysis to compute
overall load-carrying capacity, and the second part of this report provides details and modeling
guidelines for doing so. Finally, a summary of the work performed as well as some concluding
remarks and recommendations are included in Chapter 7. Following the last chapter, appendices
that include complete examples using the simplified analysis approach are provided.



Chapter 2. Simplified Analytical Modeling Methods to Evaluatethe
Redundancy of Twin-Box Girder Bridges

2.1 Introduction

To assess the performance of a twin steel box-girder bridge in the event that one of the
fracture critical tension flanges suffers a failure, engineers require structural analysis models
capable of representing the complex behavior that occurs under such conditions. The most
rigorous way to analyze such a complex system and obtain detailed results is through finite
element modeling. While finite element analyses may provide the most accurate results, they
require a substantial amount of effort to develop the model, significant computational resources
to carry out the analyses, and expertise on the part of the analyst to develop models with
significant nonlinear response. In contrast, simplified procedures for initial checks of the
redundancy level of a bridge are more beneficial to engineers in practice. Thus, engineers can
potentially save a significant amount of time if the simplified methods are adequate to
characterize behavior of the bridge being analyzed. The development of such simple analytical
methods to improve the understanding of the behavior and to evaluate the redundancy level of
twin steel box-girder bridges is presented in this chapter. The simplified analysis methods were
validated against the test data collected during the three-part test series described in Chapter 0.

Prior to the first test in which an explosive was used to sever the bottom flange, Sutton
(2007) developed a simple analytical model that showed that the deck and the intact girder were
able to provide an alternative load path when a full-depth fracture would occur at the mid-span of
the fractured girder. Uncertainty in the calculation of the tensile capacity of the shear studs,
however, motivated the research team to conduct a series of laboratory tests to determine the
tensile capacity of a group of shear studs. These tests were initiated by Sutton (2007) and were
extended by Mouras (2008). Mouras developed modifications to the existing ACI code equations
to predict the findings obtained from the laboratory test program. The proposed strength
equations, which are used in the examples presented in this chapter, are able to predict the
strength of these alternate shear stud configurations and the effect of the haunch.

An overview of the simplified analytical modeling techniques used to evaluate the
redundancy of a fracture critical twin steel box-girder bridge is presented in this chapter. In the
next chapter, a detailed example is provided that demonstrates how to implement the proposed
simplified modeling technique. Additional examples are provided in the appendix included at the
end of this report. In total, the examples given in this report demonstrate the effect of different
bridge configurations on the ultimate load that a bridge can sustain in the event that a fracture
occurs.

2.2 Initial Strength Checks

Consistent with the experimental testing program, it is proposed that evaluations of
bridge redundancy be performed for the case in which a single HS-20 truck is positioned on the
bridge deck above the presumed fracture location so as to cause the most severe internal stresses
to develop. Thus, on an in-service bridge, this worst-case scenario would occur when the design
truck load was passing across the bridge at the location that induced the maximum internal
bending moment at the same instant that a fracture event occurred at that point of maximum
moment. Under these conditions, initial strength checks are performed to determine if there is



sufficient strength in the intact girder to support the weight of the bridge and the factored truck
load and to evaluate if the deck has sufficient strength to transmit the load carried by the
fractured girder to the intact girder. If the bridge under consideration does not satisfy these initial
strength checks, a three-dimensional finite element model may developed to provide a more
accurate estimate of the bridge’s performance. Finite element modeling techniques for such cases
are described later in this report.

2.2.1 Load Calculation and Moment Capacity Deter mination

First, the estimated load that is transmitted to the intact girder after the fracture of the
other girder should be calculated. For this calculation, it is assumed that half of the total dead
load and the entire truck load are carried by the intact girder. It is recommended that a load factor
equal to or larger than two should be applied to the truck live load. The intact girder’s positive
and negative moment capacity need to be checked to determine if they are sufficient to sustain
the transmitted load and the self-weight of the intact composite girder. Two moment capacity
checks should be made on the intact girder resulting from this loading:

a. Positive moment region M,pplica < M, plastic moment capacity

b. Negative moment region: M, at pier if non-compact or M, if compact.

2.2.2 Deck Shear and Shear Stud Tensile Capacity

The bridge deck is a vital link in the transfer of load from the fractured girder to the intact
girder. The deck capacity can be calculated using a strip model of the deck (Figure 2.1) with a
width equal to the shear stud spacing.

Figure 2.1: Deck Strip

The deck strip should be analyzed as a continuous beam with roller connections at the location of
top flanges (Figure 2.2). Two strength checks need to be performed on the deck. First, the bridge
deck shear capacity should be greater than the transferred shear. The shear capacity is the sum of
the capacity of the individual deck strips. The transferred shear is assumed to be equal to the



entire dead load carried by the fractured girder plus the factored truck load. The unsupported
load must be transferred to the intact girder, and therefore the deck shear capacity should be
adequate. The maximum shear capacity is taken as the smaller of the shear corresponding to a
plastic moment mechanism in the deck and the shear capacity of the deck, Vpeck. The shear
developed from the plastic moment deck mechanism shown in Figure 2.3 is given by Equation
2-1,
M, +M
V=—»>d—2y, . Equation 2-1
where M; and M, are the positive and negative moment capacity of the deck, and S is the

distance between the mid-width of the fractured girder’s interior top flange and the edge of the
interior top flange of the intact girder (Figure 2.3).
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Figure 2.3: Plastic deck mechanism

The shear studs connecting the deck to the fractured girder must have sufficient tension

capacity to develop the plastic beam mechanism in the bridge deck. The required shear stud
tensile capacity can be estimated using the model of the bridge deck shown in Figure 2.4. The

required tension capacity of the group of shear studs included in the strip can be calculated using
Equation 2-2.

M
T2 72 +V Equation 2-2
where T is the tensile capacity of the shear stud group in the strip, M, is the positive moment
capacity of the deck strip, b is the distance between the mid-width of the top flanges of the



fractured girder, and V is the shear from the plastic deck mechanism. The tensile capacity of the
shear studs group can be estimated by using the modified ACI equations developed in this
research and detailed in the report “The Tensile Capacity of Welded Shear Studs” (FHWA/TX-
08/9-5498-R2).
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Figure 2.4: Shear stud pull out capacity

2.2.3 Shear Capacity of Intact Girder

The shear of the end panels of the intact girder should be checked to ensure that the webs
have adequate capacity. The end panel’s shear is limited to its buckling capacity, and the
capacity of an interior support is equal to its tension field strength. The shear in the girder due to
the torsion and vertical loads transferred from fractured girder need to be included in the strength
check. Results from the test program on the full-scale test bridge indicated that the torsion
introduced into the intact girder was nearly symmetrical; therefore, it is assumed that the intact
girder has symmetrical torsional boundary conditions. It is further assumed that the live load and
dead load is uniformly distributed. The torques of the dead load and live load are given in
Equations 2-3 and 2-4, respectively:

Tpr = WospL-epL Equation 2-3
where:

wospr = weight of fractured girder plus the weight of one railing and 1/2 the concrete
deck

epr = centerline distance between the two girders for straight girders or calculated

eccentricity using Equation 2-19 for curved girders
and

TTL = Wrrerr, Equation 2-4
where:
wrr = truck load
er; = distance between intact girder’s center and truck center, or calculated eccentricity
(Equation 2-19).

The FSEL test bridge had a large radius of curvature, allowing the eccentricity for the
torque calculation to be approximated as the distance between the two girders or the distance
between the intact girder’s center and the truck center. In-service twin box-girder bridges,
however, may be designed with a significantly smaller radius of curvature than that of the test
bridge. A decrease in the radius of curvature increases the torsion on the bridge, which must be
resisted by the intact girder in the event of a fracture of a critical tension flange. Under such
conditions, the eccentricity should not be taken as the distance between the centerlines of the
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girders; it should be computed as the distance from the center of gravity of the loads to the line
of the intact girder interior supports. The center of gravity for non-prismatic girders can be
determined by using equations developed by Stith (2010), modified for the case of box-girders.
In the equations presented below, polar coordinates are used, and the origin of the coordinate
system is located at the center of radius of the girder. Figure 2.5 provides a schematic of a curved
girder with a definition for all the variables needed for the derivation.

L;: Length of Section 1

L,: Length of Section 2

W,: Weight per Unit Length of Section 1

W,: Weight per Unit Length of Section 2

9 0= 0

6,: Internal Angle from the Beginning
of the Girder to the End of Section 1

6»: Internal Angle from the Beginning
of the Girder to the End of Section 2

R: Radius of Curvature of the Girder

Figure 2.5: Variable definition for center of gravity (C.G.)

where 6; and 6, are given in Equation 2-5 and 2-6:

L
0, = 2 Equation 2-5
R
L, .
0, =—+06, Equation 2-6

R

The weight of the girder in Figure 2.5 can be defined as follows:

6, 6,

Total Girder Weight = W; Rd8 + W, Rd6 Equation 2-7
6o 61

= WlR(Hl - 60) + WZR(HZ - 91) Equatlon 2—8

The generalized form of the total girder weight equation is provided in Equations 2-9 and
2-10, where n is the number of the different cross sections along the length of the bridge under
consideration:
n 9i
Total Girder Weight = Z W; RdO Equation 2-9

i 0i-1
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n
=R Z W; (6; —6;_1) Equation 2-10
i

The angular distance from the beginning of the girder to the center of gravity is
determined by taking a weighted average of each segment’s centroid, which is located at the
angular center of each cross-section. For the girder shown in Figure 2.6, the angular distance is
given by Equation 2-13:

0, + 6y (6, 0, + 6, (6,
= Jp, W1 RdO + 25— [ %W, RdO

0 = Equation 2-11

Z Z
Jo. Wy RO + > W, RO

W,R (6, + 90)2(91 —6y) +W,R (6, + 91)2(92 —6,)

WiR(6; — 6y) + W,R (0, — 6;)

6 = Equation 2-12

WlR(912 - 902) + WzR(ezz - 912)
2 Equation 2-13
WiR(61 — 6y) + W,R(6, — 6,)

6 =

T | OFFSET

@ Center of Gravity

6: Angular Distance to C.G.

L: Length along Girder to C.G.
D: Radial Distance to C.G.

tr: Top Flange Thickness
OFFSET: Radial Distance of
C.G. from the Girder Centerline

Figure 2.6: C.G. Location

The generalized form of the equation for determining the angular distance to the center of
gravity is
RYFWi(6:* — 6;-4°)
2 Equation 2-14
RYIW;(6; —0;_1)

0 =

The following equation determines the location along the length of the girders to center
of gravity:
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=)

Equation 2-15

The radial distance to the center of gravity is determined by taking the weighted average
of the girder projected onto the 6 radial line. This distance is show schematically in Figure 2.6,
and it can be computed using Equations 2-16 and 2-17:

f;:)l " Rcos(f —6) RdO + f:lz W, R cos(6 — 0) Rd@

D= Equation 2-16

Jo, Wi RdO + [;2 W, Rd6

W, R?[sin(8; — ) —sin(8, — )] + W,R?[sin(8, — 0) — sin(8, — 8)]

D=
WiR(6;, — 6y) + W,R(6, — 6,)

Equation 2-17

The generalized equation to compute the radial distance to the center of gravity for a
girder with multiple cross-sections is given by can be determined by the generalized form of
Equation 2-18:

D
_ RZXIW; [sin(6; — 0) — sin(;_; — )] Equation 2-18
RYIW;(6; — 0;_41)

Equation 2-18 should be used two times to compute D —once for the fractured girder
and once for the intact girder. Because the line of rotation of the bridge passes through the
supports of the intact girder, each girder’s offset from the center of gravity to the line of rotation
is given by Equation 2-19:

€= 51 —Ryr -cos(@/2) Equation 2-19

where:
R;yr= Radius of curvature at the location of the interior intact girder’s supports
@ =Lt/ Rinr
Livr = Arc length at the location of the interior intact girder’s supports
Equations 2-5 through 2-19 can be used to calculate the eccentricities of each girder.

When multiplied by the dead load of each girder and the truck load, the torque applied on
the end sections of the intact girder can be computed.
Assuming that half of the calculated torque is applied to each end of the intact girder, the
shear flow of the closed section can be determined by Equation 2-20.
1 ) (T, +T7)

q= 74 2 Equation 2-20

where:
Tp = torque due to dead load, which is equal to the dead load multiplied by the eccentricity
to the chord of the intact girder supports
T = torque due to truck load, which is equal to the dead load multiplied by the eccentricity
to the chord of the intact girder supports
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A = area enclosed by the mid-thickness of the composite box-girder section

Note: The calculated torques are divided by two, because it is assumed that the end
torques are equal.

The concrete deck forms the top flange of the closed box section and should be checked
to ensure that it has adequate capacity to resist the shear force due to torsion. According to ACI
318-08, the shear capacity of reinforced concrete is given Equation 2-21. Equation 2-21 should
always be greater that the shear due to torsion (Vrorsion = q°b)

Vs=A; fyrb-cot(0)/s Equation 2-21

where:
b = width of the concrete deck between the top flanges
A; = area of a reinforcement bar in the transverse direction
s = spacing between the reinforcement bars
6 = angle of the crack with the horizontal (ACI 318-08 recommends 45°)

The shear stress developed in the webs due to torsion must be added to the shear stress
due to bending of the girders using the following procedure:
I. Calculate the shear stress in the webs due to torsion using Equation 2-22.
T TORSION WEB = G/t WEB Equation 2-22

where ¢ yrg = thickness of the web

ii. Calculate the shear stress due to bending at webs through Equation 2-23.

TFLEXURAL WEB — Vi (2 . dWEB *twep ° COS(ﬂ)) Equation 2-23

where:
dwes = height of the web
p = angle of web inclination
V= one-half of the total factored load on the span

iii. Ensure that the summation of the shear due to torsion and bending is less than or equal to
the shear buckling stress as given below:

7, = C0.58 2 T roRSION WEBT T FLEXURAL WEB Equation 2-24
where:
C = ratio of shear-buckling resistance to the shear yield strength (AASHTO Sec.
6.10.9.3.2)

The larger tension field shear capacity can be used to check the shear at interior supports.

Iv. The bottom flange at the pier should be checked for combined shear and compression
(AASHTO Sec. 6.11.8.2.2)

V. The end diaphragm and its connection to both girders needs to be checked to ensure that it
has adequate resistance to the torque applied to the intact girder. This applied torque is
resisted by a couple generated by the bearings of the two girders (i.e., bearing reactions).
The reaction at the bearing of the fractured girder is equal to the torque applied to the intact
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girder divided by the distance between the bearings of the two girders. In the case of a
continuous girder, the interior support is not as critical as the end support because some of
the applied torque is resisted by the continuous girder. Thus, it is always critical to check
the end diaphragm of the end support.

2.2.4 Evaluation

Following the steps outlined in this section (Section 2.2), the redundancy level of a twin
steel box-girder bridge can be evaluated. If the bridge under investigation satisfies the following
conditions, the bridge has sufficient strength to sustain load without collapsing:

I. Intact Girder has adequate shear and moment capacity
ii. Deck has adequate shear capacity

iii. Shear studs have adequate tension capacity

If the bridge satisfies only the first two conditions, it is still possible that it can sustain
load without collapsing. Under these conditions, a yield line analysis—described in the next
section—can be used to evaluate the ability of the deck to transmit load to the intact girder
without the shear studs connecting the deck to the fractured girder. In the event that the capacity
predicted from the yield line analysis is not adequate, a more refined analysis can be performed.
Methods for developing finite element models capable of assessing the redundancy of twin steel
box-girder bridges are described later in this report.

2.3Yield Line Analysis

A simple yield line model was developed to capture the response of a twin steel box-
girder bridge when the shear studs do not have adequate tension capacity. The plastic mechanism
in the deck between the girders will not form if the shear studs pull out of the deck. The
development of the yield line model was initiated after completion of the tests on the FSEL test
bridge. A detailed survey of the deck’s top surface indicated that the failure in the deck followed
the shape of a half-ellipse (Figure 2.7). A yield line pattern was developed using a combination
of straight lines that provided a similar failure shape to the one observed on the test bridge. After
investigating different yield line patterns to calculate the ultimate load, it was found that the
shape that gave the most conservative estimate of capacity (Figures 2.8 and 2.9) was one that
consisted of straight lines lying on the perimeter of an ellipse along with two diagonals along
diagonal interior fold lines. The results of the yield line analysis were in good agreement with the
observed hinge locations in the deck. Thus, it was concluded that the assumed yield line shape
could be used to estimate the ultimate load of the bridge.
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Figure 2.7: Observed hinge line pattern

Surveyed Shape of Concrete Deck

orh o™ 1046 %ﬁ"“&q
gh‘::“ ) qe22?8 M= K m:*rn%”%

s 1

0 £
50 §
1 U
53
5 8
s ]

Figure 2.8: Assumed elastic plate displaced by a virtual displacement A
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2.3.2 Description of the Yield Line Model Analysis Procedure

When a slab fails in flexure under overload conditions, the reinforcement at a region of
high moment will yield first, and a plastic hinge will then form at this location in the slab. When
that occurs, the slab is only able to sustain the hinging moment. The hinging region will rotate
plastically with an increase of the load, and the moments associated with the additional load will
be distributed to adjacent sections, eventually causing them to yield—ultimately forming a yield
line in the deck.

A vyield line analysis was performed using a virtual work principle which yields an upper-
bound solution to the problem. To implement the procedure, a yield line pattern is chosen, and a
virtual displacement is introduced at the edge of the deck above the fracture in the girder (Figure
2.8). The principle of virtual work requires that the external virtual work done by the external
forces be equal to the internal virtual work done by the internal forces of each element of a
structure. The external virtual work is computed from the summation of the product of the
externally applied forces multiplied by the virtual displacement at the load position, which is a
function of the assumed virtual displacement. The total internal virtual work due to the virtual
displacement is equal to the summation of the product of the bending moment developed at the
segment of the yield line multiplied by the hinging rotation of each segment. The elastic moment
and rotations are ignored with this approach, which is a reasonable assumption based on the
relative magnitude of the terms.

All the geometric parameters of the yield line pattern have to be defined before
calculating the internal virtual work. It was assumed that a straight yield line would always
initiate at the interior top flange of the intact girder, and it would extend to intersect with the
inner diagonal yield lines (Figure 2.9). The yield line pattern was completed with two outer yield
lines that started at the intersection of the straight line with the inner diagonal and extended
diagonally to the edge of the concrete deck above the fractured girder (Figure 2.9). A series of
parametric studies suggested that a minimum load solution resulted when the angle ¢ between
the inner diagonal and the vertical axis was held constant and equal to 55°. The length @, which is
the horizontal distance from point A or D to the origin, was determined by finding the value that
produced the minimum truck load. It should be noted that the length a and the magnitude of the
truck load are mutually dependant. Accordingly, one of these variables should be fixed to obtain
the other one. It is recommended that the live load magnitude corresponding to the number of
trucks be selected first; with this value set, the length a for the given load magnitude can be
obtained. If a valid solution for the length a is computed, the given truck load is a possible failure
loading. In subsequent iterations, the truck load should be decreased until a valid solution for a
no longer exists. The minimum truck load is the last one that gave a physically admissible
solution for the length a. In contrast, if the initially chosen truck load does not provide a
physically admissible solution for the length a, then the truck load needs to be increased in
subsequent iterations. Once the length a has been determined, all the coordinates of the yield line
end points can be defined to calculate the variables used to compute the virtual work. These
coordinates were calculated by applying fundamental trigonometric relationships. In the case of a
bridge with significant horizontal curvature, the coordinates of points A and B would be affected.
Adjustments should be made to account for the angle 6 (Figure 2.9).
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Figure 2.9: Parameters of the yield line pattern

The angle 6 is given by Equation 2-25:
6=0.5-sin"(a/R) Equation 2-25

where a (ft) is the horizontal distance of the point A or D from the origin, and R (ft) is the
bridge’s radius of curvature. Radians should be used as units when sin™(a /2 - R) is calculated.

The bending capacity is not the same along each yield line due to the fact that the
reinforcement in the deck was not normal to the yield line. If the yielding occurred along a line at
an angle a to the reinforcement (Figure 2.10), the resultant bending capacity (m;) could be
calculated by inserting the bending capacities of the two directions (m,, m,) into Equation 2-26
(Wight and MacGregor, 2008).

.2 2 .
mp= my sin” o + m, cos” a Equation 2-26

In the case of the straight line and the inner diagonals, the bending moment capacities can
be readily calculated because the angle o is equal to 0° and 35°, respectively. The bending
moment capacity of the outer diagonals, however, is a function of the length a; consequently, an
expression to define ¢ is needed. Equation 2-27 can be used to determine the angle o of the outer
diagonals.

4 X i X, v .

a=tan | —— |+— Equation 2-27
v-y, ) 2

where (X;, ¥;) and (X}, Y)) are the coordinates of the end points of the outer diagonals. For any

other case that the reinforcement is not oriented as shown in Figure 2.10, the angle o should be

determined based upon the orientation of the reinforcement.

In order to calculate the internal virtual work done by the concrete deck, the parameters
needed are 1) the length of each line and 2) the angle of rotation of each plate. First, the length of
each line can be calculated using the distance formula (Equation 2-28). Knowing the coordinates
of each yield line’s endpoints, the length of the line is equal to
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=X, -x. )+, - ) Equation 2-28

where, as before, (X, ¥;) and (X}, Y)) are the coordinates of the end points of the yield line.
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Figure 2.10: Bending moment along a yield line at an angle o. (Wight and MacGregor, 2008)

Second, the angle of rotation of each plate can be calculated by evaluating the geometry
of the displaced shape corresponding to the assumed yield line pattern. The angle between two
planes is given by the angle between the normal vectors. For example, if 3x - 2y + 5z =1 and 4x
+ 2y - z=4 are the equations that define two planes, the angle between these planes can be
determined as follows:

i. The two normal vectors are n = <3,-2,5> and m = <4,2,-1>

ii. n-m=34-22-51=3

i, | :Jsz L) +5 =38,

| :J42 42 4D =421

iv. Hence, the angle is equal to &, =1.46rads

otation = arccos = ;
V38421

Having all the parameters defined, the internal virtual work of each line with length / can
be calculated as the product of dIW = my-1* Orosation-

Railings may contribute significantly to the overall load carrying capacity of a twin steel
box-girder bridge that has suffered a fracture in one of its girders. Accordingly, the virtual work
done by the railing should be included in the total internal virtual work calculation. As the bridge
deflects downwards, the railing acts as an edge beam and resists the bending of the bridge in the
longitudinal direction. The moment acting on the railing will depend on the type of railing—
continuous or with expansion joints—and the location that the hinge line intersects the railing.
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Figure 2.11 shows the moments acting on the railing that should be included in the calculation of
internal virtual work. The work done by the railing is equal to the moment capacity of the railing
times the angle of rotation. In the case of positive moment capacity, the angle of rotation of the
railing is two times the angle between the ABO and CDO planes (Figure 2.9); the angle of
rotation for the negative moment capacity is equal to the angle of the ABO (or the CDO) plane
with the horizontal.

M*
. r--.-h-- >:C .--"--’ .

— Continuous Railing
Location hinge line intersects riling

M

M-

Al
Railing with
Location hinge line intersects railing Expansion Joints
Expansion Joint
MY
| |
v R-ﬂ“[”g “‘Iilh
Location hinge line intersecs railing

Expansion Joints

Figure 2.11: Acting moments on the railing for different cases

To ensure that the railing section can reach its moment capacity, the connection between
the railing and the deck must have sufficient reinforcement to transmit the shear associated with
flexure. The maximum shear force at the connection is equal to the compressive force applied to
the railing section when the positive moment capacity is calculated. The positive moment
capacity is calculated using the railing section and assuming that, at the level of the concrete
deck below the railing, there is reinforcement equal to the reinforcement area existing in the
effective deck width. The effective deck width can be computed according to Section 4.6.2.6 of
the AASHTO LRFD Specification (2007). According to the specification, the effective width can
be determined using Figure 4.6.2.6.2-2 (AASHTO, 2007), where b is equal to the distance from
the edge of the concrete deck above the fractured girder to the interior top flange of the intact
girder, and /; is the length of railing between expansion joints. In the case that the railing is
continuous, /; should be taken as the total length of the span. Under no circumstances can the
effective width be taken as greater than b.

The assumption to include the reinforcement within the effective deck width is supported
by the railing behavior observed in the full-scale bridge test conducted at FSEL. The railing
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failed by crushing of the concrete in a manner that is similar to the failure of an over-reinforced
concrete section. It is suspected that as the deck deflected downward under increasing increments
of load, catenary behavior of the concrete deck engaged more and more reinforcement over the
width of the deck. Thus, the catenary behavior increased the tension in the reinforcing bars that
were embedded over an effective width, and the amount of reinforcing steel engaged in this
response led to behavior representative of that corresponding to an over-reinforced section. The
results of the additional tension in the deck reinforcement led to the crushing observed in the
railing. The effective width of the concrete deck included in the rail strength calculation is
intended to capture this behavior. In Example 1 (Chapter 5), however, it is shown that the
effective width obtained from Section 4.6.2.6 of the AASHTO LRFD Specification (2007) is
smaller than the observed one. Accordingly, the effective width is computed in such a way as to
ensure a conservative solution. Additional details related to the computation of the effective
width are given below and in the examples that appear in the next chapter and in the appendices.

The external virtual work consists of the work done by the truck load and the dead load
of the bridge. The truck load should be positioned at the location where it produces the largest
positive bending moment. In the case of a simply supported bridge, the maximum positive
bending moment can be achieved when the middle axle of an HS-20 truck is located at the mid-
span of the bridge. In the case of a continuous bridge, however, the location of the middle axle
should coincide with the location of the highest positive moment. The location of highest
positive moment can be obtained from the moment envelope diagram for a combination of dead
load and moving truck load. Moreover, the distance between the exterior and the middle axles
should be kept constant and equal to 14 ft. Regarding the position of the truck across the width of
the bridge, it is suggested that the wheels on one side of the truck be positioned 2 ft away from
the railing. Once the position of the truck is set, the work done by the truck load can be
computed. This work is equal to the summation of each point load multiplied by the deflection of
each location. The deflection of each location, however, is a function of the length a. The
deflection of the wheel loads of an HS-20 truck load can be determined by using the ratio of
congruent triangles (Equation 2-29).

Oload = Vioad "AIT Equation 2-29

In this equation, d;,4 is the deflection at the load location, 7,4, is the distance of the load location
from the edge of the slab above the fracture, 4 is the virtual displacement, and r is the distance of
a point on the yield line with the same angle f from the positive x-axis as the load position
(Figure 2.12). Having determined the coordinates of the truck wheels, r,,; can be computed
using the Pythagorean Theorem. All the terms of Equation 2-29 are known except for . The
length of 7 can be determined as follows:

i. For a given angle S, the equation of the line passing through the origin and the point load
can be defined.

ii. Knowing the coordinates of the outer diagonal yield line endpoints (A and B, C and D), an
equation of the line can be derived.

iii. The x-coordinate of the intersection can be found by setting equal the y-coordinate of the
two equations and then inserting the known x-coordinate into the one of the equations to
obtain the y-coordinate.
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Iv. Finally, the length » can be computed using the distance formula between the origin and the
intersecting point.

~_ Yieldline Bl W |

Figure 2.12: Defining the deflection at the load location

The work done by the dead load of the bridge should be included in the external virtual
work calculation. Only the self-weight of the concrete deck and the railing inside the failure area
should be included. As indicated previously, it is appropriate to use the Yield Line Model when
the fractured girder is separated from the concrete deck. Consequently, the self-weight of the
fractured girder is not included in the external virtual work calculation. The external work done
by the railing is computed using Equation 2-30:

EWRAILING =ARa,-1,-ng~2-a'O.15'A/2 Equation 2-30

where Araiting (ftz) is the cross-sectional area of the railing, a (ft) is the horizontal distance from
the point A or D to the origin, and 4 is the virtual displacement. The factor 0.15 is used to
account for the assumed self-weight of reinforced concrete (150 Ib/ft’ = 0.15kips/ft’).

In a similar way, the external work done by the concrete deck can be computed by
Equation 2-31and 2-32. Equation 2-31 is used to compute the work done by the middle triangle
(i.e., BOC in Figure 2.9)

EWDECKM[D-TR[NGLE= 1/2 : l : h -t-0.15 - A/3 Equation 2-31

where / (ft) is the length of the yield line lying above the interior top flange of the intact girder
(BC), h (ft) is the height of the triangle BOC and is equal to the distance from centerline of the
interior flange of the intact girder to the edge of the flange, ¢ (ft) is the thickness of the concrete
deck, and 4 is the virtual displacement. Once again, the factor 0.15 accounts for the self-weight
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of reinforced concrete, which was assumed to be 150 Ib/ft’ = 0.15kips/ft’. Additionally, the work
done by the outer triangles (i.e., AOB and COD) can be approximated using Equation 2-32.

EWDECKOUT—TRINGLE= 1/2 a - h -t-0.15 - A/3 Equation 2-32

where a (ft), as before, is the horizontal distance from point A or D to the origin and 4 is the
virtual displacement. Equation 2-32 is accurate for a straight bridge; as the curvature and the
length a increase, however, this expression overestimates the work done by the outer triangles
because the areas of these triangles become smaller. An accurate expression for the work done
by the outer triangles can be obtained if the term a in Equation 2-32 is replaced with Icp or L4
from Equation 2-28, and 4; is calculated according to Equation 2-33.

VX2 +Y7 -sin(6, +a, )‘ Equation 2-33

where X;, Y; are the coordinates of point D, 6; is the angle measured from the positive x-axis to
line OD, and «; is the angle of the yield line DC obtained from Equation 2-27 (Figure 2.13). The
heights of the outer triangles are equal due to symmetry (i.e., hcop= hiop). Additional details of
this implementation are provided in the examples that appear in the Appendix.
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Figure 2.13: Geometric parameters of Equation 32

2.4 Yield LineModel Analysis Results of the FSEL Bridge

The Yield Line Model was successfully applied to the FSEL test bridge. Applying an HS-
20 truck load to the bridge at the most severe location, the ultimate load was computed to be 3.91
x HS-20 Trucks or 281.9 kips for /:=6.26 ksi, which was the measured strength of the deck. The
ultimate load was computed to be 3.66 x HS-20 Trucks or 263.84 kips for f:=4.00 ksi, which
was the specified design strength of the deck. The total estimated capacity of the test bridge
using an HS-20 truck loading is less than the actual load carried by the bridge—363.0 kips—for
two reasons. First, the wheel loads of the truck used in the analysis produce a larger moment than
that produced by the road base that was distributed over a portion of the deck during the test.
Second, the positive moment capacity of the railing used in the analysis was smaller than the
actual capacity due to the conservative assumption used to estimate the width of the deck
participating with the railing. This approach was taken to obtain a conservative solution. The
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area of the tension reinforcement bars in the effective width appears to be greater than what was
assumed for the analyses in order to produce the crushing failure observed in the test. The details
of the analysis of the test bridge with a truck load are given as the first example, which is
presented in the following chapter.
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Chapter 3. Example 1: Analysisof the FSEL Bridge Test 2

3.1 Introduction

The examples provided in this chapter and in the appendix are presented to illustrate the
simplified method of analysis used to model the response of a twin steel box-girder bridge
following the fracture of one of its girders. Most of the calculations were performed using a
spreadsheet. The goal seek option was used to find the value of the length « that gave the lowest
estimate of overall capacity. In the first example, the procedure is applied to the FSEL test bridge
using the same load configuration that was utilized during Test 2. A brief description of this test
is given in Chapter 1 of this report. Additional details can be found in Neuman (2009).

Prior to its use in this research project, the FSEL test bridge was used as part of an exit-
ramp on the IH 10/Loop 610 interchange in Houston, TX. The total length of this simply
supported bridge is 120 ft. Figure 3.1 shows a typical cross-section of the FSEL test bridge. The
top and bottom flange thickness does not change along the span of the bridge, and a T501 section
is used for the railings. The radius of curvature for this bridge is 1365.39 ft.

e of Ra S ey
e L Structure ol ©
C| 1 R=1365. 39’ e e P
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*

5.667 12. 000 | 5. 667

r -r= o =]

Figure 3.1: Typical cross-section of FSEL bridge

3.2 Calculation of the Transmitted Load to the Intact Girder

The analysis assumes that half of the entire weight of the bridge and the entire live load
on the bridge need to be resisted by the intact girder in the event of a fracture. During the test, a
simulated 76-kip truck load was applied to the bridge. The fracture of the outer girder webs and
flanges was simulated by removing a temporary support through the use of an explosive charge.
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The bridge carried the load without collapsing. The shear studs connecting the interior flange of
the fractured girder pulled out of the bridge deck during the test. The loads are calculated below:

Weight of one steel box girder
Weirder = 1.15 - (109 in*/144 ft*/in®) - (0.490 kips/ft’) = 0.427 kip/ft

Notes: This is the weight of one girder. The cross-sectional area of one girder is 109 in®. The
density of steel is taken as 490 Ib/ft’. To account for internal diaphragms, stiffeners, etc., the
weight of the steel girder is multiplied by a factor of 1.15.

Concrete deck
Waeer = (280 - 8 / 144 ftz) - (0.150 kip/ft3) = 2.33 kip/ft

Notes: The width of the concrete deck is 23 ft-4 in. = 280 in. The density of concrete is taken as
150 Ib/ft’. The deck thickness is 8 in.

T501 railing
Waitings = 2 + (311.75/144 £t%) - (0.150 kip/ft’) = 0.65 kip/ft

Notes: This value is multiplied by two to account for two rails. The cross-sectional area of one
rail is calculated as 311.75 in”

Simulated truck
VVz‘ruck =76 klps

Note: The total load of the simulated HS-20 truck used during the test is 76 kips. In subsequent
calculations, the value of 72 kips is used to represent an actual HS-20 truck load.

L oad to be transmitted
F= (ngm’er + Wdeck/2 + Wrailings/z) L+ VVtruck

F=(0.427 +2.33/2 + 0.65/2) - 120 + 76 = 306.04 kips

IF = 306.04 kips

3.3 Calculation of Maximum Moment on the Bridge

Mid-span moment dueto dead load
Mpr =2 * Weirder + Wacek + Wrailings) - L8 = (2 - 0.427 +2.33 + 0.65) - 120°/8
Mp; = 7,063.2 kip-ft
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Moment dueto truck load

The position of the 76-kip truck load, the shear diagram, and the moment diagram are
shown in Figure 3.2. The maximum moment is located at the mid-span of the bridge, and it is

equal to M, = 9,048.6 kip-ft.

33.9kips 33.9 Lips

l l 8.2kips
1

b olaft 4 a4

465ft -

46 ft

41 kips

7.1 kips

-26.8 kips o .
ot KIPE

1886 kip-ft 1610.2 kip-ft

10854 kip-ft

Figure 3.2: Truck load location—shear and moment diagram due to truck load

3.4 Analysis of Composite Section

The plastic moment capacity of the intact girder is calculated to determine if it has
sufficient capacity to sustain the total live load and dead load on the bridge. The composite
section used for all calculations is shown in Figure 3.3. Based on lab tests, it was found that f,,, =

60 ksi for the webs and f,,y= 53 ksi for the bottom flange.

Find the plastic neutral axis by setting 7= C:

T=A;-f,=47-0.75-53+(2-58.754-0.5+2-12-0.625) - 60 = 6293.25 kips

Ce=0.85"f" - t; - bey=0.85-6.26 - 8 - 140 =5959.52 kips
Because T > C, the plastic neutral axis is in the girder.
Cs=(4sf,—C)/2=(6293.25-5959.52) / 2 = 166.87 kips
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Figure 3.3: Composite section

Using this equation, the compressive force required in the steel section to achieve
equilibrium (C = T) can be determined.
Cn=2 ty by frr=2-0.625-12 - 60 =900 kips

The top flanges can resist 900 kips in compression, which is more than required to obtain

equilibrium. As a result the, plastic neutral axis (PNA) lies at x = 166.87 / (2-12:60) = 0.116 in.
inside the top flange as shown in Figure 3.4.

Top flange

PNA

1 web

Figure 3.4: Plastic neutral axis location

Thus:
C.=5959.52 kips
Cy1 = 166.87 kips,
Ty =900 - 166.87 = 733.13 kips
Tweb = Aweb * frw =2 - 0.5 - 58.754 - 60 = 3525.24 kips
Tbottomﬂange = Abottomﬂange fy =47-0.75 - 53 =1868.25 klpS

By taking moments about the PNA, the nominal plastic moment capacity can be calculated:
Myortom fiange = Thottom flange * (3/8 + 57 —0.116) = 106,974 kip-in.
Myer, = Tywep - 57 /2 =100,469 kip-in.
Mry= Ty - (0.625—-0.116) / 2 = 187 kip-in.
Mcy=Cy-0.116 /2 =9.68 kip-in.
Mc concrere = Ce - (4 +3+ 0116) =42,408 klp-ll’l
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Note: The 3-in. term added in the moment arm accounts for the average haunch height and
offsets the concrete deck 3 in. above the top flange of the girder.
Accordingly, Mp = 106,974 + 100,469 + 187 + 9.68 + 42,408

IMp = 250,048 kip-in. = 20,837 kip-fi

Earlier, M,,,, was found to be 9,049 kip-ft. The plastic moment capacity of the intact
girder is adequate to sustain the dead load of the bridge plus the truck load.

3.5 Analysis of Concrete Deck

The bending and shear capacity of the concrete deck are checked to ensure that they are
adequate to resist the moment and the shear produced by the unsupported load of the fractured
girder. These capacities are based on a 1-ft wide transverse deck section as shown in Figure 3.5.
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Figure 3.5: Typical one foot wide section of the concrete deck

Positive Moment Capacity
The assumed strain and stress profile at failure are shown in Figure 3.6:
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Figure 3.6: Strain and stress gradients at positive moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the bottom reinforcement yields prior to failure. The top reinforcement is included in the
calculations to provide for more accurate results than would be obtained if its contribution were
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neglected. Based on the results of laboratory tests to characterize material properties, the
concrete strength is taken as 6.26 ksi, and the reinforcement strength is taken as 60 ksi.

LetC=T:
C=085-fc"-p1-c-b=085-626-0.7-12-¢c=44.70 - ¢
Note: f; =0.70 for 6.26 ksi concrete.
&s, bottom = 0.003 - (6.4375-¢)/ ¢
&, 10p = 0.003 - (2.3125-¢)/ c
Thottom = As,bottom * fy = 0.62 - 60 = 37.2 kips
Tiop = Asop * &5, 10p * £ =10.62 - 29,0000 - &,0p = 17,980 - &1
44.70 - ¢ =372+ 17,980 - &0p
4470 - ¢=37.2+ 17,980 - 0.003 - (2.3125-¢)/c

Iterations need to be performed until the neutral axis depth is found. For this case, the
solution is found to be ¢ = 1.494 in.

&s, botom = 0.00993 > Yield strain (= 0.00207 for 60 ksi)

&s, top = 0.001644 < Yield strain (= 0.00207 for 60 ksi)

C=66.78 kips

Thorom = 37.2 kips

Top = 29.55 kips

Taking moments about the NA to solve for nominal moment capacity

M,"=C-(c-B1-c/2)+ Ty (23125 -¢) + Thouom - (6.4375 - ¢)

M, =66.78 - (1.494 - 0.7 - 1.494/2) +29.55 - (2.3125 — 1.494) + 37.2 - (6.4375 — 1.494)

M, =272.93 kips-in. = 22.74 kips-f{

Negative Moment Capacity
The assumed strain and stress failure profile are shown in Figure 3.7.
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Figure 3.7: Strain and stress gradients at negative moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the top reinforcement yields prior to failure. Similarly to the calculations carried out to
determine the positive moment capacity, the bottom reinforcement is included in the calculations
to determine the negative moment capacity.
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LetC=T:
C=085-fc"-f1-c-b=085-626-0.7-12-¢c=44.70 ¢

Note: ;= 0.70 for 6.26 ksi concrete.
&s, botom = 0.003 - (1.5625 - ¢) / ¢
&, 10p = 0.003 - (5.6875-¢)/c
Thottom = As,bottom * €s, bottom * Es = 0.62 - 29,0000 - & portom = 17,980 * & potiom
Trop = Aspop * f,=0.62 - 60 =37.2 kips
44.70 - ¢ =37.2+ 17,980 * & borrom

44.70 - ¢=37.2+ 17,980 - 0.003 - (1.5625-¢)/c

Iterations need to be performed until the neutral axis depth is found. The solution for this
caseis ¢ =1.199 in.

&s, botom = 0.00091 < Yield strain (= 0.00207 for 60 ksi)
&s, top = 0.01123 > Yield strain (= 0.00207 for 60 ksi)
C=53.60 kips
Tronom = 16.35 kips
Top = 37.2 kips
Taking moments about the NA to solve for nominal moment capacity

My =C-(c-B cl2)+ Ty (5.6875 - ¢) + Toostom * (1.5625 - ¢)
M, =53.60 - (1.199 - 0.7 - 1.199/2) + 37.2 - (5.6875 - 1.199) + 16.35 - (1.5625 - 1.199)

M, = 214.69 kips-in. = 17.89 kips-ft|

Bending and Shear Capacity Check

Based on the assumption that the shear studs have sufficient tensile capacity to prevent a

pull-out failure, the deflected shape of the concrete deck and the bending moment diagram are
given in Figure 3.8.
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Figure 3.8: Deflected shape and moment diagram before any failure of shear studs

V=(M," + M,)s=(22.74 kip-ft + 17.89 kip-ft)/5.5 ft = 7.39 kips per foot of deck
Note: The spacing, s, is equal to the distance between the mid-width of the fractured girder’s
interior top flange and the edge of the interior top flange of the intact girder (5.5 ft).

The shear capacity is calculated using the ACI equation for shear shown below, which
neglects the contribution of the reinforcement. The capacity is based on a 1-ft wide transverse
deck section. The depth used in this equation is the depth to the centroid of the tension
reinforcement (6.4375 in.).

Ve=2-f] ~b-d=2- 6260 - 12 - 64375 = 12.22 kips

Thus, the shear capacity of the deck is controlled by the shear of the plastic deck
mechanism (7.39 kips/ft). Therefore, the total length required to transfer the 306.04-kip force is:
Iy=306.04/739=41.41ft

41.41 /120 = 34.51 % of the span length

Shear Stud Check

In order to determine the tensile strength of the shear stud group, the guidelines given by
Mouras (2008) are followed. The shear stud connection in the FSEL bridge consists of a group of
three 5-in. tall shear studs spaced transversely. The haunch along the length of the bridge is 3 in.
By using Equation 3-1 and 3-2 given below, the tensile capacity of the shear studs group is
calculated to be 15.02 kips throughout the bridge.

No=ke [f] - hi'? Equation 3-1 (ACI 318-08)

A
Ncbg =

NCO

Vel Veol " Yed N ™ Yol * Equation 3-2 (modified ACI 318-08)

Ny
where:

N, = concrete cone breakout strength of a single isolated stud in a continuous piece of
cracked concrete (15.19 kips)
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k. = 24 for cast-in-place shear studs

f.” = concrete compressive strength (6260 psi)

hy, = modified height of shear stud in concrete (4, = her- dy = 4.625-3=1.625 in. < 12/3=4

— hy, =4 11’1)

her= effective height of shear stud in concrete, which is equal to the length of stud less
the height of the stud head (/.;=5-0.375 = 4.625in.)

dp=haunch height (3 in.)

cqamin = distance between outer stud and the edge of flange (cgmin = 1.5 in.)

Nepe = design concrete breakout strength of a stud or group of studs (33.47 kips)

An.= projected concrete cone failure area of a stud group (Ane= 3 herwy, = 166.5 inz)
Note: Ay.= 3 herwy because haunch is confined over the full height of the projected

cone failure area.

Anco = projected concrete cone failure area of a single stud in continuous concrete (Ayq, =

9% = 144 in%)

¥, v = group effect modification factor for studs on a bridge girder (¥, = 0.90 for 3

studs spaced transversely)

Ween = eccentric load modification factor (we.y = 1)

Weq N = edge distance modification factor (weqny = 0.74+0.3 comin / (1.5 hep) = 0.76)

w.n = cracked concrete modification factor (y.y = 1.25 for cast-in studs)

Using Equation 3-2, a determination as to whether the shear studs pull out or a hinge is formed in
the concrete deck can be made. A strip width equal to the shear stud spacing of 22 inches is used
to calculate the tension in the stud group.

Nepg =T =15.02 kips, Mo/b + V' =22.74 - (22/12) / 6 + 7.39 - (22/12) = 20.50 kips
Because T < M,/b + V, the shear studs pull out, which is consistent with test observations.

Shear Check of the Composite Section at the Supportsdueto Torsion and Bending
The entire weight of the bridge and the live load are applied to the intact girder. The shear
due to this loading, which is developed at the end of the span, is calculated as follows:

V="Vpr + Viruvck = (2 - 0.427 +2.33 + 0.65) - 120/ 2 +41

V=271.04 kipy

The unsupported load, which is first carried by the fractured girder, has to be transferred
to the intact girder. The eccentricity between the chord of the intact girder bearings and the
center of gravity (CG) of each load leads to a torque that is applied to the intact girder in addition
to all the transferred loads. Due to the large horizontal curvature of the bridge (R = 1365.39 ft),
the eccentricities of each load are assumed to be equal to the distance between the CG of each
load and the centerline of the intact girder bearings. Table 3.1 summarizes all the eccentricities.
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Table 3.1: Unit moment capacities of the concr ete deck

Liveor Dead L oad Eccentricity

(ft)

1 | Fractured Girder (FG) 12

2| Railing above FG 17.17

3 Deck above FG 11.83

4 | Intact Girder (IG) 0.00

5 Railing above IG 5.17

6 Deck above 1G 0.17

7 Truck 11.25

Thus, the torques due to each load are equal to:
tr¢=51.24 - 12=614.88 kip-ft

trrg =39 - 17.17 = 669.63 kip-ft

tprg =139.8 - 11.83 =1,653.83 kip-ft
tig=51.24 - 0=0 kip-ft

trig =39 - 5.17=201.63 kip-ft

tpig=139.8 - 0.17 =23.77 kip-ft

trruck = 76 - 11.25 = 855 kip-ft

Assuming that half of the calculated torque is applied to each end of the intact girder, the torque
developed at each end section is equal to:

T'=(614.88 + 669.63 + 1,653.83 - 201.63 - 23.77 + 855) / 2 = 1,784 kip-ft

In all the above calculations for the applied torque, the curvature of the bridge is

neglected due to the large radius of curvature of the test bridge. In order to include the effect of
the horizontal curvature, Equations 2-5 through 2-19 need to be used. In the case of the FSEL

bridge:
1.

Rinr=1359.34 ft, Liyr=119.48 ft, p = 0.0879

2. Rpe= 13712 ft, Oyprg = 0 rad, 0;rg = 0.0879 rads, 6, =0.04395 rads
3.
4. RTRUCK= 1370.48 ft, QOTRUCK =0.0204 rad, QITRUCK =0.03385 rads, HTRUCK =0.027 rads

Rig=1359.34 ft, 8y, = 0 rad, 6,6 = 0.0879 rads, 8,; = 0.04395 rads

The center of gravity of each component is found by inserting all the above values into

Equation 2-18.

2
5 13712 -1.96-[sin(0.0879 —0.04395) —sin(—0.04395)]
ro 1371.2-1.96-0.0879

=1370.76 ft

2
5 _1359.34 -1.96-[sin(0.0879 — 0.04395) — sin(—0.04395)]
e 1359.34-1.96-0.0879

=1358.90 fi
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2
5 1370.48 -2.72-[sin(0.03385 —0.027) —sin(0.0204 — 0.027)]
TRUCK 1370.48-2.72-(0.03385 —0.0204)

=1370.47 fi

By using Equation 2-19, the eccentricity of each component can be found as follows:
erg = 1370.76 — 1359.34 - cos(119.48/(2 - 1359.34)) = 12.73 ft
eig=1358.90 — 1359.34 - cos(119.48/(2 - 1359.34)) = 0.87 ft
erruck = 1370.47 — 1359.34 - cos(119.48/(2 - 1359.34)) =11.12 ft

The calculated eccentricities are in a very good agreement with the assumed ones (erg =
12.73 ft =12 ft, ;g = 0.87 ft = 0 ft, eqrucx = 11.12 ft = 11.25 ft). As a result, if the bridge under
consideration has a large radius of curvature, the eccentricities can be measured from the
centerline of the intact girder.

To compute the shear flow of the closed cross-section, Equation 2-20 is used.
qg=T/@2 A4)=1,784/(2 - 3850.36/144) = 33.36 kips/ft = 2.78 kips/in

The shear stress due to torsion at every component of the composite section is calculated
as:
tconc. pEck = q / t conc. peck = 2.78 / 8 = 0.34 ksi
TwEB = ( /twgg=2.78 /0.5 = 5.56 ksi
TBOTT. FLANGE = q / t port. FLance = 2.78 /1 0.75 = 3.71 ksi

The flexural shear is assumed to be carried by the webs of the composite section because
the contribution of the bottom flange and the concrete deck is small. The flexural shear stress in
the webs of the composite section is calculated as:

TFlexural WEB — V/ (2 ' hWEB “twEB * COS(14°)) =271.04/ (2 - 58.754 - 0.5 - 097) =4.76 ksi

Note: The factor 2 accounts for the fact that the composite sections consist of two webs, which
share the total flexural shear. The cos(14°) accounts for the fact that the webs are not vertical,
due to their inclination, the shear force in the plane of the webs is higher than the applied shear.

The shear stress that develops in the concrete deck due to torsion is equal to 0.36 ksi.
According to ACI 318-08, the shear capacity of a reinforced concrete section is,

Vs= A f,b-cott/s

Thus,

Vrorsion = q-b =2.78-72 = 200.16 kips < Vs= 4, f,,-b-cotf/s= 0.62-60-72/6 = 446.4 kips

The shear stresses in the steel girder are checked according to the AASHTO
Specifications (2007). The shear stress in the webs of the end panel should be limited to either
the shear-yielding or shear-buckling resistance. The nominal shear stress capacity of the web
panel (z,) is computed as the shear-buckling capacity to the shear yield strength ratio (C)
multiplied by the plastic shear stress (z,) (z,=C'1,). The plastic shear stress is equal to 0.58f,,,.
The ratio C is determined as follows:

If 2 <1.12 E—kthen C=1.0
tw’ fyw
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If1.12 —k<—<140 henC—ﬁ Lk
V V Djt,, V

D E
it 2 >1.40 |25 then 0= 17| EE
L, Sow (D/z,)

For the FSEL test bridge, D = 58.75 in., ¢, =0.5 in., E = 29,000 ksi, f,,, =60 ksi. The

factor £ is calculated as
S
%/2
D

where dj is the spacing from the support to the first stiffener adjacent to the support (144 in.).
AASHTO limits the factor do/D to 1.5 for end panels. In the case of the FSEL test bridge, this
limit is violated because do/D=2.45>1.5. Due to this violation, the ratio is set to its actual value
(i.e., do/D=2.45). Moreover, it is important to mention that the ratio of dy/D=2.45 provides a
lower nominal shear stress than dy/D=1.5. By inserting the value of dy/D into the equation above,
k is calculated to be 5.83. Because

?:_=n41m/ = 7432
C:Lngg:
(D/tw) ny

Having all the variables defined, the nominal shear stress (z,) is equal to z, = 0.32-0.58-
JSow=11.14 ksi.

The total shear stress in the webs includes contributions from the flexural shear stress and
the torsional shear stress. As shown in Figure 3.9, the shear stresses are added and subtracted in
the east and west web, respectively. The east web controls because the shear from flexure and
torsion add to each other. The total shear stress that develops in the east web is calculated to be

T70TAL = TWEB T+ TFlexural wes = 5.56 + 4.76 = 10.32 ksi, which is less than the nominal shear stress
capacity (z, = 11.14 ksi).

k=5+
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Figure 3.9: Flexural and torsional shear stresses on the composite section

The end diaphragm, which connects both girders, needs to be checked to ensure that it
has adequate capacity to resist the torque applied to the intact girder. The force couples at the
calculated as follows:

bearings of the two girders, which are produced by the torque applied on the intact girder, causes
shearing of the end diaphragm. Thus, the forces acting on each side of the end diaphragm can be
girder, and / is the distance between the two bearings.

Vep =T/ I, = 1,784 k-ft / 12 ft = 148.67 kips, where T is the torque applied to the intact
AASHTO Sec. 6.10.9.2.

The nominal shear strength of the end diaphragm can be computed according to
and C is calculated as

Vi= C-Vp, where Vp=0.58F),,-D-t,, = 0.58-:60-57-0.5 = 991.8 kips
) D 57

= 1.57 > E—k =0.29 because — =
(D/tw) f‘yw

=114>1.40 £k =68.82 , where k= 5.
t, 0.5 S

Thus, the shear strength of the end diaphragm (V, = 0.29-991.8 = 287.62 kips) is
adequate to resist the applied shearing force (Vgp = 148.67 kips).

Summarizing the calculations, it is found that all the components of the section have
adequate capacities to resist the applied load, except for the shear studs. The plastic mechanism
this bridge can sustain.

in the deck between the girders cannot be formed due to the low tensile strength of the shear
studs. As a result, a yield line analysis needs to be performed to determine the ultimate load that

3.6 Analysisof FSEL Bridge Using theYield Line Model

Following the procedure of the Yield Line Model described in the previous chapter, the
ultimate load carrying capacity of the FSEL bridge can be estimated. The unit moment capacity

of a 1-ft strip of the concrete deck is calculated in the same manner as presented above. Table 3.2
summarizes the basic parameters of the FSEL bridge.
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Table 3.2: Unit moment capacities of the concr ete deck

Span Length
L | 120.00 | ft
Quter Horizontal Curvature
R | 1377.00 | ft

Distance of the deck's outer edge from
the intact girder's interior top flange

b | 14.17 | ft
Moment Capacity of the Deck
M 17.62 kip-ft
ML 10.27 kip-ft
Myr 22.74 kip-ft
MyL 14.76 kip-ft
Moment Capacity of the Railing
M, | 416.27 | Kkip-ft

Following the procedure described above, Table 3.3 can be constructed. All the variables
presented in this table are defined as follows:

1.
2.

a is equal to the horizontal distance from point A or D to the origin.

6; (radians) is the angle measured from the positive x-axis to the radial line that
connects the origin with points D, C, or B (line OD, OC, OB in Figure 2.13).

3. X, Y are the coordinates of points A, B, C, and D.

[ is the length of each yield line, and it is calculated by inserting the end point
coordinates into the distance formula (Equation 2-28).

o. is the angle of each yield line with the horizontal axis (Equation 2-27)

The moment capacity (m;) of each hinge line is calculated according to Equation
2-26.

h; is the height of DOC, COB, or BOA triangle.

Ororation 18 the angle of rotation of each plane (DOC, COB, and BOA) with respect to
the horizontal for yield lines along the perimeter; for diagonal yield lines, 8,oa1ion 1S
the angle of rotation between two adjacent planes (e.g., DOC with COB, and COB
with BOA)

The last factors (dIW, IW hinge, IW Raiting. IWToTAL) A€, TESpECtively, the internal work
(IW) of each hinge line, the summation of the yield lines IW, the IW of the railing,
and the total IW.
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Table 3.3: Internal work calculation for FSEL bridge

a (ft) 0;(rad) | X Y I a | my | h | Otation | AW | Wi
41 | | 0015 | 4100 | 061 116.71
© | 0611 | 2024 | 14.17 | 24.79 | 0.58 | 1454 | 2293 | 0.044 | 15.72 | IWnaing
S | 2531 | 20241417 | 4047 | 0.00 | 1663 | 14.17 | 0071 | 4750 | 5254

3.127 | -41.00 | 0.61 | 24.79 | 2.56 | 14.54 | 22.93 | 0.044 | 15.72 [Wroral

24.70 | 061 | 18.43 0.0415 | 18.88 | 16920

Diagonals

24.70 | 0.61 | 18.43 0.0415 | 18.88

As mentioned previously, the length a and the magnitude of the truck load are mutually
dependant. Accordingly, one of these variables should be fixed in order to obtain the other one. It
is recommended that the live load magnitude corresponding to the number of trucks be selected
first; with this value set, the length a for the given load magnitude can be obtained. A good
starting value is 2xHS-20 trucks. If a valid solution for the length a is computed, the given truck
load is a possible failure loading. In subsequent iterations, the truck load should be decreased
until a valid solution for a no longer exists. The minimum truck load is the last one that gave a
physically admissible solution for the length a. In contrast, if the initially chosen truck load does
not provide a physically admissible solution for the length a, then the truck load needs to be
increased in subsequent iterations.

Once the length a has been computed, all the variables associated with the Yield Line
Model can be calculated. After several iterations, the minimum wheel multiplier was computed
to be equal to 3.66. As a result, the front wheel and middle/rear wheel loads are equal to 14.64
kips and 58.56 kips, respectively. Table 3.4 summarizes the external work calculation for the
minimum truck load multiplier of 3.66.

Table 3.4; External work calculation of thetruck load

Truck Load

P xpoint Load Ypoint Load r'ioAD r 6i EW

3 Front Wheel | 14.66 14 3.42 1441 | 3141 (054 | 7.93

E Front Wheel | 14.66 14 9.42 16.87 | 24.89 (0.32| 4.72
S Middle Wheel | 58.63 0 3.42 3.42 |14.17 [ 0.76 | 44.48
= Middle Wheel | 58.63 0 9.42 9.42 |14.17(0.34 | 19.65
Rear Wheel |58.63 -14 3.42 1441 | 31.41 (054 | 31.73

Rear Wheel | 58.63 -14 9.42 16.87 | 24.89 | 0.32 | 18.89
EWrruck 127.41

EWp, 41.84

EWroralL - IWroral 0.00

The Yield Line Model indicated that the ultimate load capacity of the FSEL bridge was
3.66xHS-20 Trucks or 263.52 kips, which is smaller than the actual load of 363.75 kips that the
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bridge carried during the test. As previously mentioned, the difference between the estimated and
actual load capacity is due to two reasons. First, the point loads used in the analysis produce a
larger moment than the distributed load used in the test because of the way in which the road
base was distributed and positioned on the bridge. Second, the positive moment capacity of the
railing used for estimating the bridge capacity is smaller than the observed one because of the
assumptions made in defining the effective width of the concrete deck that contributes to the
railing response. These assumptions were made to ensure a conservative estimate of the overall
capacity of a bridge following the fracture of one of its girders.

The initial strength checks for the bridge, which were performed earlier, should be
recalculated for the truck load of 3.66 x HS-20 (263.52 kips). As before, the moment at the mid-
span of the intact girder produced by this increased truck load is found to be 13,944 kip-ft, which
is less than the plastic moment capacity of the intact girder section.

IMp = 250,047.67 kip-in. = 20,837.31 kip-ft> 13,944 kip-fi

The force needed to be transferred is found to be:

F=(0.427+2.33/2+0.65/2) - 120 + 263.52 = 493.56 kips

IF = 493.56 kips|

The length of the bridge needed to transfer the load F based on the flexural capacity of the bridge
is:

Iy =493.56/7.39 =66.79 ft
66.79 / 120 = 55.66 % of the span length

The flexural shear at the end support is found to be:

V="Vpr + Virvck = (2 - 0.427 + 2.33 + 0.65) - 120 /2 +142

The torques due to each load are equal to:
tr¢=51.24 - 12 =614.88 kips-ft
trrg =39 - 17.17 = 669.63 kips-ft
tprg =139.8 - 11.83 =1,653.83 kips-ft
tig=51.24 - 0 =0 kips-ft
tric =39 - 5.17=201.63 kips-ft
tpig=139.8 - 0.17 = 23.77 kips-ft
trruck = 263.52 - 11.25=2,964.6 kip-ft

Assuming that half of the calculated torque is applied to each end of the intact girder, the torque
developed at the end section is equal to:
T=(614.88 + 669.63 + 1,653.83 - 201.63 - 23.77 +2,964.6) / 2 = 2,838.77 kip-ft
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Knowing the applied torque at the end support, the shear flow of the end section is calculated to
be:
qg=T/(2 A4)=2,838.77/(2 - 3850.36/144) = 53.08 kips/ft = 4.42 kips/in

The shear stresses in the concrete deck, webs, and bottom flange are computed by following the
same procedure as before:
TCONC. DECK — ¢ /tcozvc, DECK = 4.42 / 8 = 055 kSl
TwEB = ( /tWEB =4.42/0.5=28.84 ksi
TBOTT. FLANGE = q /'t BotT. FLANGE = 4.42 /1 0.75 = 5.89 ksi
TFlexural WEB — V/ (2 : hWEB “twgs ° COS(14°)) =372/ (2 - 58.754 - 0.5 - 097) =6.53 ksi
The shear stress, which develops in the concrete deck due to torsion, is equal to 0.56 ksi.

According to ACI 318-08, the shear capacity of a reinforced concrete section is Vg= 4,
fyb-cotl/s. As a result,
Vrorsion = q-b =4.42-72 = 318.24 kips < Vs= A f,,-b-cotf/s= 0.62-60-72/6 = 446.4 kips

The shear stress in the webs is a combination of the flexural and the torsional shear
stresses. As shown in Figure 3.9, the shear stresses add together in the east web, and they must
be subtracted in the west web. The east web controls in this case. The total shear stress that
develops in the east web is calculated to be:

TT0TAL = TWEB T TFlexural WEB = 8.84+6.53 = 15.37 ksi which is blgger than Tn =11.14 ksi.

Regarding the end diaphragm, the shearing forces at each edge of the end diaphragm are equal
to:

Vep=T/1,=2,838.77 /12 = 236.56 kips
where 7 is the torque applied on the intact girder, and /, is the distance between the two bearings.

Thus, the shear strength of the end diaphragm (7, = 0.29-991.8 = 287.62 kips) is adequate to
resist the applied shearing force (Vzp = 236.56 kips).

Summarizing the calculations, it is found that the web stresses of the end section exceed
the nominal stress before the collapse of the bridge. This result indicates that the webs would
buckle under the applied load. Buckling of the webs, however, was not observed in the test. The
difference between the predicted response and the observed behavior stems from some of the
assumptions made in the development of the simplified analysis procedure to compute the
response of a twin steel box-girder bridge following the fracture of one of its girders. The
buckling capacity of the webs in shear is based on simply supported boundary conditions. The
actual boundary conditions in a box girder may approach a fixed condition. Moreover, in
experimental studies of composite girders, the webs of end panels were able to reach their
tension field capacity. In the calculations performed for this example, the buckling capacity of
the girder webs is low due to the large stiffener spacing in the last panels, which exceed the
AASHTO maximum spacing requirements. Based upon the web buckling capacity computed
using the AAHTO specifications, however, the estimated bridge capacity would be 1.48 HS-20
trucks (106.56 kips). The variation in the results computed with the simplified modeling
approach suggests that, in certain cases, it may be desirable to perform detailed finite element
analyses to compute the stresses in critical components. The next chapter introduces finite
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element modeling techniques that can be used to compute the response of fracture critical steel
box-girder bridges.
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Chapter 4. Numerical Modeling of Twin Steel Box-Girder Bridges

4.1 Introduction

Finite element models used to simulate the response of twin steel box-girder bridges
considered for this research were developed using ABAQUS/Standard (v6.7), which is a
commercially available general purpose finite element analysis software package. To incorporate
nonlinear material behavior, traditional metal plasticity was used to represent steel components,
and cast iron plasticity was used to represent concrete components. The choice of a metal-based
plasticity formulation to represent concrete material is described in detail below. In addition to
material nonlinearities, railing contact and stud connection failures were also considered in the
simulation models using nonlinear spring elements and connector elements, respectively. For the
railing contact, nonlinear spring elements were installed in gaps between bridge rails instead of
conducting a direct contact analysis. The deck haunch placed between a steel girder top flange
and the concrete deck was not modeled explicitly, but it was accounted for in the prescribed
load-deformation response of the connector elements. Connector element performance was
validated against small-scale laboratory tests on specimens that included a haunch and a wide
array of shear stud arrangements (Mouras, 2008). Details of the computational model are
described in the sections below.

4.2 Finite Element M odel of the Bridge

A trapezoidal steel box-girder bridge consists of various components, including steel
plate girders, bracing members, shear studs, a concrete deck, bridge rails, and so on. As shown in
Figure 4.1, finite element models for bridges were constructed with various types of elements to
represent, as realistically as possible, the box-girder bridge under investigation. The steel plates
were modeled using 8-node shell elements (S8R), and the internal and external brace members
were modeled using 2-node truss (T3D2) and beam elements (B31). For the concrete deck, 8-
node solid elements (C3D8R) were used. The reinforcement in the concrete deck was
represented using 2-node truss elements (T3D2) that were embedded into the concrete elements.
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Figure 4.1: Finite element bridge model

In the construction of a steel box-girder bridge, shear studs are used to develop composite
action between the concrete deck and the box girders. These shear studs, as shown in Figure
4.2(a), are installed on the top flanges of the box girders prior to casting of the concrete deck.
Haunches above the girder top flanges, as indicated in Figure 4.2(b), allow for a uniform deck
thickness along the bridge span. In the simulation model, such haunches were not modeled
explicitly; instead, their effects on the pull-out strength of shear stud connections were
incorporated into the vertical action of connector elements (CONN3D?2). The shear resistance of
the shear studs between the deck and the steel box girders was simulated with the horizontal
actions of the connector elements. These actions were obtained from tests that are described later
in this chapter. Bridge rails and railing interactions were modeled by 8-node solid elements and
nonlinear spring elements (SPRING?2), respectively, to account for railing contact. These
nonlinear springs were assumed to be effective only in compression after a deflection of 3/4 in.
was reached. This distance corresponded to the initial gap between rails in the finite element
model and was consistent with measurements of the bridge tested at FSEL and the prescribed
geometry called for in the TxDOT T501 traffic railing (TxDOT, 2003).
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Haunch

(a) Shear studs installed on tdp flange (b) Deck haunch
Figure 4.2: Shear studs and haunches of twin box-girder bridge

4.3 Material Nonlinearities and Degradation

4.3.1 Steel

The inelastic behavior of steel plates, brace members, and reinforcing steel were modeled
as “multi-linear inelastic material model with isotropic hardening rule” (Dassault Systemes,
2007a) in both tension and compression. Based on classical metal plasticity, it was assumed that
the material yielded when the equivalent stress exceeded the von Mises yield criterion; perfectly
plastic behavior was assumed when the stress exceeded the yield strength. In this study, 50 ksi
for the plates and 60 ksi for the reinforcing steel, respectively, were used as the yield strengths in
the finite element model of the full-scale test bridge. Figure 4.3 shows the stress-strain behavior
of the steel plate and rebar under uniaxial tension forces.
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Figure 4.3: Stress-strain behavior of steel
4.3.2 Concrete
Compressive Strength

The concrete deck of the full-scale test bridge was constructed using TxDOT class-S-type
concrete, which has a specified 28-day strength of 4,000 psi or greater. To determine concrete
strength as a function of time for the full-scale bridge tested at FSEL, concrete cylinder
specimens that were made when casting the deck and rails were tested at various intervals. The
average compressive strength obtained from the concrete cylinder tests is plotted in Figure 4.4.
The deck concrete was cast on August 17, 2006, and the railing was cast on August 24, 2006.
Sixty-six days after the deck was cast, the first full-scale bridge fracture test was done, and the
second bridge fracture test was conducted 293 days after the deck pour. As shown in Figure 4.4,
the railing concrete strength was slightly higher than the deck concrete strength. For simplicity,
however, a single concrete strength value was used to model both the deck and the railing in the
bridge fracture test simulations: 5,370 psi in the first test simulation and 6,230 psi in the second
test simulation. The third bridge fracture test was performed in March 2009. Although the
concrete strength at that time would most probably be higher than the strength at the time of the
second test due to concrete aging effects, the same concrete strength of 6,230 psi was utilized for
this test simulation because specific test data on concrete strength were not available and the
additional strength gain achieved following the second test was not expected to be significant.

In general, the concrete strength specified in the construction of bridge elements is
typically based on the 28-day value—though some states specify the concrete strength
corresponding to an age of 58 days (Russell, 2003). In practice, the specified concrete strength of
bridge components typically ranges between 4,000 psi and 8,000 psi (Russell, 2003). To
accurately account for the aging effect of concrete components in a bridge simulation model,
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detailed strength data as a function of time would be needed. Collecting such data, however,
would not be practical. Instead, the equation proposed by ACI Committee 209 (1982) can be
used to estimate the strength gain of concrete as a function of time:

f = fC'(ZS){ Equation 4-1

t
4+0.85t}
where

f;"(t) = concrete compressive strength at age ¢ (ksi)
t = curing time (day)

This equation is valid for concrete comprised of Type I cement and moist-cured at 70F°.

In the current study, when simulating the response of the bridge tested at FSEL, the most
accurate material properties available were used in the simulation model. In most cases, these
values were directly measured in laboratory tests; in some cases, however, they were estimated
based on available data. Conversely, when evaluating the redundancy of other bridges, it was
conservatively assumed that concrete components had a strength of 4,000 psi, which was the
lowest specified strength of concrete reported by Russell (2003). In addition, expected strength
increases with time were not included. These assumptions were made to ensure conservative
estimates of the overall load carrying capacity of twin steel box-girder bridges that suffer a full-
depth fracture of one of its girders.

Concrete compressive strengths were also used to specify hardening rules in tension and
compression. A hardening curve in compression was constructed using Equation 4-2 as
suggested by Kent and Park (1971), and the initial stiffness of the stress-strain curve in
compression was used to define the tensile behavior.

f=1 {i—g— [iﬂ Equation 4-2

o 8

o

where
f. = concrete compressive stress at given strain (ksi)
f. = concrete compressive strength (ksi)

€ = strain
£, = strain at maximum stress (£, =0.002)

o
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Figure 4.4: Concrete strength gaining

Concrete Smeared Cracking

The concrete deck and rails were modeled using 8-node solid elements. To account for
the inelastic behavior of concrete, such as tensile cracking and compressive crushing,
ABAQUS/Standard (v6.7) provides a concrete smeared cracking model and a concrete damaged
plasticity model. The latter model is appropriate for cases in which high confining pressures
exist, while the former model is appropriate for problems with low confining pressures (Dassault
Systemes, 2007a). For the concrete deck of a twin steel box-girder bridge, high confining
pressures are not expected due to the fact that the thickness of the deck is much smaller than the
width and the length and because the axial restraint in the plane of the deck is limited. For this
reason, the concrete smeared cracking model was initially adopted to simulate the response of
the full-scale bridge tested during this research.

Various aspects of material response must be defined when utilizing the concrete smeared
cracking model, including the compressive behavior, the post-tension failure behavior, the failure
ratios needed to define a yield surface, as well as several other parameters. Figure 4.5 shows the
uniaxial stress-strain curve and the yield surface associated with the concrete smeared cracking
model.
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Figure 4.5: Material behavior in concrete smeared cracking model

Finite element models that utilize the concrete smeared cracking model are known to
produce results that are sensitive to mesh density (Dassault Systemes, 2007a). Therefore,
concrete element size in the plane of the concrete deck was determined such that each element
contained reinforcing steel because mesh sensitivity tends to be reduced by the interaction
between reinforcing steel and concrete (Dassault Systemes, 2007a). Other parameters affecting
the accuracy of the computed results, including material properties and element size though
thickness of the deck, were calibrated using finite element simulations of lab tests on a small
deck model that represented a portion of the full-scale bridge deck.

The small deck model, as shown in Figure 4.6(a), was developed based on the expected
deck deflection behavior in a damaged bridge. With one girder fractured, as assumed for the
redundancy evaluation, the bridge deck would initially bend transversely in double curvature to
transfer loads from the fractured girder to the intact girder, as shown in Figure 4.6(b). When the
deck deflects in double curvature, an inflection point results approximately at the mid-section of
the deck between the two girders, and tension forces act on the shear studs of the fractured girder
due to the bending of the deck. Figure 4.7 shows a small deck test specimen and a finite element
simulation model used to represent the assumed bending response of the deck following the
fracture of one girder. The small deck tests, also referred to as stud pull-out tests herein, were
conducted by Sutton (2007) and Mouras (2008) as part of the current research program. From
their tests, the load-displacement response of small deck specimens and the pull-out strengths of
shear stud connections were obtained, and the measured data were used to calibrate the small
deck finite element models.
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(a) Small deck portion in full-scale bridge for small deck model

(b) Expected deformed shape in bridge cross-section

Figure 4.6: Small deck model to calibrate bridge concrete slab

Finite element model Test setup

Figure 4.7: Deck load-deflection test and simulation

Figure 4.8 compares measured load-displacement data from a laboratory test on a small
deck specimen with results obtained from finite element simulations. The assumed tensile
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strength of the concrete for the simulations was 10% of the average concrete compressive
strength, which was 5,100 psi for the small deck test specimen. To define the stress-strain
behavior beyond the cracking strain, it was assumed that the stress reduces linearly to zero,
where the total strain at zero stress was 10 times the cracking strain, as shown in Figure 4.5(a).
This post-cracking stress-strain relationship is also referred to as strain-softening behavior
(Dassault Systémes, 2007a). The number of elements in the finite element model was 10 along
the width and two along the length, as indicated in Figure 4.6(a). The prominent behavior
demonstrated by the small deck simulation models, as shown in the Figure 4.8, was a reduction
in bending stiffness near 15 kips of loading; this reduction was initiated by concrete element
cracking at the bottom of the deck near the midspan. The reduced bending stiffness of the deck
models eventually became negative because of the assumed post-cracking stress-strain
relationship (i.e., strain softening).

In addition to strain softening, the number of elements through the thickness of the deck
affected the stiffness of the simulation models. In Figure 4.8, the deck model with three elements
through the thickness shows a higher rate of stiffness reduction after the bottom of the deck
cracked than did the other cases with five or seven elements. This tendency could be a result of
the different rates of bending stiffness loss depending on the element size of the small deck
models. Once the stress in one translational direction of an element exceeds the cracking
strength, the element loses its resistance entirely in that stress direction. Therefore, a more
gradual reduction in bending stiffness can be achieved as the number of elements through the
thickness of a deck model is increased. According to the small deck simulation results, 10
elements along the deck width and five elements through the deck thickness resulted in good
agreement between the measured and the predicted load-displacement response of the specimens.
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Figure 4.8: Deflection behavior of small deck (concrete smeared cracking)

The same mesh density and material parameters obtained from the small deck simulations
were utilized to construct the concrete deck of the full-scale bridge finite element model. The
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finite element simulation of the full-scale bridge with the assumed damage and loading
conditions for the redundancy evaluation, however, was unable to run to completion due to a
numerical instability in the concrete deck response. Such instability was initiated by local
cracking failures in the deck, which eventually caused convergence problems in the very early
stages of the analysis as the cracks on the top of the deck extended longitudinally from the
midspan of the bridge. In the smeared concrete cracking model, a cracking failure of concrete
initiates strain-softening behavior. Usually, conducting a finite element analysis allowing for
softening behavior with a force-controlled loading procedure is numerically challenging, which
sometimes requires excessive computation time and frequently terminates prior to completion
due to numerical convergence problems (Dassault Systemes, 2007a).

4.3.3 Cast Iron Plasticity

As a result of the convergence problems encountered with the initial finite element
simulations of the full-scale bridge, the cast iron plasticity model was investigated to determine
if it could provide suitably accurate predictions of response without encountering the numerical
difficulties that resulted when using the concrete smeared cracking model. While it would seem
that a constitutive model based on a metal plasticity formulation would be an inappropriate
choice for modeling concrete material, the cast iron plasticity formulation includes several
features that make it well suited for the current application. Most importantly, the cast iron
plasticity model is able to represent different strengths for tension and compression. To do so,
the cast iron plasticity model utilizes a composite yield surface, and it is assumed that tension
yielding is governed by a maximum principal stress and that compression yielding is governed
by deviatoric stresses (Dassault Systemes, 2007b).

Figure 4.9 shows the uniaxial behavior and the yield surface of the cast iron plasticity
model, which was used to model concrete material behavior in this study. Basically, the model
has a von Mises-type yield surface, but it is truncated by a Rankine fracture criterion to
incorporate a reduced yield strength in tension. Under a plane stress state, the von Mises yield
surface has an elliptical shape, and the Rankine yield surface is a square (Ugural, 1995). Figure
4.9(b) depicts the resultant yield surface under a biaxial stress state. This yield surface has a
shape similar to that of the concrete smeared cracking model under a biaxial stress state, as
shown in Figure 4.5(b).
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Figure 4.9: Material behavior in cast iron plasticity model

As mentioned previously in Section 4.3.3, the material parameters and the mesh density
are important factors that can affect the computed finite element analysis results. With the cast
iron plasticity model, the primary material parameters that define the yield surface are the
compressive strength and the tensile strength. The assumed post-yielding behavior in both
tension and compression is perfectly plastic, which is a less severe condition numerically than
the strain softening of the concrete smeared cracking model. To determine an appropriate value
for the tensile strength of this inelastic material model, finite element simulations of the small
deck tests were conducted, and the deflection response of the simulations was compared with the
test results. Figure 4.10 shows the simulated load-deflection behavior of the small deck models
along with measured test data. The number of elements used in the simulation was 10 along the
deck width and five across the deck thickness, and cracking was assumed to occur at 10% of the
compressive strength for both concrete material models shown in the figure. As expected,
because of the post-yielding stress-strain behavior, the deck model utilizing the cast iron
plasticity model was stiffer than that of the concrete smeared cracking model.
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Figure 4.10: Deflection behavior of small deck (cast iron plasticity)

In order to match the measured deflection behavior of the small deck model using the
cast iron plasticity material model, the tensile strength and the number of elements through the
thickness were varied. Figure 4.11 shows the analysis results of a parametric evaluation that
considers various concrete tensile strengths for models utilizing five elements through the
thickness of the concrete deck. The investigated range of tensile strengths was 4% to 10% of the
compressive strength: 0.04 /7, 0.06 1/, 0.08 f/, and 0.1 /. Even with the tensile strength

reduced to 4% of the compressive strength, the small deck finite element model showed a stiffer
deflection response than the measured test results. Reducing the tensile strength further might
have led to a better correlation between the measured and computed response, but too low a
tensile strength increases the chances of numerical instability during the analysis. Furthermore,
using too small a value outside a realistic range of potential material parameters is also not
desirable. Therefore, it was decided to decrease the number of elements through the thickness of
the small deck model from five to three because the bending stiffness of the deck model tended
to decrease as the number of elements through the thickness diminished, as discussed in the
small deck simulations with the concrete smeared cracking model.

54



40 r

—~ 30

[%)]

Q.

g

e]

©

S 20

©

2

o

Q.

< 10
0 7 1 1 L 1 L 1 L J
0.0 0.1 0.2 0.3 0.4

Deck deflection (in.)

Figure 4.11: Tensile strength effect on deck deflection response

Using three elements through the thickness of the small deck finite element model, four
different tensile strengths were considered for investigating the sensitivity of the computed
results to this parameter. Rather than focusing entirely on the load-deflection response at
individual points, absorbed energy (defined as the area under the load-deflection curve) was used
to compare the computed results with the measured results (Figure 4.12). With this approach,
while there may be slight variations in the localized behavior computed in the small deck model
response, overall behavior would be considered to be in good agreement if the absorbed energy
compared well between the tests and the simulations. For this particular study, a limiting
deflection of 0.14 in. was used when computing the absorbed energy. This value was selected
based on an analysis of the simulation results and the collected test data. Thus, it was felt that
0.14 in. of displacement was large enough to capture significant nonlinear behavior in the
deflection response over a wide range of possible tensile strengths (Figure 4.11). In Figure 4.11,
the initial large change in slope of the load-deflection curve occurs when the stresses in the
elements at the bottom of the deck reach their tensile capacity as a result of bending in the
specimen. Another slope change occurs when the loading is approximately equal to 30 kips
(Figure 4.11), which is due to the breakout failure of concrete surrounding a shear stud. This
phenomenon, however, was taken into account by the mechanical behavior of the connector
elements that were incorporated into the model to represent a shear stud embedded into the deck
through a haunch. Thus, for the purposes of evaluating the concrete model, a limiting deflection
of 0.14 in. was selected so that the computed response, at least for the cases of tensile strength
considered, would remain less than the breakout capacity of the shear studs in the model. A
detailed discussion of the connector element behavior is presented below.
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Figure 4.12: Deck top deflection vs. tension force

Figure 4.13 shows the differences in the absorbed energy between the finite element
simulations and the experimental results. The differences in absorbed energy were normalized by
the average absorbed energy obtained from the test data. When the tensile strength of the cast
iron plasticity model was lowered to 4% of the compressive strength, the normalized energy
difference between the simulation results and the test data became only 0.29%.

70

60

50

40

30

20

10

Absorbed energy difference (%)

0

-10

4 6 8 10
Tensile strength, f, / f.' (%)

Figure 4.13: Normalized energy difference between tests and FE analysis

Figure 4.14 shows the deck deflection response of the small deck model using this tensile
strength and the mesh density described above (i.e., only three elements through the thickness).
Its general deflection response shows excellent agreement with the test results. Therefore, the
tensile strength was assumed to be 4% of the compressive strength for the concrete material used
in the finite element simulations, and this tensile strength was also used to construct full-scale
bridge models. As stated previously, the small deck simulation results were affected not only by
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material parameters such as the tensile strength but also by the mesh density of the model.
Furthermore, the tensile strength and mesh density for the full-scale bridge model were selected
based on the particular bending behavior observed in the damaged twin box-girder bridge tested
during this research project. Therefore, the tensile strength and the mesh density selected for this
research may not be suitable for other types of bridge slabs or concrete structures.
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Figure 4.14: Deflection behavior of calibrated cast iron plasticity deck model

4.3.4 Shear Stud and Haunch

A haunch, as shown in Figure 4.2(b), is typically used in bridge construction to help
maintain a uniform thickness of the concrete deck. One potential drawback with the use of a
haunch, particularly as it relates to the current study, is that it can reduce the penetration length
of a shear stud into the deck. Such reduced penetration of the stud could limit the available shear
and tensile capacity of the connection between the concrete deck and the steel girders. For this
reason, the AASHTO LRFD Specification (2007) requires that shear connectors penetrate at
least 2 in. into the deck, and the TxDOT Bridge Detailing Manual (2001) limits the maximum
haunch height to 3 in. when there is no reinforcement in the haunch region.

Shear studs installed on the top flange of a steel box girder provide a mechanical
connection between the girders and the concrete deck for the primary benefit of transferring
horizontal shear forces. The transfer of these shear forces leads to the development of composite
action between the steel girders and the concrete deck. Chemical bonding and friction between
the top flange of a girder and the deck might also provide limited load-transferring capability, but
they were not considered in this study due to their limited strength and the uncertainty in
computing their contributions. Therefore, only mechanical interaction between the shear studs
and the concrete deck were considered in the finite element bridge models developed for this
research project.
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In the redundancy evaluation of a twin steel box-girder bridge, the assumed damage level
was the full-depth fracture of one of the girders (i.e., fracture of the bottom flange and webs of
one girder). Once the assumed damage was induced to the bridge finite element model, the shear
studs could be required to carry significant tension forces due to the self-weight of the steel
girder and the transverse bending of the concrete deck that results from the fracture. If the
tension force in the studs becomes too large, it could cause a tensile failure to occur between the
concrete deck and the steel box girders. Such a failure might be attributed to yielding of the stud
or breakout of the concrete. Therefore, bridge models were constructed in such a way that
connector elements imitating the stud connections could capture the tension failure behavior.
Mechanical properties and failure mechanisms of the connector elements are detailed in the
following paragraphs.

Shear Strength and Load-Slip Behavior

Topkaya (2002) investigated the ultimate shear strength and load-slip behavior of shear
studs experimentally. Based on push-out tests, he proposed the ultimate shear strength O, and

the load-slip relationship Q as follows:

0,=2.54,(f.E. )0’3 Equation 4-3
where
A, = cross-sectional area of shear stud (in.”)
1 = concrete compressive strength (ksi)
E, = elastic modulus of concrete (ksi)
ous)
0=0, 007 Equation 4-4
1+2 (A)
0.03
where
A = slip of shear stud (in.)
0, = shear load at 0.03 in. displacement (kip)

Q. 1s defined as the shear load where the shear displacement becomes 0.03 in., and the suggested
empirical equation is as follows:

0,=1754,(fE)" Equation 4-5

In the full-scale test bridge, three 5-in. long and 7/8-in. diameter shear studs were
installed in a row transversely on the girder top flanges. For simplicity, the three studs were
modeled with a single connector element to represent the group. For example, the compressive
strength of concrete used in the second and third bridge test simulations was 6.23 ksi. The
modulus of elasticity of concrete for this case is 4,499 ksi (Equation 4-6), which is based on the
guidelines in ACI Section 8.5.1 (ACI318-08 Appendix D).

E. =57000,/f, Equation 4-6
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Equation 4-6 is empirically based, and the values of E, and /] must be specified in psi.

Because the shear stud diameter was 7/8 in. and three studs were grouped as one
connector element, the total area of shear studs is 1.325 in.?, and the ultimate strength is 97.38
kips according to Equation 4-3. According to Equation 4-5, O, is 68.16 kips. Inserting this value
into Equation 4-4, the shear load-slip relationship can be obtained, and it is plotted in Figure
4.15. Beyond 0.3 in. displacement, where the maximum shear strength is reached, perfectly
plastic behavior was assumed in this study. This shear load-slip relationship was utilized to
define the horizontal response of connector elements used to represent shear studs at the interface
between the steel flanges and the concrete deck.
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Figure 4.15: Shear force vs. stud slip

Pull-Out Strength and Load-Deflection Behavior

Sutton (2007) and Mouras (2008) studied the pull-out strength of shear studs embedded
in concrete decks. As described in the previous section, they used small deck specimens that
were capable of representing transverse bending of a concrete bridge deck between points of
inflection. According to their test results, all specimens failed through concrete breakout (i.e.,
yielding of shear studs was not observed). The pull-out strength varied depending on the
presence of a haunch, the length of shear studs, the number of shear studs, and the arrangement
of shear studs (i.e., longitudinally or transversely oriented). To quantify the pull-out strength of
shear studs embedded in a reinforced concrete deck, they used an ACI equation (ACI318-08
Appendix D) developed for anchor strength. In the case of specimens with a haunch, the ACI
equation predicted pull-out strengths that did not agree well with the measured test data. The
variation in measured and predicted values was attributed to the presence of a haunch in some
specimens, which is not accounted for in the ACI equation. To account for the haunch effect on
the pull-out strength of shear stud connections, Mouras (2008) proposed the following
modifications to the ACI equation:
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where

Nee = design concrete breakout strength of a stud or group of studs (Ib)
= projected concrete cone failure area of a stud group (in.%)
Aneo = projected concrete cone failure area of a single stud (=9 hefz) (in.%)

ANC

A,
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W,n = group effect modification factor

Wedy = edge distance modification factor (when ¢, <1.5%)

Wen

Ny
ke
hy
hef
hy,
Wp

1 stud : 1.00
2 studs spaced transversely :0.95
3 studs spaced transversely :0.90

Stud spaced longitudinally: 0.80
Ween = eccentric load modification factor

= cracked concrete modification factor
Cracked concrete with a stud installed  : 1.00
Uncracked concrete

= concrete breakout strength of a single isolated stud (Ib)

= 24 (cast-in-place shear studs)
= effective height, excluding the haunch height (in.)

= effective stud height under the stud head (in.)
= haunch height (in.)

= width of haunch in the cross-section of a bridge span (in.)

: 1.25

Equation 4-7

Equation 4-8

Equation 4-9

Equation 4-10

Equation 4-11

camin = smallest edge distance measured from center of stud to the edge of concrete (in.)
= eccentricity of resultant stud tensile load

’
ey

In addition to the maximum pull-out strength of shear stud connections, load-deformation

data are needed to define the vertical behavior of connector elements under tension forces.
Figure 4.16 shows a typical load-displacement response of shear studs in tension. The applied
load in the load-displacement response is linearly proportional to the displacement until it
reaches the pull-out strength. Beyond the pull-out strength, the load quickly drops because of a
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brittle concrete cone failure. For simplicity, two lines were used to simulate the load-
displacement response for the vertical behavior of the connector elements. The two lines were
constructed using the displacement U, corresponding to the pull-out strength and the
displacement corresponding to failure. The maximum or failure displacement was selected to be
12 times U,, to match the measured test data and to ensure a smooth change of the deflection
curve so as to avoid a numerical divergence problem in the finite element analyses.
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Figure 4.16: Tension force vs. stud pull-out deflection

To determine the value of U,, a regression analysis of the data was conducted using the
test results of Sutton (2007) and Mouras (2008). As shown in Figure 4.17, the displacement U,
tends to increase as the effective stud height, normalized by the bridge deck thickness (4,),
increases.
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Figure 4.17: Displacement at pull-out strength

The figure also shows some scatter depending on the number of studs installed in a row.
Although the dependency of U,, on the number studs in a row is not clear because of the limited
amount of data available, specimens containing two studs in a row or one stud show higher
deformation at the pull-out strength than specimens with three studs. In this study, all bridges
investigated—including the full-scale test bridge—had three studs in a row. Therefore, to reduce
the uncertainty in the selection of U,, the cases with two studs in a row or one stud were

excluded from the regression analysis, and only cases with three studs were used to construct
Equation 4-12.

U :\/Zhdh

Equation 4-12
m 5700 l//h,U

r
W, =0.038+0.346 hef Equation 4-13

d

where
U, = relative displacement at pull-out strength (in.)
whu = haunch height effect modification factor
hy = deck height (in.)
han = deck height including haunch (in.)
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Shear Strength Degradation by Stud Pull-Out Failure

Based on results from stud pull-out tests, embedded shear studs in a reinforced concrete
deck fail in tension due to the formation of a concrete breakout cone in a zone surrounding the
studs. In cases where a haunch is present and the studs are not deeply embedded, which is
consistent with the full-scale bridge tested at FSEL as part of this research project, failure is
associated with the haunch breaking off from the deck. This mode of failure governs the pull-out
strength of the stud connection. After stud pull-out failure occurs, there is clearly no longer any
shear resistance mechanism because the studs are completely embedded in the haunch that is no
longer connected to the deck. This observation suggests that the shear resistance should be
interrelated with the tensile failure of the studs. To achieve this relationship, a linear damage
model was applied to the shear resistance of the connector elements. According to the applied
linear damage model, a reduction in the shear resistance of the connector elements is initiated
when the vertical tension force exceeds the pull-out strength. After damage initiation, damage is
assumed to evolve linearly, which reduces the shear resistance of the studs as deformation
increases. Eventually, there is a complete loss of resistance as shown schematically in Figure
4.18.

P
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Figure 4.18: Damage initiation and evolution mechanism (Dassault Systemes, 2007a)

To investigate the behavior of a single connector element with the assumed linear
damage model under combined shear and tensile loading, the same displacement magnitudes
were applied transversely (for shear) and vertically (for tension), both acting on one end node of
a connector element. Although a linear damage evolution was assumed for the shear resistance,
Figure 4.19 shows a nonlinear load-deflection response in the shear load-slip behavior. This
response 1s due to the nonlinear plasticity hardening rule of the shear studs, which was presented
in the previous section.
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Figure 4.19: Single connector element behavior under tension and shear forces

Railing Interaction

Under normal loading conditions, a reinforced concrete bridge rail is not considered to be
a structural component when analyzing the response of a bridge because it has gaps for
expansion joints. The primary function of a railing is to provide safety for vehicles on a bridge.
When a bridge is subjected to large deflections due to severe damage, however, railing gaps may
close. Once such gaps close, the railing may be able to carry significant forces in the longitudinal
direction of a bridge. This situation is similar to having a deep beam at the edges of the bridge.

In this study, a simplified modeling approach was used to account for the possibility of
the engagement of rail sections. Rather than performing a direct contact analysis, nonlinear
springs in expansion joint gaps were used. For a direct contact analysis, a refined mesh density is
needed at contact surfaces in order to obtain suitably accurate results, and convergence problems
frequently arise when the analysis includes nonlinear material properties (Dassault Systemes,
2007a). In modeling a full-scale bridge, significant effort and computational resources are
needed to create a finite element model with appropriate mesh refinement in regions where
contact can occur. Furthermore, convergence problems associated with small contact regions can
lead to excessively long run times and potentially prevent an analysis from running to
completion due to convergence issues. For these reasons, spring elements inserted between rails
were used to simulate the potential railing engagement though expansion joints. Once rails
engage, it is possible that limited shear forces may be transferred due to friction, but this effect
was ignored in the finite element models developed for this research. It was assumed that spring
elements in expansion joint gaps transferred only normal forces.

Before the gaps in the railings become completely closed, no normal forces should
develop in the spring elements. This behavior is captured in the spring load-deflection behavior
shown in Figure 4.20. This figure shows that the spring elements resist only compression forces
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once the deflection exceeds 3/4 in., which was the initial gap distance of the rails in the test
bridge and the value specified by TxDOT. Beyond the 3/4-in. deflection, a stiffness that was 100
times greater than the concrete stiffness was assumed for the spring element to simulate railing
contact. The specific stiffness value is not very important, but it must be large enough to cause a
large increase in force; however, it must not be so large as to lead to numerical inaccuracies in
the conditioning of the structural stiffness matrix. The value selected provided reasonable results,
and the computed response was not very sensitive to variations in the selected stiffness value.
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Figure 4.20: Spring element behavior between rails

In the following chapter, modeling procedures to represent the full-scale bridge tested at
FSEL as part of this research project are introduced. The computed results are compared with
measured test data to verify the validity of the modeling approach developed for this study.
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Chapter 5. Finite Element M odeling Techniquesfor Evaluating
Bridge Redundancy Applied to the FSEL Test Bridge

5.1 Introduction

As described previously in this report, the full-scale bridge that was used in the
experimental testing program (Figure 5.1) had been in service as an HOV lane near the
intersection of Interstate IH 10 and Loop 610 in Houston prior to being reconstructed at the
University of Texas, and thus it is representative of steel box-girder bridges used throughout the
state of Texas. In total, three separate tests were performed on the full-scale bridge. Below, a
brief overview of the testing program is given. Detailed information describing each of the tests
and the measured data that were collected are available in Neuman (2009). The purpose of the
first bridge fracture test was to investigate how the sudden loss of the bottom flange of one girder
in the bridge affected bridge performance. A rapid failure of the bottom flange of the exterior
girder, which simulates what is expected to occur during a fracture event, was achieved using a
linear-shape-charge explosive to cut through the complete width of the bottom flange at the
midspan. The second test was conducted to determine whether the bridge could sustain the
sudden potential energy release of a specified live load and the bridge self-weight in a damaged
condition (bottom flange and 83% web removal of exterior girder). For the rapid release of the
loads, a temporary truss support was placed in a prearranged location beneath the bridge’s
bottom flange, and then the web was cut with a torch from the bottom flange to a point about 10
in. below the top flange. The temporary truss support was designed to rapidly release the load it
was carrying by severing a tension tie using an explosive in a similar fashion as the first test. The
third test was performed to investigate the reserve load-carrying capacity of the damaged bridge
and the contributions made by individual bridge components to the overall capacity of the
system. To apply loads incrementally in the experiment, road base was placed on the deck along
with concrete blocks. Loading continued until the bridge collapsed.
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Figure 5.1: Full-scale test bridge

5.2 First Bridge Test (Bottom Flange Removal)

5.2.1 Test Procedure

The first bridge test was performed to investigate how the bridge would respond when the
bottom flange of one girder suddenly fails as might be expected if a fracture were to occur. The
bottom flange is currently classified as a fracture-critical member in the two-girder bridge
system. An explosive was used to cut the bottom flange extremely rapidly to simulate the sudden
loss of the whole bottom flange of one girder (east side girder) at the midspan as shown in Figure
5.2. For safety purposes, the explosive was encased in a blast shield, which was attached
underneath the bottom flange of the east girder and tethered to a concrete block placed under the
bridge. Concrete blocks intended to simulate the AASHTO standard HS-20 design truck load
were placed on the deck such that those blocks caused a maximum positive bending moment on
the damaged location. Detailed descriptions of the bridge test setup and the results that were
collected have been reported by Neuman (2009).
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Figure 5.2: Ist bridge fracture test (bottom flange removal by explosion)

5.2.2 Simulation Procedure

The finite element simulation procedure for modeling the response of this bridge fracture
test can be divided into three main analysis categories: bridge construction, load application, and
simulation of bottom flange fracture, as shown in Table 5.1. The analysis steps in the bridge
construction category are intended to incorporate loading histories through the erection and
construction process in which the deck acts non-compositely with the girders. For the first
analysis step, all of the deck, railing, and rebar elements—except girder elements—were
deactivated to simulate the non-composite section behavior of the bridge. During bridge
construction, only the steel box girders resisted the deck and railing weight before the concrete
deck hardened. Therefore, deck and railing elements were removed using the element
deactivation technique in ABAQUS/Standard v6.7 to simulate non-composite section response
because the deactivated elements have no effect on the mass and the stiffness of the system.
After deactivating these elements, equivalent pressure loads for the self-weight of the deck and
railing were evenly applied on the girder top flanges. As a result, the applied loads on the girder
top flanges were resisted only by the steel girders.

The deactivated elements maintain their initial node locations when they are deactivated.
The node locations of deck and railing elements need to be shifted, however, so that they deform
consistently with the girders because uncured concrete flows freely before it is hardened. For this
reason, dummy elements for the deck and railing were used to follow such node location shifts.
The dummy elements shared the same nodes with the original deck and railing elements, but they
had very low stiffness (10 x concrete stiffness) and were almost without mass (10 x concrete
density) so as not to affect the bridge stiffness and weight. As a result, because the original deck
and railing elements were deactivated and an equivalent pressure load was applied to the top
flanges of the girders, the deck and railing nodes deformed freely, following the girder deflection
due to the dummy elements. After this procedure, the deck and railing elements were reactivated,
without strain changes, in the deformed position to simulate the hardened concrete, and the
equivalent pressure load was removed.
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Table5.1: Simulation proceduresfor first bridge fracturetest

Bridge construction

1. Deactivating deck, railing, rebar elements and applying gravity
to girder

2. Applying deck, railing, and rebar weight on the top flange

3. Activating deck, railing, and rebar elements with gravity

and removing the weight on the top flange
4. Deactivating external cross frame elements and dummy

ST GLL LiVSS S TaTh nily

Static

elements

Applying truck live load
1. Applying truck load (concrete blocks)

Dynamic loading
1. Deactivating elements connecting the girder fracture

Dynamic

The truck live load, simulated using concrete blocks in the bridge test, was applied to the
top nodes of the deck using concentrated loads in the finite element model. These concentrated
loads had the same axle spacing as the concrete blocks used during the test. For the bottom
flange cutting, the fracture path was predefined on the bottom flange of the east girder, as shown
in Figure 5.3. The selected damage location was at the midspan because this location is where
the maximum positive bending moment is caused by a moving vehicle in a simply supported
bridge. Shell elements adjoining the predefined fracture path shared duplicate nodes. These
independent nodes were initially joined by connector elements (CONN3D2) with welding
properties to mimic the intact condition of the bottom flange. The cutting of the bottom flange
was simulated, therefore, by just removing the connector elements using the element deactivation
technique. The removal of the connector elements was sudden, as was the explosive damage
inflicted during the first bridge fracture test. Computationally, this step was carried out using a
transient dynamic analysis with a “step-amplitude” loading in ABAQUS/Standard v6.7.
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Figure 5.3: Predefined bottom flange fracture path (looking upward from underneath bridge)

5.2.3 Bridge Test and Simulation Results

After the first bridge fracture test, it was observed that the bottom flange was severed
completely along its width and through its depth. The fracture, however, did not propagate into
the webs as shown in Figure 5.4. Despite the bottom flange fracture of one girder, the test bridge
did not show any significant damage, and the resultant girder deflections were very small.

Full cut of the bottom flange Detained fracture at web

Figure 5.4: Bottom flange cut of fractured girder

Figure 5.5 shows the relative girder deflection changes of the west girder (WG) and the
east girder (EG) before and after the bottom flange was severed with the explosive. Data shown
in this figure are based on the static deflection that resulted after the girder came to rest. Thus,
the values do not show the peak dynamic deflection that occurred shortly after the fracture was
induced. The girder deflections were measured using a laser level having +1/16 in. accuracy. The
baseline of the deflection measurements was the deformed position of the steel box girders
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before the concrete deck cured. Therefore, the deflection due to the self-weight of the steel box
girders was excluded in the relative deflection measurement. In Figure 5.5, the deflection of the
east girder is larger than that of the west girder because the applied concrete block loads (used to
simulate an HS-20 truck) were biased transversely toward the east girder to create the worst-case
loading scenario on the fractured girder (Neuman, 2009).
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Figure 5.5: Relative deflection of intact and fractured girder

According to the surveyed data, the east girder deflected downward 5.56 in. at its
midspan (relative to the baseline) when the concrete blocks were loaded and before the bottom
flange fracture occurred. The resulting additional deflection of the east girder was only 0.08 in.
after its bottom flange was fractured. This result is inconclusive, however, as it is within the
specified accuracy of the laser level. Moreover, the deflection surveys were conducted on
different days and at different times, which could mean that different environmental conditions
affected the bridge deflection (i.e., temperature gradient change could affect the bridge deflection
measurements). Therefore, the measured additional deflection might not be caused solely by the
bottom flange fracture of the east girder. Nonetheless, the measured deflections and post-test
observations of the bridge indicate that the fracture of the bottom flange of the exterior girder
caused limited damage to the overall load-carrying capacity of the bridge.

The finite element simulations gave girder deflections that were similar to those obtained
from the surveyed data. Figure 5.6 compares the measured deflections of the fractured girder
with those predicted by the finite element model following the fracture of the bottom flange. The
predicted deflection at the midspan by the finite element model was 5.23 in., which was slightly
less than the measured deflection of 5.64 in. Considering the accuracy of the laser level and the
possibility for environmental conditions to affect the measured deflections, however, the
prediction by the finite element model was considered to be acceptable.
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Figure 5.6: Relative deflection of fractured girder after bottom flange removal

5.3 Second Bridge Test (Bottom Flange and Web Removal)

5.3.1 Test Procedure

The purpose of the second bridge test was to investigate whether or not the FSEL bridge
could sustain a simulated dynamic loading following a nearly full-depth fracture of the exterior
girder. For the test setup, the fracture in the bottom flange from the first bridge test was manually
extended up the height of the web using an acetylene torch. In order to apply the additional web
damage without the loss of the gravitational potential energy of the bridge, temporary truss
supports were installed under the fractured girder prior to the cutting of the webs. Figure 5.7
shows the condition of the bridge after the webs had been cut.

After inducing the additional web damage, concrete blocks were placed on the top of
wooden blocks on the deck to represent truck axles. The concrete blocks were intended to
simulate the AASHTO HS-20 truck load, but it had a slightly different total weight—4 kips
higher than the HS-20 truck. Figure 5.8 shows a schematic of the concrete block loading
configuration used in the second bridge fracture test. The assumed spacing of axles was 14 ft,
and the middle axle was positioned at the midspan to cause the maximum vertical bending
moment at the fracture location. The transverse location of the concrete blocks was biased
toward the east girder side so that the axle (wooden block) corners were placed 2 ft away from
the east railing. This configuration was intended to simulate the worst-case loading condition that
could be achieved by a single truck on the test bridge.
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Figure 5.7: Temporary support and web cutting

Figure 5.8: Simulated live truck load configuration (AASHTO HS-20)

For the second bridge fracture test, the temporary truss supports were designed so that
they could collapse nearly instantaneously without interfering with the response of the bridge as
it deflected downward. The temporary truss supports designed by Neuman (2009) satisfied these
requirements successfully. They became structurally unstable once horizontal ties, as shown in
Figure 5.9, were severed by explosive contact charges, and they quickly dropped down before
the bridge girder deflected. This behavior was clearly observed in the high-speed video recording
of the test; captured still images from the high-speed video are shown in Figure 5.10.
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Figure 5.10: Second bridge fracture test (bottom flange and web removal)

5.3.2 Simulation Procedure

To simulate the damage and loading scenario used in the second full-scale bridge fracture
test, the finite element analysis followed procedures similar to those in the first bridge test. The
finite element simulation of the second bridge test was composed of three major analysis steps,
as described in Table 5.2: bridge construction, applying temporary boundary conditions and
girder damage, and removing the temporary boundary conditions.
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Table5.2: Simulation proceduresfor second bridge fracture test

Bridge construction

1. Deactivating deck, railing, rebar elements and applying gravity
to girder

2. Applying deck, railing, and rebar weight on the top flange

3. Activating deck, railing, and rebar elements with gravity
and removing the weight on the top flange

4. Deactivating external cross frame elements and dummy

elements

Static

Applying B.C. and girder fracture
1. Applying temporary boundary condition
2. Deactivating elements connecting the girder fracture

3. Applying truck load (concrete blocks)

Dynamic loading
1. Removing temporary boundary condition suddenly

Dynamic

The bridge construction step was used to incorporate loading histories associated with
non-composite behavior before casting the concrete deck, as discussed in the first bridge fracture
test simulation procedure. For the next step, temporary boundary conditions were applied to the
bottom flange, spanning 5 ft and centered on the midspan of the east girder where the temporary
truss supports were placed. The temporary boundaries constrained the vertical translation of the
east girder while the bottom flange damage, the web damage, and the simulated truck live load
were applied to the simulation model. To incorporate damage on the east girder, connector
elements initially binding separated nodes along a predefined fracture path were deactivated. The
predefined fracture path and temporary boundaries under the bottom flange are shown in Figure
5.11. The truck live load represented by the concrete blocks in the bridge test was simulated with
concentrated forces acting on the bridge deck.
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Figure 5.11: Predefined fracture path in east girder (looking upward from underneath bridge)

After the loading step of the truck live load, the temporary boundaries were eliminated to
simulate the sudden removal of the temporary truss supports in the bridge fracture test. To
computationally achieve dynamic loading effects caused by the abrupt removal of the temporary
supports, a transient dynamic analysis was conducted with a step amplitude loading condition.

5.3.3 Bridge Test and Simulation Results

After the second bridge fracture test, visual inspections were conducted to investigate the
overall condition of the bridge. During the initial inspections, the only damage observed included
tensile cracks on the deck and crushed cover concrete on the top of the east railing at the
midspan. Analytical models of the deck response (Samaras, 2009) and finite element
simulations, however, predicted that extensive stud pull-out failures would occur along the inside
of the fractured girder. For this reason, the corrugated metal deck spanning between the girders
and used as formwork during the construction of the deck was removed to inspect the stud
connections closely, and it revealed that a large amount of haunch separation along the inside of
the fractured girder had in fact occurred (Figure 5.12(a)). Along the outside of the fractured
girder, both longitudinal and diagonal cracks were observed where the studs connected with the
concrete deck, as shown in Figure 5.12(b). These cracks developed near the midspan. As
indicated by the figure, haunch separation on the inside of the girder was more severe than on the
outside.

In the test bridge, haunch separation was initiated by stud pull-out failure near the
midspan of the bridge. As the pull-out failures propagated along the bridge span, the haunch
started to separate from the concrete deck above the fractured girder. Figure 5.13 shows the
predicted length of haunch separation along the inside of the fractured girder (FG-In) and along
the outside (FG-Out); the figure also shows the measured haunch separation along the inside of
the fractured girder. A comparison of the results indicates that the finite element model over-
predicted the separation length along the inside of the fractured girder—96 ft predicted compared
to 67 ft measured. Along the outside of the fractured girder near the midspan, cracking in the
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haunch spanned 14 ft, but the cracking pattern was irregular, as shown in Figure 5.12(b) (i.e.,
diagonal and longitudinal cracks were both observed). This cracking pattern suggests that the
outside haunch failed due to a combination of tension and shear. Because the degree to which
haunch separation occurred along the outside of the fractured girder could not be accurately
measured, only the simulation model prediction is included in Figure 5.13; the predicted
separation length was 32 ft.

()
Figure 5.12: Haunch separation of fractured girder
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Figure 5.13: Haunch separation along bridge span
Concerning the over-prediction of the haunch separation length, there are various
possible reasons: haunch slope, participation of the metal deck, dynamic effects on material

strength, and potentially others. In the test bridge, the edge of the haunch was sloped transversely
due to the corrugated metal stay-in-place forms used to construct the deck (Figure 5.14). The
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presence of such a haunch slope could change the stud pull-out strength because it reduces the
concrete breakout cone size less than does a haunch with right angles. The test data used to
define the stud pull-out strength was based on tests with haunches constructed with vertical sides
(Mouras, 2008). The strain rate of the dynamic loading could also affect the stud pull-out
strength because material strength is affected by the loading rate. Figure 5.15 shows the variation
in stud pull-out strength as a function of the loading rate based on tests conducted by Mouras
(2008). According to the test results, when the strain rate reached 30.67 in./in./msec.—the
maximum obtained during the testing program—the pull-out strength increased by about 40%
over the static test results. The finite element simulation model, however, did not consider such
an increase in pull-out strength caused by the high strain rate; for simplicity and due to a lack of
data, constitutive models used in the finite element simulations were not strain-rate dependent.

Intact girder inside (IG-In) // Fractured girder inside (FG-In)

[ L]

Slope due to metal deck shape

Figure 5.14: Haunch slope in cross-sectional plane
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Figure 5.15: Dynamic and static stud pull-out test (Mouras, 2008)

Figure 5.16 shows the girder midspan deflections as a function of time obtained from the
finite element simulation. The dashed line indicates the vertical deflection of the intact girder
(IG-CL), and the solid line represents the vertical deflection of the fractured girder (FG-CL);
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both quantities were obtained from the centerline position of the bottom flange. To obtain the
centerline deflections at the midspan of the bridge, edge deflections of the bottom flange of each
girder were averaged. Because of the simulated girder fracture and the transversely biased
loading position of the live load, the vertical displacement of the fractured girder was
significantly larger than that of the intact girder (Figure 5.16). It is important to note that haunch
separations are included in the vertical displacements that are plotted because the girder
displacements were computed from the response of the bottom flanges.
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Figure 5.16: Dynamic girder displacement

During the bridge test, an attempt was made to measure the dynamic displacement of the
fractured girder at its midspan using a string potentiometer attached to the center of the bottom
flange, but the string potentiometer was damaged from the explosion used to collapse the
temporary truss supports. Consequently, displacements of the bottom flanges were measured
after the test bridge came to rest; these static displacements were compared with those obtained
from the finite element simulation. Displacement values from the finite element model were
obtained by averaging the peak dynamic displacements after three periods of oscillation (Figure
5.16). This approach was taken because it was too computationally demanding to carry the
dynamic analyses further in time, and the results showed significant damping. As a result, taking
the average value after three periods of oscillation was reasonable. Figure 5.17 shows the static
displacement results of the intact and the fractured girders, comparing the measured test data
with the computed values. In the bridge fracture test, the vertical displacement at the midspan of
the intact girder was 4.16 in., and the finite element model predicted a value that was only 2%
higher than the test result. Conversely, for the vertical displacement of the fractured girder, the
measured data and predicted value did not compare closely. The measured deflection of the
fractured girder following the test was 7.02 in., but the girder deflection in the simulation model
was 8.63 in. (23% higher).

80



Fractured Girder Intact Girder

-10

OMeasurement BFEM

Figure 5.17: Static displacements of test and simulation

One reason for such a large difference between the measured and predicted displacement
of the fractured girder can be attributed to the over-predicted separation length of the haunch in
the simulation model compared with that in the bridge fracture test as discussed previously.
During the bridge fracture test and the simulation, the deflected shape of the reinforced concrete
deck transitions from double curvature to single curvature. Figure 5.18 shows the displacement
at the top of the deck across the width of the bridge following the removal of the temporary
supports in the bridge fracture test simulation. Early in time (+=0.06 sec.), the graph shows that
the deck bends in double curvature; as time progresses, however, the shape transitions to single
curvature. This transition in the deformed shape was initiated by stud pull-out failure on the
inside of the fractured girder. As the pull-out failure propagated along the length of the bridge,
the bridge haunch separated from the concrete deck, leading to single curvature bending of the
deck. Haunch separation in the bridge cross-section is schematically depicted in Figure 5.19.
Recall that this phenomenon was described previously in Chapter 2 during the development of
the simplified modeling procedure. Once the haunch of the fractured girder separated from the
deck, the transverse bending stiffness of the deck diminished. Subsequently, the tensile loading
attributed to the fractured girder self-weight had to be carried by the studs on the outside of the
fractured girder, which increased the bending moment arm for transverse bending of the deck.
Therefore, with a wider separation of the haunch on the inside of the fractured girder, a larger
deflection could be expected in the fractured girder than what was observed in the test.
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(a) Deck deflection before haunch separation

Haunch separation
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Figure 5.19: Deck deflection shape change caused by haunch separation
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Figure 5.20 shows the longitudinal strain as a function of time at the centerline of the
bottom flange of the intact girder at a location 6 ft away from the midspan. The strains from the
simulation and the bridge show good correspondence, though the peak measured strain from the
test was 13% higher than the simulation result. During the second bridge fracture test, it is
important to note that the crack induced from the acetylene torch propagated 1 in. upward on the
outside of the fractured girder, but this crack extension was not accounted for in the finite
element simulation. Therefore, in the test bridge, more energy could be released than in the
simulation, which may be one of the reasons why there is a slight discrepancy between the
measured and computed results. Regarding the period of oscillation, there is a slight difference
between the measured and computed values. This difference is most likely attributed to the
differences between the actual damped response of the bridge and the assumptions made about
damping in the finite element model. In the simulation, 5% damping was assumed—which is a
common assumption for cracked reinforced concrete (Newmark, 1982 )—and the natural
frequency of the first mode of the bridge model was utilized to determine a damping factor.
Because no forced vibration testing of the bridge was carried out, the actual damped response
was not precisely known. Nonetheless, the computed and measured results show good
agreement.
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Figure 5.20: Longitudinal strain response by dynamic loading

5.4 Third Bridge Test (Remaining Capacity Evaluation)

5.4.1 Test Procedure

The third bridge test was performed to determine the ultimate load-carrying capacity of
the FSEL bridge in its damaged state. It should be noted that no attempts were made to repair the
bridge following either of the first two tests. The concrete blocks used to simulate the truck live
load in the second bridge fracture test were rearranged for the third test, and one additional
concrete block was utilized to create a bin that could accommodate the road base that was used
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to incrementally load the bridge (Figure 5.21). Accordingly, the total weight of the concrete
blocks in the third bridge fracture test was 82.1 kips. Figure 5.21 shows a schematic of the
concrete block configuration on the bridge deck. The concrete blocks were symmetrically
arranged about the bridge midspan, and they were transversely biased toward the fractured

girder. Wooden planks used to support the concrete blocks were located 2 ft away from the east
railing.

T .
| Mid-span
a S

21.33
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Figure 5.21: Concrete block configuration on bridge deck

While positioning the concrete blocks on the deck, the crack in the outside web of the
fractured girder propagated toward the top flange, as shown in Figure 5.22. Prior to this crack
propagation, the crack was sharpened by the 1-in. crack extension upward from the point where
the torch cut terminated during the second bridge fracture test. The total loaded weight of the
concrete blocks was 40.9 kips when the crack propagation occurred. This sudden crack
propagation caused the bridge to vibrate, but the small oscillations quickly subsided. The crack
on the inside web did not propagate when the concrete blocks were placed on the bridge. Though
the weight and positioning of the blocks represented a less severe load case than the bridge
withstood during the second test, it is believed that the cold weather present during the placement
of the blocks during the third bridge test contributed to the crack extension (Neuman, 2009).
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Figure 5.22: Crack propagation in fractured girder outside web

Figure 5.23(a) shows the loading process used during the third test on the FSEL bridge.
Road base, consisting primarily of gravel and dirt, was placed in an air-operated lift bucket using
a small backhoe. The lift bucket was attached to the lifting hook of a crane. Once the bucket was
filled, the weight of the road base was measured using a load cell attached to the end of the crane
hook. After the crane lifted the bucket and the weight was recorded, the lift bucket was
positioned above the bridge, and the road base was placed inside the concrete bin located on the
bridge deck (Figure 5.21). When 258.3 kips of road base was loaded onto the bridge, there was
no more space available inside the bin. Therefore, it was decided to apply additional road base
between the concrete blocks and the east railing. The bridge finally collapsed when the total
applied load of the concrete blocks and road base reached 363 kips—more than five times the
legal truck load—as shown in Figure 5.23(b).

(a) Incremental loading )hola idge
Figure 5.23: Loading process and bridge collapse in third bridge fracture test
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5.4.2 Simulation Procedure

The third bridge test simulation consisted of three main steps similar to those in the
previous bridge test simulations, as presented in Table 5.3. Recall that for the second bridge
fracture test, approximately 83% of the full height of the web was cut using an acetylene torch.
During the second test, a fracture initiated from the top of the cut on the outside web of the
fractured girder and extended approximately 1 in. upward toward the top flange. While applying
the concrete blocks for the third bridge test, this web crack extended to the top flange. The inside
web crack also propagated up from the crack manually induced prior to the second test, and this
cut extended through the entire depth of the web during the third bridge test. For these reasons, it
was assumed that the entire web depth of the fractured girder was fractured. Accordingly, the
web connector elements along the predefined fracture path were removed through the entire web
height for the third bridge test simulation. Because the loading was incremental, the connector
elements binding separated nodes along the predefined crack path were statically deactivated
from the bottom flange to the top flange.

Table5.3: Simulation proceduresfor third bridge fracture test

Bridge construction
1. Deactivating deck, railing, rebar elements and applying gravity
to girder
2. Applying deck, railing, and rebar weight on the top flange
3. Activating deck, railing, and rebar elements with gravity
and removing the weight on the top flange
4. Deactivating external cross frame elements and dummy 2
elements o
0
Applying girder fracture and truck live load
1. Deactivating elements connecting cracks in girder
2. Applying truck load (concrete blocks)
2
Applying additional Load £
1. Applying additional load (road base) §
|

After removing the web connections, the weight of the concrete blocks and the road base
were applied to the bridge using pressure forces placed consistently with the bridge test as shown
in Figure 5.24. When 258.3 kips of road base was placed inside the concrete bin during the third
bridge test, there was no more space available to accommodate any additional material inside the
bin. Consequently, additional road base was placed outside the bin between the east railing and
the concrete block forming the eastern edge of the bin. To match the loading location of this
additional road base, the pressure load for the additional road base was applied between the east
railing and the concrete block as shown in the Figure 5.24(d). For simulating the last step of
applying the road base, a dynamic analysis was conducted using a ramped-loading condition; this
approach was not intended to account for any dynamic loading effects associated with placing
the road base. During the last analysis step, various local component failures were expected to
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occur, such as concrete cracking or crushing, haunch separation, and so on. Although those
component failures might not necessarily mean collapse of the test bridge, they could cause
computational problems with the static analysis procedure, potentially resulting in an analysis
failure due to numerical convergence problems. Therefore, a dynamic analysis with a ramped-
loading condition was used to avoid such numerical problems.

(b) Simulated pressure load

(c) Additional road base (d) Simulated additional load

Figure 5.24: Applying concrete block and load base load

5.4.3 Bridge Test and Simulation Results

Data collected from the third bridge test were used to determine the ultimate strength of
the bridge and the contribution made by each bridge component in resisting the applied loads. It
was observed that the shear studs and the concrete deck had important roles in redistributing the
applied loads to undamaged regions of the bridge. The rails also redistributed loads and initially
reduced the deflection of the fractured girder before stud pull-out failures occurred. The finite
element model developed for this research successfully captured the progressive bridge
component failures that were found in the bridge fracture test and closely predicted the measured
collapse load.
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Failure Sequence of the Bridge

With the exception of the haunch separation along the outside of the intact girder near
midspan, the simulation model predicted failure modes consistent with those observed in the
bridge test. In Figure 5.25, the failure sequences predicted by the simulation and those observed
during the bridge test are compared at each prominent component failure event. The failure
sequence leading to the collapse of the bridge initiated with the concrete deck cracking due to
transverse bending. As the loading continued, extensive tensile cracking started to form on the
top of the concrete deck above the inside top flange of the intact girder and propagated along the
bridge span. As the bridge continued to deform under the applied loads and transverse bending
increased across the width of the deck, the demand on the shear studs along the inside of the
fractured girder exceeded the pull-out strength, leading to extensive pull-out failures on both top
flanges of the fractured girder. As the pull-out failures propagated along the bridge span, the
inside haunch of the fractured girder began to separate from the bottom of the deck near the
midspan of the bridge. As the separated haunch length along the inside of the fractured girder
kept extending over the bridge span, the bridge deck experienced large deformations near the
midspan, and the expansion joint at the top of the east railing closed over most of its height.
Because of the contact forces acting over the depth of the expansion joint of the east rail at the
midspan location, crushing of cover concrete became pronounced. As the east railing began to
pick up loading and started to crush, the haunch separation along the inside of the fractured
girder continued to extend as did the haunch separation along the outside of the fractured girder
near the midspan. Separation of the haunch along the outside of the fractured girder was arrested
when the separation had propagated to the next expansion joint along the length of the bridge. As
the damage in the haunches of the fractured girder and the east railing progressed, the bottom of
the reinforced concrete deck next to the interior top flange of the intact girder began to crush as a
result of the transverse bending of the deck. Crushing at this location started at the midspan and
propagated in both the north and south directions along the bridge span. This crushing of the
deck was not readily detectable during the test because the permanent metal deck forms between
the girders did not allow the concrete to be observed directly, but the extensive cracking on the
top of the deck along a line corresponding to the position of the interior top flange of the intact
girder and deck rotation about this line provided evidence that the bottom of the deck was
crushed. As the applied load approached the maximum load, shear stresses along the haunch on
the outside of the fractured girder increased, and bridge collapse eventually occurred when a
shear failure took place over the entire length of the outside haunch of the fractured girder.
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(c) Railing crushing from top

89



(d) Deck hinge formation along 1G-In top flange
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(e) Shear and tension failure of shear studs along FG-Out haunch

(f) Bridge collapse

Figure 5.25: Bridge component failure sequence

Girder Deflection Response

The girder vertical deflections measured in the third test are compared with the
simulation results in Figure 5.26. The solid lines show the measured test data, and the dashed
lines show the simulation results. During the bridge test, there was a sudden vertical deflection in
the fractured girder when the applied load reached 160 kips, which is indicated with the first
plateau in Figure 5.26. This sudden increase of the deflection was caused by the haunch
separating from the outside of the fractured girder. The haunch separation initiated near the
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midspan and suddenly extended approximately 20 ft to both the north and the south (i.e., a total
separation of approximately 40 ft), which is shown in Figure 5.27. Further separation of the
haunch on the outside of the fractured girder did not occur until the applied load reached
approximately 363 kips, which was the maximum load applied to the test bridge. Unlike the
actual test, in the finite element simulation, the haunch separated gradually along the outside of
the fractured girder until the applied loading reached 308 kips; no further haunch separation
occurred until the applied load reached 413 kips, which was the maximum load the bridge could
carry in the simulation. Although the gradual haunch separation in the simulation was not
consistent with the sudden jump observed during the test, the simulation predicted 36 ft of
haunch separation along the outside of the fractured girder, which is similar to the actual haunch
separation length of approximately 40 ft observed during the test.
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Figure 5.26: Girder deflection response (18 ft away from midspan)
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Figure 5.27: Haunch separation in FG-Out
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Another prominent feature in the girder deflection response of the test bridge occurred at
the maximum load. When the applied load reached 363 kips, the fractured girder deflected
significantly, and the bridge collapsed. This large deflection was initiated by the slip between the
outside top flange of the fractured girder and the concrete deck, as shown in Figure 5.28. Along
the outside haunch of the fractured girder, horizontal cracks and diagonal cracks were observed,
which suggests that failure of the stud connection was due to the interaction of tension and shear
forces. In the simulation model, shear forces in the connector elements became large along the
outside of the fractured girder when the applied load approached its maximum value of 413 kips.
Although the simulation showed a failure mode that was similar to that of the test bridge, the
maximum load of the simulation model was 14% higher than that of the test bridge.

FG-Out haunch

Deck slip

dq =i
A et

Figure 5.28: Slip between the deck and girder top flange along FG-Out

A notable point for this discrepancy is the shear strength equation (Equation 4-3) for the
connector elements used to simulate the response of the shear studs in the bridge. As discussed in
Chapter 4, Topkaya’s (2002) experimental equations (Equations 4-3 and 4-4) for shear strength
and shear load-slip behavior were based on stud push-out tests, and these equations were utilized
in the simulation model for the shear response of the connector elements. In his tests, Topkaya
(2002) used direct shear forces to investigate the shear load-slip behavior of shear studs
embedded in a concrete block. Therefore, his equation might overestimate the shear strength of
stud connections when a tension force is present. In the simulation model, the shear and tension
responses of the connector elements were dealt with independently, and it was assumed that they
did not affect each other’s strength (i.e., they were uncoupled). The only exception was the shear
strength degradation due to stud pull-out failure, as discussed in Chapter 4. This degradation
model, where stud pull-out failure can lead to shear failure, does not account for the possibility
of the shear strength or the pull-out strength being affected by the interaction of the combined
shear-tension force acting on the shear studs. Thus, the shear strength of a stud connection might
be affected if a high tension force—one that is less than the pull-out strength—exists on that
connection. Likewise, the pull-out strength may be influenced by the presence of shear forces
acting on a stud connection.

Besides the possibility of the combined force effect (shear-tension force interaction)
influencing the shear or the pull-out strength of a stud connection, the geometry of the haunch
might also affect the shear strength. In the bridge test, deck-slip failure started at a location about
20 ft away from the midspan and extended both northward and southward. It was observed that
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cracks causing the deck slip were formed horizontally along the junction where the haunch was
connected to the bottom of the deck and diagonally through the haunch height, as shown in the
Figure 5.28. This observation suggests that the shear failure strength of stud connections could
be affected by the haunch. In the test setup utilized by Topkaya (2002), studs were embedded in
a flat concrete block without a haunch; thus, equations used to predict shear response do not
account for the potential influence of a haunch. In his tests, shear failure of the stud connection
was initiated by concrete crushing around the stud. In the case where a haunch is present,
extensive cracking in the haunch could influence the failure mechanism—an ultimately the shear
capacity—of stud connections.

To investigate the effects of stud shear strength on the ultimate load-carrying capacity of
the bridge, a test simulation with a lower shear strength than the strength computed from the
shear strength equation (Equation 4-3) was conducted. Figure 5.29 shows the simulation results
using a reduced shear strength for the connector elements. A reduction in shear strength of
approximately 23% was utilized in the simulation, which corresponds to the shear strength of a
3/4-in. diameter shear stud (the real shear stud diameter was 7/8 in.). The simulation with the
reduced shear strength predicted a maximum load capacity that was only 9% higher than the
value measured during the bridge test, which demonstrates the significant impact that a small
change in the specified capacity of the shear studs can have on the prediction of overall bridge
capacity. Although the simulation with the reduced shear strength showed better agreement with
the measured results, additional research is needed to develop expressions that can accurately
account for the interaction of shear and tension forces acting on a stud embedded in a haunch.
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Figure 5.29: Girder deflection response with reduced shear strength

The simulation model indicated a failure mode that was not observed during the test.
Unlike the experiment, the simulation showed separation of the haunch and deck along the
outside of the intact girder, leading to an abrupt increase of the fractured girder deflection as the
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applied load approached 350 kips. This haunch separation initiated near the midspan. Once the
haunch separated along the outside of the intact girder, the bridge lost transverse bending
resistance, and the concrete deck rotated about the bridge’s longitudinal axis because the outside
and the inside haunches of the fractured girder had already separated near the midspan prior to
the outside haunch separation of the intact girder. This difference in response between the
simulation and test is believed to be attributed to the underestimated pull-out strength of the stud
connection computed from the modified pull-out strength equation (Equation 4-7) as discussed in
the previous section.

Railing Engagement

In the test bridge, the concrete cover on top of the east railing at the midspan location
spalled off during the second bridge test, and the railing remained closed (i.e., in contact) at the
top following the test. As the applied load was increased during the third bridge test, the concrete
at the top of the railing began to crush, and the crushing propagated downward along the height
of the rail. When the applied load reached approximately 360 kips, a large amount of concrete
spalled off, as shown in Figure 5.30. The depth of spall was approximately 2/3 the height of the
railing.

(b) Railing crush after collapse

Figure 5.30: East railing crush at midspan

To account for the engagement of the rails at the midspan expansion joint, nonlinear
spring elements were used rather than conducting a direct contact analysis. As discussed in the
previous chapter, this choice was made based on computational efficiency. Figure 5.31(a) shows
strain gauges installed on the inside of the east rail, and Figure 5.31(b) compares the longitudinal
strains obtained from the bridge test with those computed from the finite element simulation.
Railing contact occurred progressively from the top to the bottom of the east rail, which was
confirmed by the strain gauge readings. Figure 5.31(b) indicates that the simulation successfully
captures the progressive contact of the rails along the railing height; however, the computed
strains start to deviate from the test results after railing contact initiated. It is uncertain why such
discrepancies exist, but they could be attributed to such factors as spalling of concrete cover,
crushing and cracking of the rail concrete, and the presence of non-uniform contact forces
through the width of the railing. The simplified modeling approach used in this study is not
capable of representing these localized effects. After the bridge test, a large amount of spalled
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concrete cover was observed on the inside of the east rail at midspan. This observation suggests
that the concrete strain gage readings may not accurately represent the strain variation in the rails
during the test. In addition, it is likely that the contact forces that existed through the width of the
railing were not uniform because the large deck deflection above the fractured girder caused the
rails to rotate about a longitudinal axis parallel to the bridge span. The simulation model could
not account for these effects because of limitations in the material model that was used to
represent concrete and due to a limited mesh density through the width of the rails.
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Figure 5.31: Longitudinal strain response along railing height

5.5 Summary of Modeling Guidelines

The finite element simulations described above and in the previous chapter demonstrated
the importance of capturing component failures in the deck, haunch, and shear studs if an
accurate assessment of overall load-carrying capacity is to be made. A primary goal of this
research project was the development of modeling guidelines that can used to simulate the
response of a twin steel box-girder bridge following the fracture of one of its girders. Because of
the wide variety of finite element software programs available—each having their own
capabilities and limitations—it is important that the recommended modeling guidelines be
provided in a general manner so that they can be implemented across a wide range of software.
Accordingly, it is recommended that finite element models used to assess bridge redundancy
include the following features:

e Detailed finite element mesh that accurately captures the geometry of the bridge
under investigation.

e Discrete modeling of concrete and reinforcing steel.

e Inelastic material response for both steel and concrete. Concrete constitutive models
that account for softening can be used, though they are not essential.

e Discrete modeling of shear stud connections with detailed load-deformation
response that is validated against test data.
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e Inclusion of bridge rails in finite element model.

e Contact modeling to account for closing of expansion joints. This modeling can be
simplified by using nonlinear springs, or a direct contact analysis can be conducted
if desired.

e Accounting for large (i.e., nonlinear) deformations.

5.6 Summary

Three sets of tests on a full-scale box-girder bridge were performed at the Ferguson
Structural Engineering Laboratory at The University of Texas at Austin. The first bridge test
involved rapidly severing the bottom flange of the exterior girder using explosives. The bridge
demonstrated excellent performance despite the loss of the bottom flange. At the midspan
position of the fractured girder, the bridge experienced a residual deflection of less than 1 in.,
and there was no damage evident to any components of the bridge. In the second bridge test, the
webs of the east (exterior) girder were cut using an acetylene torch while the bridge was
supported by a temporary truss system. The cut extended from the bottom flange fracture that
existed following the first test up towards the top flanges, with 83% of the web height in a “pre-
fractured” condition. With a simulated HS-20 truck positioned so as to generate the most severe
loading, explosives were used to cause the sudden failure of the temporary truss system
supporting the bridge. The failure of the temporary truss supports allowed the sudden release of
the gravitational potential energy of the truck live load and the bridge self-weight. The test
bridge successfully sustained the induced damage and sudden release of the loads, though some
of the components were damaged. The last bridge test was conducted to investigate the
remaining load-carrying capacity of the damaged bridge. It sustained approximately 363 kips—
more than five times the HS-20 truck load.

The finite element models developed to simulate the bridge tests compared well with the
collected data and post-test observations. Furthermore, the finite element models successfully
captured prominent bridge component failures that were observed during the second and the
third bridge tests. A comparison of the test data with the simulation models suggested the
possibility that equations used to define the behavior of connector elements used to represent
shear studs in the bridge could overestimate the shear strength of stud connections and could
underestimate the pull-out strength. According to the bridge tests and the simulations, prominent
failures of the bridge components were the haunch separation, initiated by stud pull-out failures,
and crushing of the concrete rail. Therefore, including such component contributions is crucial
for modeling a bridge to evaluate redundancy. In the next chapter, various factors that can affect
the ultimate load capacity of a fracture critical twin steel box-girder bridge are presented.
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Chapter 6. ParametersAffecting Bridge L oad-Carrying Capacity

6.1 Introduction

Twin steel box-girder bridges have various load-transferring mechanisms that allow them
to sustain traffic loads even they suffer a full-depth fracture of one of their main girders, as
demonstrated by the full-scale bridge tests and the corresponding simulations presented
previously in this report. To better identify the sensitivity of the research findings to variations in
some of the key performance parameters, finite element simulations were performed. Parameters
studied included changes in shear stud length, variations in horizontal curvature, variations in
bridge span length, and degree of structural indeterminacy (i.e., bridges with simple spans
compared to bridges with continuous spans).

To investigate how variations in these parameters affect the load-carrying capacity of
these types of fracture critical bridges, incremental load-displacement analyses were conducted
for bridge models that were subjected to initial fractures of the bottom flange and webs of one
girder, which is the same approach previously utilized to model the response of the FSEL test
bridge during the third test. The applied external loading consisted of an HS-20 truck positioned
at the most critical location, but each axle load was increased proportionally until collapse was
detected or the load reached five times one HS-20 truck load, whichever came first.

6.2 Concrete Strength and Truck Live Load

The HS-20 standard design truck utilized in this parameter study has a slightly different
configuration than the simulated loading that was used in the third bridge test simulation. An HS-
20 truck has three axles spaced 14 ft apart longitudinally and two axles spaced 6 ft apart
transversely; the total truck weight is 72 kips. To apply a live load beyond one truck load, each
axle load was increased proportionally to its original axle load. Although the simulated truck live
load for the third bridge test (Chapter 5) was intended to represent an HS-20 truck loading
configuration, it did not have distinct loading axles because of the manner in which the road base
was applied to the test bridge.

To quantify the effects of changes in loading configuration and concrete material strength
on the overall capacity of the test bridge, fractured girder deflections were computed for three
different cases as shown in Figure 6.1. The solid line in this figure shows the results of the
simulated loading from test 3, while the intermediate dashed line shows the results for the case
when the loading is changed to an HS-20 truck loading. As mentioned above, the axle loads for
the HS-20 truck loading were increased proportionally relative to the original axle loads of one
truck. Therefore, in this figure, a 144 kip load means placing one HS-20 truck on top of another.
Comparing the results shown in the figure, it is clear that the HS-20 loading has a more severe
effect on the overall performance of the bridge than the simulated loading used during the third
bridge test. One reason for these results is that the HS-20 loading configuration has a longer
lever arm for transverse bending than the simulated loading because the road base of the
simulated load used during the third test was distributed over a wider region of the deck than the
more concentrated loading of the HS-20 truck.
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Figure 6.1: Fractured girder deflection at midspan (loading type and concrete strength effect)

In addition to the issue of loading configuration differences, it is important to consider
variations in concrete compressive strengths because of the wide range that has been used in the
bridge industry. According to Russell’s report (2003), specified concrete strengths used for
bridge deck construction have varied predominantly from 4,000 psi to 8,000 psi. In order to have
consistent evaluations on bridge load-carrying capacities for the current parameter studies, a
concrete compressive strength of 4,000 psi was used; when representing the actual bridge tests
described in Chapter 5, measured material strengths from concrete cylinder tests were specified
in the finite element models. The concrete compressive strength not only affects the bending
stiffness of a bridge deck, but according to Equation 4-3 and 4-8, it also influences the shear
strength and the tensile strength of a stud connection (i.e., decreased concrete strength reduces
the shear and the tensile strength of a stud connection). The dotted line in Figure 6.1 is the
computed girder deflection for a bridge model that has a concrete deck with a specified
compressive strength of 4,000 psi. As expected, the results show a lower stiffness and a lower
load-carrying capacity than the other cases. Consequently, in order to develop conservative
estimates of the remaining capacity of fracture critical twin steel box-girder bridges subjected to
the full-depth fracture of one girder, loads are assumed to be positioned and proportioned
according to the axle loads of an HS-20 truck, and concrete material strengths are conservatively
estimated to be 4,000 psi.

6.3 Background Information on Bridges I nvestigated during Parameter
Studies

Four bridge models that differed in span length were utilized to investigate various
parameters affecting bridge load-carrying capacity. Box-girder dimensions and geometries of
these models are presented in Figure 6.2 and Table 6.1. The values provided in Table 6.1 are
representative dimensions at girder fracture locations. These dimensions were collected from
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shop drawings provided by TxDOT. Among the four prototype bridges shown in Table 6.1, three
bridges (S200, S170, and C130) are currently in service as part of the WOODWAY exit ramp
near the intersection of Interstate IH 10 and Loop 610 in Houston, and the other one (S120) is the
test bridge reconstructed at the Ferguson Structural Engineering Laboratory at The University of
Texas at Austin. The three models in Table 6.1 are simply supported bridges and are labeled with
an “S” in the front of the model name; the model with the label “C” is a continuous bridge
having two equal spans.

L Box width L Deck thickness
1 1 |
< \ / Haunch height \ /
Q.
o\ )
ol
Figure 6.2: Cross-section view of twin steel box-girder bridge
Table 6.1: Box girder dimensions at fracture location
Box girder dimension
Span : :
Model | length Thickness (in) Height
Width(in . Span/Depth
(ft) Bot. Web Top (in) (in) p P
flange flange
S200 200 2.00 75 1.75 84.0 86.0 27.9
S170 170 1.50 75 1.50 84.0 86.0 23.7
C130 130 0.88 .50 0.75 84.0 53.2 29.1
S120 120 0.75 .50 0.64 72.0 57.7 25.0

6.4 Bridge Component Contributions on Bridge Capacity

6.4.1 Stud Length and Deck Haunch

The robustness of stud connections plays an important role in the overall load-carrying
capacity of a bridge because they enable the bridge to maintain composite action between the
steel girders and the concrete deck. Under normal conditions when both girders are fully intact,
the stud connections primarily resist shear forces. In the event that a girder fracture occurs,
however, high tension forces will act on the stud connections of the fractured girder. During the
bridge tests carried out under this research project, such tension forces initiated pull-out failures
of the stud connections along the fractured girder, leading to a significant reduction in the
transverse bending stiffness of the bridge.

Based on stud pull-out test results (Mouras, 2008), the pull-out strength of a stud
connection is proportional to the embedded length of a stud into the deck because a longer length
increases the concrete failure cone size surrounding a stud. The presence of a haunch between
the bottom of the deck and the top flanges of the steel girders, however, reduces the effective
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embedded length of a stud. In addition to the embedded length reduction, the haunch also
influences the failure cone shape and thereby reduces the concrete surface area available to resist
applied tension forces. Because of these two factors, the pull-out strength of a stud embedded in
a haunch is less than it would be in the case no haunch is present. In spite of these drawbacks, a
haunch is commonly used in bridge construction because it is needed to maintain a uniform
concrete deck thickness. For this reason, the effect of a haunch on the pull-out strength of a stud
connection was considered in the bridge parameter studies, and the height of the haunch was
consistently assumed to be 3 in., which is the maximum haunch height allowed by the TxDOT
Bridge Detailing Manual (2001) provided no other reinforcing scheme for the haunch is
provided.

Figure 6.3 shows the pull-out strength for different stud configurations obtained from
laboratory tests (Mouras, 2008) along with the predicted results from Equation 4-7. The pull-out
strength is plotted against the effective stud length, % ., normalized by the haunch width, w;,. The

variable h(_ff is defined as the length a stud is embedded into the concrete deck, excluding the

haunch height and the stud head. As shown in Figure 6.3, stud pull-out strength goes up as the
effective stud length becomes longer and the concrete strength increases.
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Figure 6.3: Tensile strength variation along stud length

To investigate the effects of shear stud pull-out strength on bridge load-carrying capacity,
finite element bridge models excluding rails were studied. Rails were excluded from these
models in an attempt to isolate the effects of the shear stud strength on overall performance. For
these analyses, the assumed concrete strength was 4,000 psi, and the HS-20 loading
configuration was used. Figure 6.4 shows the girder displacements for bridge models with a span
of 120 ft. In this figure, girder displacements of a bridge model with 5-in. stud connections are
plotted with solid lines, and displacements of a bridge model with 9-in. studs are plotted with
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dashed lines. This figure shows that the displacements of both girders are reduced when the stud
length is increased, and such displacement reductions are significant in the fractured girder. This
tendency was consistently observed through simulations of bridge models with other span
lengths (C130, S170, and S200).
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Figure 6.4: Girder deflection at midspan (stud length effect)

A detailed study of the simulation results indicated that such displacement reductions
were related to differences in haunch separation behavior. In all models studied, prominent
haunch separations occurred along the insides of fractured girders, which resulted in transverse
bending stiffness reductions across bridge decks and led to large increases in the displacements
of the fractured girders. The outside haunches of fractured girders also separated near the
fracture locations in the bridge simulation models. In addition to the transverse bending stiffness
reductions, these haunch separations also reduced the vertical bending stiffness of bridges by
removing composite behavior between the concrete decks and the steel girders. Computed results
suggest that as the haunch separation length increases, bridges will demonstrate reduced
stiffnesses and larger deflections. Figure 6.5 shows the separated haunch length along the inside
of the fractured girder for a model with 5-in. studs. When a separation magnitude representing
the vertical displacement of a stud connector element exceeded its pull-out displacement, U,
computed from Equation 4-12, it was assumed that the stud connection was separated from the
deck. To investigate the separated length of a haunch as a function of the embedded stud length,
haunch separation lengths were plotted against applied live loads following a girder fracture
event. These results are shown in Figure 6.6, where the separation lengths are normalized by the
bridge span length and the applied loads are normalized by one HS-20 truck load. The separated
haunch lengths of the 9-in. stud model are less than those of the 5-in. stud model—both on the
inside and the outside of the fractured girder—which led to a stiffer response and smaller
deflections for the fractured girder in the 9-in. stud model compared to the model with 5-in.
studs.
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Separated length/span length

6.4.2 Railing

Bridge deflections with and without the presence of a railing were investigated using a
TxDOT standard T501 rail as shown in Figure 6.7; this rail was selected because it is widely
used in practice. For models that included rails, expansion joints were placed above the fracture
location to minimize the potential increase in bending stiffness rails may offer at that location.
For consistency with the full-scale test bridge, all finite element models assumed that expansion
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Figure 6.6: Separated haunch length variation along applied load
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joints were spaced every 30 ft along the span, and gap openings between rail sections were
assumed to be 3/4-in. As with the models used to represent the FSEL test bridge, spring elements
were placed in the expansion joints to account for potential contact of railing sections in the
event that large deflections could cause the expansion joints to close.

Applied live load / HS-20 truck weight

Figure 6.7: T501 rail of FSEL bridge
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Figure 6.8: Deck deflection of fractured girder centerline at midspan

Figure 6.8 shows deck displacements of bridge models with 120-ft spans after the
fracture of one girder. The displacements shown are those that occurred following the girder
fracture (i.e., no pre-fracture displacements due to construction loads are included). All
displacements shown in subsequent figures consider only the post-fracture displacements. The
deck displacements were measured on the top of the deck at the centerline of the fractured girder.
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Initially, as expected, the bridge model with rails deflects less than the model without rails;
however, the total deflection at the peak load is greater for the model with rails than the one that
does not include rails. A prominent feature shown in the figure is the sudden increase in the deck
displacement for the model that included rails as the applied live load approached 216 kips. This
load is equivalent to three HS-20 trucks. Conversely, a sudden increase in the deck displacement
was not observed in the model without rails.

According to the finite element analyses of these two models, the main notable difference
in bridge component failures was the haunch separation along the outside flange of the intact
girder. Such haunch separation was observed only in the bridge model with rails. Figure 6.9
shows variations in the separated haunch length as a function of the applied live load. The
dashed line with circle markers indicates the haunch separation length along the outside flange of
the intact girder for the bridge model that included rails. As shown in this figure, the haunch
separation increased abruptly when the normalized load level reached approximately three,
which is equivalent to three HS-20 trucks. This haunch separation led to a reduction in the
transverse bending resistance of the bridge deck, allowing a rigid rotation of the deck to take
place. Therefore, the deck above the fractured girder could deflect downward abruptly, as shown
in Figure 6.8. In addition, the difference in the haunch separation length shown in Figure 6.9
indicates that the separation distance is greater in the finite element model with rails than the one
without rails. As discussed in the previous section, bridges are expected to exhibit less stiff
behavior as haunch separation distances increase due to a reduction in the transverse bending
stiffness and in the vertical bending stiffness of the bridge. Results presented in Figure 6.9
support this observation.
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Figure 6.9: Separated haunch length difference depending on railing presence

A detailed investigation of the response helps explain the results shown above in which,
near the onset of failure, bridge models with rails deflect more than models that do not include
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rails. Under low levels of applied load, the bridge model with rails showed a slightly stiffer
behavior in the deck displacement response than the model without rails. When the sudden
haunch separation occurred along the outside flange of the intact girder, the deflection of the
bridge model with rails became larger than the one without rails, and this trend continued up
until the peak load was achieved. To explain this behavior, there is a need to focus on the
variations in the haunch separation length along the outside of the fractured girder; Figure 6.9
shows a noticeable difference between the T501-rail model and the no-rail model. In Figure 6.9,
the length over which the haunch separates in the no-rail bridge model—plotted with solid lines
and squares—initially increases as the applied load increases, but it starts to decrease once the
loading exceeds a single HS-20 truck (i.e., 72 kips). This behavior was caused by the localized
large deflection of the deck above the fractured girder. Because of the position of the applied live
load, the deck deflection at this location increased at a faster rate than that of the girder. As a
result, the deck and girder moved closer to each other, with the deck eventually supported by the
girder. When the girder and concrete deck came together, the haunch separation distance became
zero. Conversely, for the case of the finite element model that included the T501 bridge rail, this
reduction and eventual closure of the haunch separation distance was not observed (Figure 6.9).
It is believed that this result is caused by the engagement of the railing above the fractured
girder. Once bridge rail sections are engaged, they increase the bending stiffness of the deck
because they act like deep beams at the edge of the deck. The increased bending stiffness reduces
the deck deflection and prevents the deck from coming to rest on top of the fractured girder as
was observed in the bridge model that neglected the presence of the rails. Eventually, however,
haunch separation along the outside flange of the intact girder causes the displacements in the
model with rails to exceed those of the model without rails.

6.5 Curvature Effect on Bridge Capacity

Steel box-girder bridges are frequently used in curved regions of highway interchanges
because of their high torsional resistance. As the radius of curvature of a bridge decreases,
torsional stresses increase due to the eccentricity from boundary supports. In cases where a
bridge is damaged, such as the fracture of one girder assumed for a redundancy evaluation,
bridge curvature may negatively affect a bridge’s load-carrying capacity because the bridge
would lose a significant level of torsional resistance due to the girder fracture. For this reason,
curvature effects were investigated for bridge models with 120-ft spans.

Figure 6.10 shows shear stresses in the bottom flanges at the midspan location of three
bridge models having different radii of curvature: 1.) an infinite radius (i.e., a straight bridge), 2.)
a radius of curvature equal to 1365 ft, which is equivalent to the full-scale test bridge, and 3.) a
radius of curvature equal to 800 ft, which is near the lower limit seen in typical field
applications. As expected, higher stresses were observed in curved bridges with smaller radii of
curvature than those in bridges with larger radii of curvature; for all cases considered, the actual
magnitude of these stresses was small. As indicated in Figure 6.11, the vertical displacements of
the fractured girders showed behavior consistent with that of the shear stresses. Although the
bridge curvature does not affect the vertical deflection notably in these cases, the effect might be
significant in cases where the span length is much longer than these models. Therefore,
additional research is needed to clarify the curvature effects on this type of bridges. Nonetheless,
using the modeling guidelines described in this report, both simplified analysis methods and
detailed finite element models can be used to study the effects of changes in horizontal curvature
on overall bridge redundancy.
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Figure 6.10: Shear stress of bottom flange at midspan
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Figure 6.11: Fractured girder deflection at midspan (curvature effect)

6.6 Structural Indeterminacy

Unlike a simply supported bridge, bridges with continuous spans are statically
indeterminate and therefore inherently possess some degree of system redundancy. Thus, if a
twin steel box-girder bridge is constructed continuously over multiple supports, its response
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following the fracture of one girder can be redistributed to a neighboring girder as well as
neighboring spans—potentially improving its chances to survive a fracture event more
effectively than a simply supported bridge. To investigate the possible beneficial effects of
structural indeterminacy, the post-fracture behavior of the two-span continuous bridge model
(C130), as described in Table 6.1, was analyzed in this study.

In the analysis of the simply supported bridge models described previously, the girder
fracture location was selected to be at the midspan because the maximum positive bending
moment caused by the bridge self-weight and a truck live load occur at this location. To
determine the location where positive bending moment was maximized by bridge self-weight
and a live load for the continuous-span bridge model, a moving load analysis was conducted.
Before applying the moving load to the bridge, deck self-weight was applied on the top flanges
of the bridge girders with gravity loading for girder self-weight (to account for non-composite
section behavior), and then the moving load representing a truck live load was applied by
changing its location by 2-ft increments along the bridge span. Figure 6.12 shows the results of
the moving load analysis for the C130 model. The solid line shows the normal stress envelope
induced by the bridge self-weight (dead load, DL) and the moving load (live load, LL). The
normal stress was measured in the bottom flange of the girder for which the simulated fracture
was to be specified. As shown in Figure 6.12, it was found that the maximum normal stress
occurred at 51 ft away from the simple support, which corresponded to a relative position of 40%
of one span length. Therefore, this location was specified as the fracture location of the
continuous-span bridge model.
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Figure 6.12: Normal stress envelop curve along bridge span

Figure 6.13 compares the girder deflection behavior of the simply supported bridge
model (S120) and the two-span continuous bridge model (C130). It is important to note that
these results are for the case when no railing is included in either model. Due to the differences
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in cross-section size and other dimensions (Table 6.1), it is not appropriate to compare the
computed results directly. Nonetheless, it is important to identify differences in the response
behavior of these models and to recognize that the continuous-span model had a longer span and
a smaller cross-section than the simple-span model.
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Figure 6.13: Girder deflection at midspan (continuous span)

Notably different responses were observed between these two models for the fractured
girder deflection behavior, as shown in Figure 6.13. As the applied load reached approximately
160 kips, haunch separation along the outside of the fractured girder was observed near the
fracture location of the continuous-span bridge model. It was caused by the cantilever action
emanating from the interior support side of the bridge. Because of the position of the assumed
fracture location relative to the layout of this two-span continuous bridge, the far end rested on a
simple support that could not provide such cantilever action. Thus, the interior side that could
develop cantilever action restrained the far side resting on the simple support. This restraint
caused the tension force on the stud connections near the girder fracture location to increase,
eventually causing haunch separation to occur locally near the fracture location along the outside
of the fractured girder.

An interesting observation is that the continuous-span bridge model showed a relatively
stiff deflection response even though it suffered a sudden haunch separation along the outside of
the fractured girder. To further investigate this post-haunch-separation behavior, T501 rails were
added to these two models. As indicated above, the presence of rails in a redundancy evaluation
can greatly affect the computed pull-out forces acting on the stud connections. In the S120
simple-span model, including a T501 rail caused stud pull-out forces to increase to the point that
haunch separation occurred along the outside of the intact girder. This haunch separation caused
large deflections to occur in the fractured girder under the loading range considered (i.e., 5 times
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an HS-20 truck load). Figure 6.14 shows the analysis results for these two bridge models with the
T501 railing.
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Figure 6.14: Girder deflection at midspan (continuous span with T501 rail)

Although haunch separation occurred along the outside of the fractured girder in the
continuous-span bridge model and caused a sudden increase in the deflection of the fractured
girder, the continuous-span bridge model demonstrated a stiffer deflection response than the
simple-span model, particularly for the fractured girder. The differences in girder displacements
between these two models became large after haunch separation along the outside of the intact
girder was initiated in the simple-span model. Interestingly, such haunch separation along the
outside of the intact girder did not occur for the continuous-span bridge model. This behavior is a
result of the fact that, even with the full-depth fracture of one girder, vertical bending resistance
can develop in the continuous-span bridge due to cantilever action. Accordingly, the applied load
can be transferred longitudinally along the bridge span. Conversely, in the simple-span model,
the applied load must be transferred through transverse bending of the deck, which causes an
increase in the pull-out forces on the stud connections along the outside of the intact girder. This
increase in the pull-out forces on the studs eventually causes haunch separation to occur. These
results imply that the continuous-span bridge has a higher post-fracture load-carrying capacity
than the simple-span bridge despite the fact that it has a longer span and a smaller cross-section.

6.7 Bridge Span Length and Dynamic Amplification Factor

Three simple-span bridges that differed in their span lengths were analyzed to investigate
post-fracture load-carrying capacity as a function of span length. Figure 6.15 shows girder
deflection behavior for these bridge models, and it is interesting to note that the results do not
show any significant span length dependency. However, considering the ratio of span length to
steel box-girder depth—values are indicated on top of each fractured girder deflection plot—the
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fractured girder deflections increase as this ratio increases. Intact girder deflections also tended
to behave similarly with the fractured girder until yielding in the bottom flange of the 120-ft span
bridge model (S120) was initiated.

In addition to the investigation of bridge load-carrying capacity, the dynamic
amplification factor attributed to suddenly released loads—associated with the assumed damage
and loading scenario for the redundancy evaluations considered in this research—was studied
using the three simple-span bridge models (S120, S170, S200) and the continuous-span bridge
model (C130). The dynamic amplification factor was obtained by dividing the maximum
dynamic deflection of the intact girder by the static deflection of the girder.
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Figure 6.15: Girder deflection at midspan (span length effect)

In Figure 6.16, the computed dynamic amplification factors are plotted against bridge
span normalized by the depth of the steel girders. The plot shows that for the simply supported
bridge models, the dynamic amplification factor decreases as the ratio of the span to the box
depth increases. With only one continuous-span bridge model used in the parameter study, trends
in the response of the dynamic amplification factor for these types of bridges remain uncertain.
Nonetheless, according to the analyses of these bridge models, the dynamic amplification factor
varied in a narrow range between 1.36 and 1.58. This observation is important, as other
specifications for redundancy evaluation of cable stay bridges require a load amplification factor
of 2 (PTI Cable Stayed Bridge Committee, 2007), which is much greater than what was observed
in these analyses or in the stud pull-out test results reported by Mouras (2008).

110



S 18 -
@
u— Continuous
S L6 bridge (C130)
s - °
é °
S 14 -
o ¢
e
©
S 12
o
10 L 1 ! 1 ! 1 ! J
22 24 26 28 30

Span length / box height

Figure 6.16: Dynamic amplification factor

6.8 Summary

In this chapter, the following parameters were investigated to determine their influence
on the load-carrying capacity of a twin steel box-girder bridge: stud length, railings, bridge
curvature, structural indeterminacy, and span length. It was found that the pull-out strength of
stud connections played a major role in the post-fracture behavior of these types of bridges.
Results from this research program indicate that the pull-out strength of a stud connection is
negatively influenced by the presence of a haunch and limits the maximum load a twin steel box-
girder bridge can carry following the fracture of one of its girders. T501 bridge rails act as deep
beams at the edges of the concrete deck and can carry substantial loads after their expansion
joints close. In the models studied, their presence initially reduced the deck deflection compared
to the models that did not include rails; however, models with rails showed an increase in the
pull-out forces acting on the stud connections, which resulted in the haunch separating along the
outside of the intact girder near the fracture location. This haunch separation caused the
deflection in the fractured girder to increase abruptly. Another parameter that was varied in the
finite element models developed for this research was the radius of curvature, and the results
showed sensitivity to changes in this value. As the radius of curvature decreased, deflections in
the fractured girder increased. Structural redundancy achieved through a continuous-span bridge
positively affected the overall load-carrying capacity of the twin steel box-girder bridges
analyzed for this research. The continuity of the bridge helped it sustain the applied load without
causing haunch separation along the outside of the intact girder. Finally, post-fracture girder
deflections showed a stronger dependence on the span length-to-depth ratio than the span length
itself. As the ratio of span to depth increased, the fractured girder deflections also increased.

In the following chapter, conclusions about the modeling of twin steel box-girder bridges
for redundancy evaluations are provided, and recommendations for future research are given.
The conclusions are based on the findings obtained from the detailed testing program executed
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during this study, from implementation of the simplified modeling procedure described at the
beginning of this report, and from detailed finite element analyses conducted for this project.
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Chapter 7. Conclusionsand Recommendations

7.1 Summary of Research

The AASHTO LRFD Bridge Design Specifications (AASHTO, 2007) currently classify
twin steel box-girder bridges as fracture critical. According to this designation, such a bridge
“contains one or more fracture critical members whose failure is expected to result in the
collapse of the bridge or the inability of the bridge to perform its function.” The purpose of the
research program described in this report was to investigate and to quantify the inherent
redundancy that this type of bridge possesses—contrary to the current fracture critical bridge
classification. To meet this goal, a comprehensive research program was carried out that
included three tests on a full-scale fracture critical bridge (Neuman, 2009), laboratory tests to
quantify the tension capacity of shear stud connections (Sutton, 2007 and Mouras, 2008),
development of a simplified modeling method to evaluate the redundancy of twin steel box-
girder bridges (Samaras, 2009), and development of modeling guidelines to conduct detailed
finite element simulations (Kim, 2010). In this report, a brief summary of the testing program
was provided; emphasis, however, was on the presentation of a simplified procedure to estimate
the load-carrying capacity of a twin steel box-girder bridge following the fracture of one of its
girders and on methods for creating detailed finite element models that can be used to evaluate
the redundancy of these types of bridges in cases where the simplified modeling approach does
not provide sufficient information or in cases where the results obtained from the simple analysis
approach require refinement.

In Chapter 2 of this report, the simplified modeling approach was introduced. The initial
steps of the procedure define strength checks that are needed to evaluate the redundancy of a
twin steel box-girder bridge. The strength checks that require evaluation are as follows: (a) intact
girder has adequate shear and moment capacity, (b) deck has adequate shear capacity, and (c)
shear studs have adequate tension capacity. If the bridge under investigation satisfies only the
first two conditions, it is still possible that it can sustain load without collapsing. Under these
conditions, a yield line analysis can be used to evaluate the ability of the deck to transmit load to
the intact girder without the shear studs connecting the deck to the fractured girder. In the event
that the capacity predicted from the yield line analysis is not adequate, a more refined analysis
can be performed.

For the detailed finite element models developed for this research, various simulation
techniques were utilized to capture important response mechanisms that were expected to
develop in a severely damaged bridge, as described in Chapter 4. These techniques were utilized
to construct analysis models simulating the full-scale bridge fracture tests. These models were
successful in capturing prominent bridge behavior and component failures observed during the
experimental program. Various bridge models constructed in the same way as the bridge test
simulation models were then used to investigate how changes in several of the design variables
and bridge geometry affect the remaining load-carrying capacity of twin steel box-girder bridges
following the full-depth fracture of one girder.

Based on a literature review of past bridge fractures, results collected from the full-scale
bridge fracture tests, analytical studies performed using the simplified procedure developed
during this project, and detailed finite element simulations, several important conclusions about
the performance of twin steel box-girder bridges can be drawn. The conclusions are presented in
the next section.
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7.2 Conclusions and Recommendations

7.2.1 Damage L evel and L oading Method

Because there are no incidents involving the fracture of twin steel box-girder bridges
reported in the literature, it was necessary to assume a damage level for carrying out redundancy
evaluations during this research project. In order to provide a conservative estimate of
performance, and based on past experiences with damage in plate girder bridges, a full-depth
fracture of one girder was assumed. Thus, the sudden fracture of one girder was selected as the
damage level for evaluating redundancy in twin steel box-girder bridges.

An HS-20 standard design truck was used as the primary live load for this research
project. In this study, two different types of loading schemes were utilized. First, for the purposes
of carrying out a redundancy evaluation, the truck load was positioned statically on the deck at a
location that would induce the maximum positive bending moment on the fracture location of the
bridge under investigation. To simulate worst-case loading conditions, it was assumed that the
girder fracture occurred suddenly immediately after the live load was placed above the fracture
location. Second, for the purposes of computing overall load-carrying capacity, the truck live
load was positioned in the same location as used for the redundancy evaluations, but the live load
was incrementally increased in proportion to the axle loads until failure occurred or a
predetermined load level was met.

7.2.2 Concrete Deck and Shear Stud Design

Based on the results of laboratory tests conducted as part of this research project, it is
recommended that shear studs be sufficiently tall so that they pass beyond the bottom layer of
reinforcement used in the deck. When the shear studs pass the bottom mat of reinforcement, the
ductility of the connection is improved. Moreover, test results indicate that by increasing the
length of the shear studs, their tensile capacity increases. If the shear studs have sufficient
capacity to resist the pull-out forces that develop after a fracture, the concrete deck will reach its
moment capacity, and a plastic hinge line will form above the interior top flanges of the steel
girders. From an overall performance perspective, it is more desirable to form a hinge in the
concrete deck than to have a shear stud failure. The hinge formation, compared to the shear stud
failure, is more ductile. Furthermore, after the formation of a hinge, loads can still be transferred
away from the fracture location. Design of the concrete deck and the shear studs must be
considered at the same time. A high tensile capacity in the shear stud connections will have
limited benefit because the moment capacity of the concrete deck will govern. Conversely, the
design of a thick deck may result in shear stud pull-out failures. Thus, it is highly recommended
that the design be based on a balanced section in which the shear studs fail just after the
formation of hinges in the concrete deck.

7.2.3 Finite Element M odeling

Concrete Deck

In this study, the concrete deck was modeled using solid elements with embedded truss
elements to simulate the reinforcing steel. Considering the importance of the concrete deck as a
load transferring component in twin steel box-girder bridges, it is critical to simulate its behavior
accurately. As shown in the second and third full-scale bridge tests, extensive material failures,
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including extensive cracking and crushing, are inevitably expected for redundancy evaluations
due to the expected damage level near the onset of collapse. To account for these material
failures, a cast iron plasticity model was utilized for the concrete deck modeling rather than a
concrete smeared cracking model. Though the cast iron plasticity model does not allow for the
softening behavior that a smeared cracking model permits, it does have the essential feature of
being able to specify different strengths for tension and compression. The cast iron plasticity
model was found to be an excellent compromise between accuracy and efficiency. It produced
simulation results that agreed well with benchmark tests, yet it did not cause the same types of
numerical convergence problems that were experienced when the smeared cracking model was
used.

Using the cast iron plasticity model, the deflection of the concrete deck was found to be
sensitive to both the specified tensile strength and the mesh density. Based on parametric studies
of finite element models developed to represent laboratory tests on the pull-out behavior of studs
embedded in a concrete deck with a haunch, it was found that the model properly simulated deck
bending behavior when the tensile strength of the model was specified to be 4% of the
compressive strength with the specific mesh density of three elements through the deck thickness
and ten elements along the deck width. It is important to recognize, however, that this specific
tensile strength and mesh density do not apply to all cases because they were validated against a
limited set of test data.

Stud Connections

Under normal conditions, shear studs installed on girder top flanges are subjected to shear
forces induced by the composite action between the girders and the concrete deck. Results from
this research have shown, however, that significant tension forces develop in shear studs of twin
steel box-girder bridges as deformations increase following the fracture of a girder. Such tension
forces induce stud pull-out failures, which lead to extensive haunch separation. This behavior
was observed during the full-scale tests that took place under this research program and was
detected in the finite element simulations. Stud pull-out failures reduce both the transverse and
the vertical bending stiffness of a bridge, thereby inducing large deflections following the
fracture of a girder. Because predictions of bridge redundancy are sensitive to the specified load-
deformation response of shear stud connections, and because observations from full-scale tests
indicate possible damage mechanisms initiated through both shear and tension, it is important
that models used for redundancy evaluations account for these components of response. The
experimental equations proposed by Topkaya (2002) and Mouras (2002) were used in this
research and allowed for a determination of stud connection response for shear and tension
independently, but no information is currently available on the coupled interaction of shear and
tension in stud connections.

Even when the shear and tension response of the stud connections are defined
independently, it is essential that accurate values for capacity be specified. Because of the
sensitivity that the stud pull-out strength has on the predicted load-carrying capacity of twin steel
box-girder bridges following the fracture of one of its girders, care must be taken to properly
account for such factors as the presence of a haunch, stud embedment length, stud spacing, and
stud positioning when computing the tension capacity of different shear stud arrangements. The
equation used to determine shear strength, however, does not consider these factors. Thus, aside
from research needed on how shear and tension interact in stud connections near the onset of
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bridge collapse, additional research is needed to accurately evaluate the shear strength of stud
connections when a haunch is present.

Railing

The presence of a railing (TxDOT standard T501 rail) in the finite element simulation
models significantly affected girder deflections by causing an increase in the haunch separation
length in both the fractured and the intact girders relative to models that did not explicitly model
the rails. Although it reduced the deck deflection during the initial stages of response before
haunch separation was initiated along the outside of the intact girder, it eventually increased the
haunch separation length in both girders by locally raising tensile forces on the stud connections.
Therefore, a bridge analysis that ignores the effects of railings when carrying out a redundancy
evaluation may not be conservative.

Bridge Curvature

In this study, the response of a bridge with a span of 120 ft was evaluated considering
three different bridge radii of curvature. The range considered included a bridge with an infinite
radius of curvature (i.e., a straight bridge) and one with a curvature of 800 ft, which is near the
limit of what is found in practice. For the redundancy evaluations, girder fracture was assumed to
occur in the exterior girders of the curved bridges to achieve larger torsional forces than would
be obtained by fracturing the inside girders. According to the finite element analyses of these
bridge models, a decrease in the radius of curvature led to an increase in the vertical
displacement of the fractured girder. Thus, it was concluded that bridge curvature can play an
important role in controlling the post-fracture behavior of twin steel box-girder bridges. Because
of the limited number of cases that were evaluated, however, it is recommended that additional
analyses be carried out to identify the dependency of bridge redundancy on bridge radius of
curvature.

Structural Redundancy

To investigate differences in bridge behavior between a simple-span bridge and a
multiple-span bridge following the fracture of one girder, a two-span continuous bridge was
analyzed using a finite element model that was developed using the guidelines presented in this
report. Due to different cross-sectional dimensions and component sizes (i.e., thickness and
width of bottom flange, top flange, and web), it was not reasonable to compare directly the
computed response of the two-span continuous bridge model with the simply supported bridge
model used for the evaluation. Nonetheless, the analyses indicated that the two-span bridge could
carry load without collapsing even after a sudden haunch separation occurred along the outside
of the fractured girder. Because of the cantilever action that could develop in the continuous-
span bridge model, loads could be transferred longitudinally along the span of the bridge, and
tension forces acting on the stud connections in the intact girder were never large enough to
cause pull-out failures. Conversely, for the simple-span bridge model that was analyzed,
significant reductions in stiffness or unstable behavior occurred after haunch separation took
place along the outside of the intact girder. The good performance achieved by the continuous
two-span bridge was a result of redundancy achieved through static indeterminacy.
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7.3 Suggestions for Future Study

7.3.1 Strength of Stud Connection

In the third bridge fracture test, collapse was initiated by slipping between the outside top
flange of the fractured girder and the concrete deck. After the test, it was observed that extensive
horizontal and diagonal cracks developed along the outside haunch of the fractured girder. This
observed damage suggests that the shear strength of a stud connection may be affected by the
presence of a haunch and shear-tension interaction. Past research has not considered these
factors, and equations that are currently available may over-estimate the shear strength of a stud
connection. Because of the sensitivity of the computed results to changes in stud connection
behavior, additional testing is needed to accurately capture the response of shear studs in a
haunch under combined states of tension and shear.

7.3.2 Bridge Curvature

Results obtained from finite element models developed for this research indicate that as
the radius of curvature decreases, the exterior girder deflections increase due to the eccentricity
between the loading position and the bridge supports. Because of this eccentricity, curved
bridges must resist higher torsional forces than straight bridges. For the cases studied, however,
the shear stresses associated with such increased torsional forces were small compared to those
developed in a straight bridge. For the bridge model that was analyzed, which was a simply
supported bridge with a span of 120 ft, the shear stresses associated with torsion increased by
only 4 ksi as the radius of curvature changed from infinity (i.e., a straight bridge) down to 800 ft.
Because the eccentricity between the loading position and the supports is a function of bridge
span, and because torsional moment increases with this eccentricity, the effects of curvature
require further investigation than what was carried out during this study.

7.3.3 Bridge Rails

Results from this research showed that railing performance strongly influences the
overall load-carrying capacity of twin steel box-girder bridges following the fracture of one
girder. In this study, only the influence of T501 rails, using standard construction details, was
investigated. In contrast, many other fracture critical bridges utilize bridge rails that have an
intermittent base or have less depth than the T501. Consequently, it is not certain how these other
rail systems influence system capacity following the failure of a critical component. As such,
research is needed to assess the performance of various rail systems used on fracture critical
bridges to determine how they contribute to bridge redundancy. While rails can act like deep
beams on the edges of the deck and can carry significant loads, they can also lead to increased
tensile forces acting on shear stud connections. Accordingly, additional research is needed to
investigate how these components may be used to improve overall redundancy. While attempts
should not be made to drastically change design details that can detract from the primary purpose
of a railing to serve as a crash barrier, such factors as the number, size, and placement of
expansion joints should be studied to determine how such details affect performance. For bridge
rails that do not meet desired performance measures, retrofit methods should be investigated.
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7.4 Closing Comments

Through three full-scale tests, the FSEL test bridge performed much better than the
AASHTO Bridge Design Specifications suggest, particularly given the fact that it was a simply
supported span, had expansion joints in its railings, and had all external cross-frames removed.
After sustaining a full-depth fracture in its exterior girder, the test bridge demonstrated sufficient
redundancy through alternate load paths to maintain loads far exceeding those for which it was
designed. Detailed finite element studies considering a wide range of design parameters
confirmed the redundancy of these types of bridge systems. After additional research is carried
out, revisions to the current AASHTO specifications should be considered so that the behavior of
these bridges following the failure of a critical tension flange can be accurately predicted and so
that appropriate inspection and maintenance requirements can be prescribed. Given the
demonstrated redundancy in these systems beyond that for which they have been credited, the
current requirement for bi-annual inspections does not appear to be an effective use of labor or
financial resources.
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Appendix A. Implementation of Simplified Modeling Approach:
Example 2-Analysis of Woodway Bridge (Span 11)

I ntroduction

This example focuses on span 11 of the Woodway exit ramp between IH 610 and the
Katy Freeway in Houston, TX. This bridge is simply supported and straight (i.e., R=0), and its
total length is 197.6 ft. Figure A1 shows the elevation view of span 11 of the Woodway Bridge
and other general information. The top and bottom flange thickness changes along the span of
the bridge. Table A1 summarizes all the dimensions of both flanges along the span of the bridge.
Only three steel sections are used along the length of the span. The “Transition” sections occur
due to different cutoff points for the top and bottom flanges. Figures A2 and A3 present the
typical cross-section of the bridge and steel girder respectively. A typical SSTR section is used
for the railing.

Table Al: General information of bottom and top flange

Type of Section ';nz;%;ﬂgg ?rp(?rlrlcglljt)ﬂ Bottom Flange Top Flange
(ft) tar ber tre ber

(in.) (in.) (in.) (in.)

End Section 0-51.25 1.50 44.5 1.25 18
Transition Section 51.25-59.25 2.00 44.5 1.25 18
Middle Section 59.25-138.75 2.00 44.5 1.75 18
Transition Section 138.75-146.75 2.00 44.5 1.25 18
End Section 146.75-197.6 1.50 44.5 1.25 18
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Calculation of the Transmitted L oad to the Intact Girder

It is assumed that half of the entire weight of the bridge and the entire live load on the
bridge is needed to be resisted from the intact girder at an event of a fracture occurs. These loads
are calculated below:

Weight of one steel box girder:
Weirder = 1.15 - (244.72/144 £t*) - (0.490 kips/ft’) = 0.958 kip/ft (End Section)
Wairder = 1.15 - (266.95/144 ftz) - (0.490 kips/ft3) = 1.044 kip/ft (Transition Section)
Weirder = 1.15 - (284.97/144 £t) - (0.490 kips/ft’) = 1.116 kip/ft (Middle Section)

Notes: This weight if for one girder. Cross-sectional areas of End, Transition, and Middle section
are 244.72 in’, 266.95 in” and 284.97 in%, respectively. Density of steel is taken as 490 Ib/ft>. To
account for internal diaphragms, stiffeners, etc., the weight of the steel girder is multiplied by a
factor of 1.15.

Concrete deck:
Waeer = (317 - 8/ 144 £t%) - (0.150 kip/ft’) = 2.642 kip/ft

Notes: Width of concrete deck is 26 ft—5 in. = 317 in. Density of concrete is taken as 150 Ib/ft3.
Deck thickness is 8 in.
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SSTR Railing:
Waitings = 2 - (312/144 £t%) - (0.150 kip/ft’) = 0.65 kip/ft

Notes: Multiplied by 2 to account for two rails. Cross-sectional area of one rail is calculated to be
312 in’.

HS-20 Truck:
Wiuwer = 2 - 72 kips = 144 kips (load factor=2)
L oad to be transmitted:
F=XWsgirderi " Li) + Waecd2 + Wraitings/'2) - L + Wiuck

F=(0.958-102.1 + 1.044-16 + 1.116-79.5) + (2.642 + 0.65)-197.6/2 + 144 = 672.5 kips

= 672.5 kips

Calculation of Maximum Moment on the Bridge

Moment dueto dead load and truck load
The moment at the mid-span is calculated below:

MDL = (22( ngrderl' ' LI/L) + Wdeck + Wrailings) ' L2/8
Mpr=2-(0.958-102.1 + 1.044-16 + 1.116:79.5)-197.6/8 + (2. 642 + 0.65)'197.62/8
MDL = 26,107 klp-ft

The values are computed knowing that the moment of a simply supported beam loaded
with a uniform load follows the formula M(x) = W+ x*/2, where W is the uniform load applied on
the girder and x is the distance from the support. Using the moment equation, the moment at the
end of the two transition sections can found—~Mp,(51.25) and Mp(59.25) are 7,026 kip-ft and
9,391 kip-ft respectively.

As in Example 1, the middle axle of the 144-kip truck load is positioned at the centerline
of the bridge. The maximum moment at the mid-span of the bridge due to both the dead load and
the truck load is calculated to be M, = 29,384 kip-ft. By superimposing the moment diagrams
for these loads, the moments at the flange transitions are M (51.25) =10,890 kip-ft and M (59.25)
=13,858 kip-ft.

Analysis of Composite Section

The plastic moment capacity of the intact girder should be calculated to determine if it
has the flexural capacity to sustain the live load and the dead load applied to the bridge. The
moment capacity was checked at the mid-span and at the two flange transitions. The specified
minimum yield strength of f,= 50 ksi is used in the calculations.
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Middle Section
Find the plastic neutral axis by setting 7 = C:

T=Asf,=(445-2+2-88.644-0.75+2 - 18 - 1.75) - 50 = 14,248.3 kips
Ce=0.85 f" t; - bey=0.85-4-8 158.5=4,311.2 kips
Because T > C, the plastic neutral axis is in the girder.
Ci=(4s-f,—C.)/2=(14,248.3 -4,311.2) / 2 =4,968.55 kips
Using this equation, the compressive force needed to be developed in the steel section to
achieve equilibrium (C = T) can be computed.
Cp=2 "ty by -f,=2-1.75-18-50=3150 kips
The top flanges can resist 3150 kips in compression, which is less than is required to
obtained equilibrium. As a result, the plastic neutral axis (PNA) falls in the web. Assuming that x

is the distance from the neutral axis to the bottom of the top flange (Figure A4), the depth of the
neutral axis can be determined as a function of the depth:

x =(4,968.55 - 3150) / (2 - 0.75 - (17/16)>° - 50) =23.52 in.
Note: The (17/16)*° factor is based on the slope of the web.

Top flange

'-_".\‘eb

PNA

XJ
Figure A4: Plastic neutral axis location

Thus:
C.=4,311.2 kips
Cyn=3150 kips
Clep = 1818.55 kips
Toes = Awep - f, =2 - 0.75 - (86-23.52) - (17/16)*7 - 50 = 4830.22 kips

Tbottomﬂange = Abottomﬂange fy =44.5-2-50=4450 klpS
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By taking moments about the PNA, the nominal plastic moment capacity is calculated:
Myostom fange = Thottom flange * (1 + 86 —23.52) = 282,486 kip-in.
Myet = Cyep - 23.52/2 + Tpep - (86-23.52) /2 =172,282.22 kip-in.
Mcy= Cy - (1.75/2 +23.52) = 76,844.25 kip-in.
Mc concrere = Ce - (4 + 2 +23.52) = 127,266.62 kip-in.

Note: The 2-in. term added in the moment arm accounts for distance from the bottom of the
concrete deck to the bottom of the top flange.

Thus, Mp = 282,486 + 172,282.22 + 76,844.25 + 127,266.62

M stiddte Section = 658,879 kip-in. = 54,906 kip-fi

Previously, M,,.. was found to be 29,384 kip-ft. Therefore, the plastic moment capacity is
sufficiently large to sustain the entire dead load of the bridge plus the truck live load.

Following the same procedure, the plastic moment capacity of the Transition and End
sections are calculated and found to be larger than the maximum moment that will be applied to
these sections if a fracture of the outer girder occurred.

Mp transition section = 633,734 Kip-in. = 52,811 kip-ft > M (59.25) = 13,858 kip-f{

Mp pnd Section = 564,757 kip-in. = 47,063 kip-ft > M (51.25) = 10,890 kip-f{

Analysis of Concrete Deck

As before, the bending and shear capacity of the concrete deck are checked to ensure that
they are adequate to resist the moment and the shear produced by the unsupported load of the
fractured girder. These capacities are based on a 1-ft wide transverse deck section as shown in
Figure AS.

- 15" - - 12 -
i

2.3125" '

3750 1 - - - .
04373 q"

! S s “'m 7 o
A & (]

s D -
Actual reinforcement Modified 1-ft
pattern section

Figure A5: Actual and modified I-ft wide section of the concrete deck in the transverse direction
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Positive Moment Capacity:

The assumed strain and stress failure profile are shown in Figure A6:

A£Ox

=

I
F
i
™

el To = Aunfy

STRAIN STRESS

Figure A6: Strain and stress gradients at positive moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the bottom reinforcement yields prior to failure. The top reinforcement is included in the
calculations for accuracy. The concrete strength is taken as 4 ksi, and the reinforcement strength
is taken as 60 ksi—the nominal strength specified in the bridge plans.

LetC=T:
C=085-fc"-p;1-c-b=085-4-085-12-¢c=34.68" ¢
Note: f; = 0.85 for 4 ksi concrete.
&s, boom = 0.003 - (6.4375-¢) /¢
&, top = 0.003 - (2.3125-¢)/c
Thottom = As,pottom " fy =2 - 0.372 - 60 = 44.64 kips
Thop = Astop * €5, 10p * Es =2+ 0.372 - 29,0000 - &40 = 21,576 - &510p
34.68 - ¢ =44.64 + 21,576 - £510p
34.68 - ¢c=44.64 + 21,576 - 0.003 - (2.3125-¢)/c
Iterating until the neutral axis depth is found, it is determined that ¢ = 1.808 in.
&s, bortom = 0.00768 > Yield strain (= 0.00207 for 60 ksi)
&s, 1op = 0.000837 < Yield strain (= 0.00207 for 60 ksi)
C = 80.82 kips

Tbgttom = 4464 klpS
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Top = 18.06 kips
Taking moments about the NA to solve for nominal moment capacity:
M, =C-(c-Bi-cl2)+ Ty (2.3125 - ¢) + Toortom - (6.4375 - ¢)

M," =80.82-(1.808 - 0.85-1.808/2) + 18.06-(2.3125 — 1.808) + 44.64-(6.4375 - 1.808)

M," = 299Kip-in. = 24.98 Kip-ft

Negative Moment Capacity
The assumed strain and stress failure profile are shown in Figure A7:

€= &y Te= A.fy
X To = AcxE:Ex
N Bi__E-
— Ec =000 N—= | Ce=0.85f"bP:c
0.85f".
STRAIN STRESS

Figure A7: Strain and stress gradients at negative moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the top reinforcement yields prior to failure. The bottom reinforcement is included in the
calculations for accuracy. The concrete strength is taken as 4 ksi, and the reinforcement strength
is taken as 60 ksi.

LetC=T:

C=085fc"-f1-c-b=085-4-085-12-¢c=34.68" ¢
Note: f; = 0.85 for 4 ksi concrete.

&s, borom = 0.003 - (1.5625 -¢) / ¢

&5, 10p=0.003 - (5.6875-¢)/c

Thottom = As,bottom * &s, bottom E;=2-0.372- 29,0000 " &s,bottom — 21,576 " &s,bottom

Tiop = Asop  fy=2 - 0.372 - 60 = 44.64 kips

34.68 - ¢ =44.64 + 21,576 - & bottom

34.68 - ¢ =44.64 + 21,576 - 0.003 - (1.5625-¢)/c
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Iterating until the neutral axis depth is found, it is determined that ¢ = 1.443 in.
&s, borom = 0.000248 < Yield strain (= 0.00207 for 60 ksi)
&s, top = 0.008824 > Yield strain (= 0.00207 for 60 ksi)
C=50.04 kips
Thorrom = 5.35 kips
Top = 44.64 kips
Taking moments about the NA to solve for nominal moment capacity:
M, =C-(c-p1-c/2)+ Ty (5.6875 - ¢) + Tpouom - (1.5625 - ¢)

M, =50.04 - (1.443 - 0.85 - 1.808/2) + 44.64 - (5.6875 - 1.808) + 5.35 - (1.5625 - 1.808)

M,” = 205kip-in. = 17.13 kip-ff

Bending and Shear Capacity Check:

The deflected shape of the concrete deck and the bending moment diagram—assuming
that the shear studs have adequate tensile capacity—is shown in Figure A8. The shear associated
with the plastic deck mechanism is:

Figure A8: Deflected shape and moment diagram before any failure of shear studs

V=M, +M,)s=(24.98 kip-ft + 17.13 kip-ft)/6.17 ft = 6.83 kips

Note: The spacing, s, is equal to the distance between the mid-width of the fractured girder’s
interior top flange and the edge of the interior top flange of the intact girder (6 ft-2 in.).

The shear capacity us calculated using the ACI 3108-08 equation for shear shown below.
The capacity is again based on a 1-ft wide transverse deck section. The depth used in this
equation is the depth to the centroid of the tension reinforcement (6.4375 in.).
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Ve=2-lf ~b-d=2- 4000 - 12 - 6.4375=9.77 kips

Thus, the shear associated with the plastic deck mechanism controls (6.83 kips/ft), and
the total length required to transfer the 672.5-kip force is:

ly=672.5/6.83 =98.46 ft

98.46 / 197.6 = 49.83 % of the span length

Shear Stud Check:

In order to determine the tensile strength of a shear stud group, the guidelines recommended
by Mouras (2008) are followed. The shear stud connections used in span 11 of the Woodway
Bridge consist of a group of three 6-in tall shear studs spaced transversely. The haunch differs
along the length of the bridge from 0.25 in. to 0.5 in. By using the modified ACI 318-08
equations presented in Chapter 3 (and shown again below for convenience), the tensile capacity
of the shear stud group is calculated to be 19.06 kips throughout the bridge.

No=k, - \/f_c’ -yt Equation 3-1 (ACI 318-08)
A
Nepe = y N WoN " WeeN " WedN " Wen * Nb Equation 3-2 (modified ACI 318-08)

NCO

N, = concrete cone breakout strength of a single isolated stud in a continuous piece of
cracked concrete (22.31 kips)

k. = 24 for cast-in-place shear studs
fo" = specified concrete compressive strength (4000 psi)

hy = modified height of shear stud in concrete (1, = her- dj, = 5.625-0.5=5.125 in. <
18/3=6 — hy, =6 in.)

her= effective height of shear stud in concrete, which is equal to the length of stud less
the height of the stud head (/.;=6-0.375 = 5.625in.)

d;=haunch height (0.5 in.)

cqamin = distance between outer stud and the edge of flange (¢4 mi» = 3 in.)

Nepe = design concrete breakout strength of a stud or group of studs (19.06 kips)
An.= projected concrete cone failure area of a stud group (Ay.= 3 herwy, = 303.75 in2)

Note: An.= 3 hewy, because haunch confined full height projected cone area.
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Aneo = projected concrete cone failure area of a single stud in continuous concrete (Ayc, =
2 _ . 2
Oh,” =324 1n")

¥, v = group effect modification factor for studs on a bridge girder (¥, = 0.90 for 3
studs spaced transversely)

Ween = eccentric load modification factor (Weey = 1)
Weq N = edge distance modification factor (weqn = 0.74+0.3 camin / (1.5 hep) = 0.81)

w.n = cracked concrete modification factor (. = 1.25 for cast-in studs)

The calculated tensile capacity of the group of studs is 19.06 kips. Using Equation 2-2, it can be
determined whether or not the shear studs will pull out or if a hinge will be formed in the
concrete deck. A strip width equal to the shear stud spacing of 21 inches is used to calculate the
tension in the stud group.

T=My/b+ V'=24.98 - (21/12) / 7+ 6.83 - (21/12) = 18.2 kips< 19.06 kips

Because the shear stud capacity exceeds the tension generated by the deck mechanism, the shear
studs do not pull out, and, as a result, hinges form in the concrete deck.

Shear Check of the Composite Section at the Supportsdueto Torsion and Bending:

As described previously, it is assumed that the entire weight of the bridge and the live
load are applied to the intact girder. The shear, which is developed at the end of the span due to
this loading, is calculated below.

V=Vpr+tViruck=2:(0.958-102.1 + 1.044-16 + 1.116-79.5)/2+(2.642+0.65)-197.6/2+75.4

The unsupported load, which is first carried by the fractured girder, now has to be
transferred to the intact girder. The eccentricity between the chord of the intact girder bearings
and the center of gravity (CQG) leads to a torque that is applied to the intact girder in addition to
all the transferred loads. Due to the fact that this bridge is straight (i.e., R=0), the eccentricities
of each load are equal to the distance between the CG of each load and the centerline of the
intact girder. Table A2 summarizes all the eccentricities.
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Table A2: Unit moment capacities of the concrete deck

Liveor Dead L oad Eccentricity

(ft)

1 | Fractured Girder (FG) 13.92

2 | Railing above FG 19.83

3 Deck above FG 13.56

4| Intact Girder (IG) 0.00

5 Railing above IG 5.92

6 Deck above 1G 0.35

7 Truck 11.17

Thus, the torques due to each load are equal to:
trg =203.24 - 13.92 = 2,829.1 kips-ft
trrg = 64.22 - 19.83 = 1,273.48 kips-ft
tpr =261.03 - 13.56 = 3,539.57 kips-ft
tig=203.24 - 0 =0 kips-ft
tric = 64.22 - 13.92 = 893.94 kips-ft
tpic =261.03 - 0.35=91.36 kips-ft
trruck = 144 - 11.17 = 1,608.48 kips-ft
Therefore, the torque developed in the composite section at the support is equal to:
T=(2,829.1 +1,273.48 +3,539.57 - 893.94 - 91.36 + 1,608.48) / 2 = 4,132.67 kip-ft
To compute the shear flow of the closed section, Equation 2-20 is used.
q=T/@2-A)=4,132.67/(2 - 5923.68/144) = 50.23 kips/ft = 4.19 kips/in
The shear stress due to torsion for every component of the composite section is calculated below:
tconc. peck = q /'t conc. peck =4.19 /8 = 0.52 ksi
wes = q / tweg =4.19/0.75 = 5.59 ksi
TBOTT. FLANGE = § /'t port. FLance = 4.19 / 1.25 = 3.35 ksi

The flexural shear is assumed to be carried by the webs of the composite section because
the contribution of the bottom flange and the concrete deck is small. The flexural shear stress in
the webs of the composite section is calculated:
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TFlexural WEB — V/ (2 ' hWEB *twep" COS(14°)) =604/ (2 - 88.644 - 0.75- 097) =4.68 ksi

Note: The factor 2 accounts for the fact that the composite section consist of two webs, which
share the total flexural shear. The cos(14°) accounts for the fact that the webs are not vertical.

The shear stress that is developed in the concrete deck due to torsion is equal to 0.52 ksi.
According to ACI 318-08, the shear capacity of a reinforced concrete section is:

VS: At ﬁt'b'cote/s
As a result,
Vrorsion = q-b =4.19-84 = 351.96 kips < Vs= A, f,-b-cotl/s= 0.62-60-84/5 = 624.96 kips

The shear stresses in the steel girder are checked according to the AASHTO
Specifications. The shear stress in the webs of the end panel should be limited to either the shear-
yielding or shear-buckling resistance. The nominal shear stress resistance of the web panel (z,) is
computed as the product of the shear-buckling resistance to the shear yield strength ratio (C) and
the plastic shear stress (z,) (i.e., 7,=C'1,). The plastic shear stress is equal to 0.58f,,,. The ratio C
is determined as shown below:

it 2 <112 [ X then c=1.0
tw fyw
If1.12 E—k<2S1.40 E—kthen C=ﬁ E—k
fy%’ tVV nyl’ D/tw’ nyV
If2>1.40 E—kthen C= 1'572 E—k
tw fyw (D/tw) fyw

For span 11 of the Woodway Bridge D = 88.64 in., t,, =0.75 in., E = 29,000 ksi, f,,, =50
ksi. The buckling coefficient k is calculated as

fmse
o7
D

where dj is the spacing from the support to the first stiffener adjacent to the support (132 in.).

AASHTO limits the factor dy/D for end panels to 1.5. In the case of span 11 of the Woodway

Bridge, dy/D=1.49<1.5, so dy/D=1.49. By inserting the value of dy/D in the equation for £, this
value is calculated to be 7.25.

Because 2:%:118.19 >1.40 E—k
0.75

t

w * w

=90.78
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= 1.57 > (E—k} =047.
(D/t,) S

Having all the variables defined, the nominal shear stress (z,) is equal to z,= 0.47-0.58-
JSow=13.63 ksi.

The shear stress in the webs is a combination of the flexural and torsional shear stresses.
As shown in Figure A9, the shear stresses are added and subtracted in the east and west web,
respectively. Accordingly, the east web controls because the shear from flexure and torsion add.
The total shear stress that is developed in the east web is calculated to be 77074z = Twes + Trexural
weg = 5.59 + 4.68 = 10.27 ksi, which is less than 7, =13.63 ksi. Summarizing the calculations, it

is found that all the components of the section have adequate capacities to sustain the applied
load.

—

| \\ ® . //

)

Figure A9: Flexural and torsional shear stresses on the composite section

The end diaphragm, which connects both girders, needs to be checked to ensure that it
can adequately resist the torque applied to the intact girder. The torque applied on the intact
girder is equilibrated by a force couple acting at the bearings of the two girders. This force
couple causes shearing of the end diaphragm. The forces acting on each side of the end
diaphragm can be calculated as follows:

Vep =T/ I, =4,132.67 / 13.92 = 296.88 kips, where T is the torque applied on the intact girder
and /, is the distance between the two bearings.

The nominal shear strength of the end diaphragm can be computed according to
AASHTO Sec. 6.10.9.2:

Vn:C'Vp

where Vp= 0.58-F),,-D-t,~ 0.58-50-86-0.75 = 1870.5 kips, and C is calculated as

C = 1.57 5 E_k =0.35 because 2 = —86 =114.67 >1.40 E—k =75.39, where k= 5.
D/, (S o 075

w
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Thus, the shear strength of the end diaphragm (V, = 0.35-1870.5 = 654.68 kips) is
adequate to resist the applied shearing force (Vgp = 296.88 kips).

Summarizing the calculations, it is found that all the components of the section have
adequate capacities to resist the applied load, except for the shear studs. As a result, a yield line
analysis needs to be performed to determine the ultimate load that this bridge can sustain.
However, because the analysis indicates that overall bridge capacity is controlled by the
formation of a plastic hinge line above both interior top flanges, the ultimate load is estimated
from the initial checks and not from the Yield Line Model. Following the same procedure as
described above, the initial checks determine the ultimate truck load that this bridge can sustain
in the event of a fracture. After several iterations, it is found that the ultimate truck load is
6.03xHS-20 (434.16 kips). The buckling shear stress in the webs of the end section controls the
maximum truck load that can be sustained. The moment at the mid-span of the intact girder
produced by the dead load and this 434.16 kip truck load is:

WP Middle Section — 54,906k1p-ft > Mmax = 45,866 klp—ftl

Mp Tyansition Section = 52,81 1Kip-ft > M (59.25) = 22,860 Kip-ff

Mp End Seciion = 47,063kip-ft > M (51.25) = 18,677 kip-fi

The force needed to be transferred is found to be:

F=(0.958-102.1 + 1.044-16 + 1.116-79.5) + (2.642+0.65) - 197.6 / 2+434.16 = 962.65 kips

IF = 962.65 kips

The length of the bridge needed to transfer the load F based on the flexural capacity of the bridge
is:

Iy =962.65/6.09 = 158.07 ft
158.07 /197.6 =80 % of the span length
The flexural shear at the end support is found to be:

V=Vpr + Virucxk=2:(0.958-102.1 + 1.044:16 + 1.116:79.5)/2 + (2.642+0.65)-197.6/2 +
227.33

V= 755.82 kips|

The torque due to each load are equal to:
tr¢ =203.24 - 13.92 =2,829.1 kips-ft
trrg = 64.22 - 19.83 = 1,273.48 kips-ft

tpr =261.03 - 13.56 = 3,539.57 kips-ft
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tig=203.24 - 0 =0 kips-ft

trig = 64.22 - 13.92 = 893.94 kips-ft

tpic =261.03 - 0.35 =91.36 kips-ft

trruck = 434.16 - 11.17 = 4,849.57 kips-ft
Therefore, the torque developed in the composite section at the support is equal to:

T=(2,829.1 +1,273.48 + 3,539.57 - 893.94 - 91.36 + 4,849.57) / 2 =5,753.21 kip-ft
Knowing the applied torque at the end support, the shear flow of the end section is calculated as:

q=T/2 A)=5,753.21/(2 - 5923.68/144) = 69.93 kips/ft = 5.83 kips/in

The shear stresses in the concrete deck, webs and bottom flange are computed by following the
same procedure as before:

tcone. pEck = q /'t conc. peck = 5.83 / 8 =0.73 ksi

Twep = (¢ /tWEB =5.83/0.75="7.77 ksi

TBOTT. FLANGE = q / t BorT. France = 5.83 / 1.25 = 4.66 ksi

TFlexural WEB — V/ (2 ' hWEB *twep" COS(14°)) =75582/ (2 - 88.644 - 0.75- 097) = 5.86 ksi

The shear stress, which is developed in the concrete deck due to torsion, is equal to 0.73
ksi. According to ACI 318-08, the shear capacity of a reinforced concrete section is:

VS: At fy;'b'COte/S.
As aresult,
Vrorsion = q-b = 5.83-84 = 489.72 kips < Vs= A, f,+-b-cotl/s= 0.62-60-84/5 = 624.96 kips

As indicated previously, the total shear stress in the webs is a combination of the flexural
and torsional shear stresses (Figure 9.9), and the east web controls because the shear from

flexure and torsion add. The total shear stress that is developed in the east web is calculated to
be:

TT0TAL = TWEB T TFlexural WEB = 7.77+5.86 = 13.63 ksi which is equal to 7, =13.63 ksi.

As before, the forces acting on each side of the end diaphragm can be calculated as
follows: Vegp =T/ 1, =5,753.21 / 13.92 = 413.31 kips, where T is the torque applied to the intact
girder and /, is the distance between the two bearings. Thus, the shear strength in the end
diaphragm (V,, = 0.35-1870.5 = 654.68 kips) is adequate to resist the applied shearing force (Vzp
= 413.31 kips). Summarizing the calculations, it was found that the shear stresses developed in
the webs of the end section limit the ultimate load to 6.03xHS-20 Trucks (434.16 kips).
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Appendix B. Implementation of Simplified Modeling Procedure:
Example 3—Analysis of Woodway Bridge (Span 17 & 18)

I ntroduction

This example focuses on spans 17 and 18 of the Woodway exit ramp between IH 610 and
the Katy Freeway, which is a two-span continuous bridge in Houston, TX. The length of each
span is 128 ft; the radius of curvature is 3,813.72 ft for span 17 and 1,903.86 ft for span 18.
Figure B1 shows the elevation view of spans 17 and 18 of the Woodway Bridge and other
general information. The top and bottom flange thickness changes along the span of the bridge.
Table B1 summarizes all the dimensions of both flanges along the span of the bridge. Only three
steel sections are used along the length of the span. The “Transition” sections occur due to
different cutoff points for the top and bottom flanges. Figures B2 and B3 present the typical
cross-section of the bridge and steel girder, respectively.

Table B1: General information of bottom and top flange

Span -ggg?o?f Ir_ne!]oag;ﬂg(; ?fgrucgl'ﬁﬂ Bottom Flange Top Flange

(ft) re@n) | 0% | i | o
1(17) End 0-80 7/8 62 0.75 14
1(17) | Transition 80-112 13/8 62 1 20
1(17) Pier 112-128 13/8 62 2 20
2 (18) Pier 128-144 13/8 62 2 20
2 (18) | Transition 144-176 13/8 62 1 20
2 (18) End 176-256 7/8 62 0.75 14
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Figure B1: Elevation view of Woodway Bridge (spans 17 and 18)
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Figure B2: Typical cross-section of spans 17 and 18 of the Woodway Bridge
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Figure B3: Typical cross-section of the steel girder of spans 17 and 18 of the Woodway Bridge

Calculation of the Transmitted L oad to the Intact Girder

As in the previous examples, it is assumed that half of the entire weight of the bridge and
the entire live load on the bridge needs to be resisted by the intact girder in the event that a
fracture occurs. These loads are calculated below:
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Weight of one steel box girder:
Weirder = 1.15 - (144.83/144 ft*) - (0.490 kips/ft’) = 0.567 kip/ft (End Section)
Weirder = 1.15 - (194.83/144 ft*) - (0.490 kips/ft’) = 0.763 kip/ft (Transitioning Section)
Weirder = 1.15 - (234.83/144 ft*) - (0.490 kips/ft’) = 0.919 kip/ft (Pier Section)

Notes: This weight is for one girder. Cross-sectional areas of End, Transition, and Pier sections
are 144.83 in%, 194.83 in’, and 234.83 in’, respectively. The density of steel is taken as 490 Ib/ft>.
To account for internal diaphragms, stiffeners, etc., the weight of the steel girder is multiplied by
a factor of 1.15.
Concrete deck:

Waeer = (317 - 8 / 144 %) - (0.150 kip/ft’) = 2.642 kip/ft

Notes: The width of the concrete deck is 26 ft—5 in. = 317 in. The density of concrete is taken as
150 Ib/ft’. The deck thickness is 8 in.

SSTR Railing:
Waitings = 2 - (312/144 £t%) - (0.150 kip/ft’) = 0.65 kip/ft

Notes: Multiplied by 2 to account for two rails. Cross-sectional area of one rail is calculated to be
312 in*

HS-20 Truck (load factor of 2):
Wouek = 144 kips
L oad to be transmitted:
F=YXWgirderi * Li) + Waecrd 2 + Wiaitings!2) * L + Wiuck

F=(0.567-80+0.763 - 32+ 0.919 - 16) + (2.642 + 0.65) - 128/2 + 144 = 439.17 kips

IF = 439.17 kip§

Calculation of Maximum Moment on the Bridge

Spans 17 and 18 of the Woodway Bridge were analyzed in SAP 2009 in order to
indentify the location of the maximum positive bending moment. This location is where the
fracture would take place. The bridge was analyzed using one moving HS-20 truck; thus, the
fracture location results from the most critical location of the truck. Figure B4 illustrates the
moment diagram envelope of the dead load and one moving truck. It is found that the maximum
positive moment occurs at 50 ft from the south end of span 17, and its magnitude is 8448.42 kip-
ft. The maximum negative moment at the inner pier is -11125.61 kip-ft.
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Moment Diagram Envelope of Dead and Truck Load
Woodway Bridge (Span 17-18)
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Figure B4: Moment envelope of dead and one truck load on spans 17 and 18 of the
Woodway Bridge

Analysis of Composite Section

The plastic moment capacity of the intact girder is calculated to determine if the intact
girder has sufficient flexural capacity to sustain the entire truck and dead load applied to the
bridge. The positive plastic moment capacities of the End section as well as the negative moment
capacity of the Pier section are checked. Based on TxDOT minimum requirements, f, = 50 ksi is
used for the components of the steel girder.

Positive Plastic Moment Capacity of End Section:
Find the plastic neutral axis by setting 7= C:

T=As f,=(62-7/8+2-55.66-5/8+2-14-3/4) - 50="7,241.25 kips
C.=085"f" -t byy=0.85-4-8-158.5=4,311.2 kips

Because 7> C, the plastic neutral axis (PNA) is in the girder.
Ci=As f,—Co)/2=(7,241.25-4,311.2) /2 =1,465.03 kips

Using this equation, the compressive force needed to be developed in the steel section for
equilibrium (C = T) can be determined.

Cpu=2"ty by f,=23/4 1450 =1,050 kips
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The top flanges can resist 1,050 kips in compression, which is less than what is needed to
obtain equilibrium. As a result, the PNA falls in the web. Assuming that x is the distance from
the neutral axis to the bottom of the top flange (Figure B5), the depth of the neutral axis can be
found:

x=(1,465.03 - 1,050) / (2 - 5/8 - (17/16)* - 50) = 6.44 in.
Note: The (17/16)*° factor is based on the slope of the web.

Top flange

'-_".\‘eb

PNA

XJ
Figure B5: Plastic neutral axis location

Thus:
C.=4,311.2 kips
Cyr = 1,050 kips
Cyer = 415.03 kips
Toes = Awep * f, =2 - 5/8 - (54-6.44) - (17/16)" - 50 = 3,063.98 kips
Thottom flange = Abottom flange * fy =62 = 7/8 - 50 = 2,712.5 kips

By taking moments about the PNA, the nominal plastic moment capacity can be calculated:
Myostom fange = Thottom fange * (1/16 + 54 - 6.44) = 130,193.22 kip-in.
Moyep = Cyep - 6.44/2 + Typep - (54 - 6.44) / 2 =74,197.84 kip-in.
Mcy=Cy - (3/8 +6.44) = 7,155.75 kip-in.
Mc concrere = Ce * (8/2 + 4 + 6.44) = 62,253.73 kip-in.

Note: The 4-in. term added in the moment arm accounts for distance from the bottom of the
concrete deck to the bottom of the top flange.
Therefore, Mp=130,193.22 + 74,197.84 + 7,155.75 + 62,253.73

Mp Eud Section = 273,800.54 kip-in. = 22,816.71 kip-fi

Previously, M ... was found to be 8,562.79 kip-ft. Therefore, the positive plastic moment
capacity is sufficient to sustain the entire dead load of the bridge plus the truck live load.
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Negative Plastic Moment Capacity of Pier Section:

According to AASHTO Sec. 6.11.8.2.2, the bottom flange at the pier should be checked

for combined shear and compression as follows:

The slenderness ratio for the compression flange A= by./ t. = 57.75/1.375 =42

For F,.= 50 kst, £,=3.23 ksi, £ = 29,000 ksi, k=4 and k, = 5.34

2
A= 1—3‘[](”] =0.994
ye
P 0.57
| 1 2 (kY
— A+ A +4- L N
2 F.) \k,
R, - 1.23

k-E

k-E

Because R, |[—— =275 <A=42<R,- | — =76.58,
F ’ F,

yc

Fr
F,.=R,-R,-F |A- A—R yF
L

ye

T

1—sin| —

2

b F
fe e
Rk E
tfc .
Rz _Rl

=47.58ksi

In order to compute the moment capacity of the pier section, the elastic section modulus
of the composite cross section must be calculated. Because the contribution of concrete is
negligible in the negative moment region, only the area of the reinforcing bars and the steel
girder section is included in the calculation of the elastic section modulus. By using AutoCAD
2010, the moment of inertia of the pier section, neglecting the concrete portion, is calculated to

be:

I=154,035.85 in* = 7.43 ft*
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Similarly, the distance from the extreme compressive fiber to the neutral axis is found to be:
vp=128.96in=2.41 ft

As a result, the elastic section modulus can be computed as the ratio of 7/ y;
S=1/y,=5318.92in’ =3.08 ft’

According to the shear—axial stress interaction equation (AASHTO Sec. 6.11.8.2.2), the
allowable stress in the bottom flange is equal to 47.58 ksi. The product of the allowable stress
and the elastic section modulus for the bottom flange gives the moment capacity of the pier
section. Thus,

M pier section = 253,074.21 Kip-in. = 21,089.52 kip-f{

Previously, M ., was found to be -11125.61 kip-ft. Thus, the negative moment capacity
is sufficient to sustain the entire dead load of the bridge plus the truck live load.

Analysis of Concrete Deck

As before, the bending and shear capacity of the concrete deck need to be checked to
ensure that they have sufficient capacity to resist the moment and the shear produced by the
unsupported load of the fractured girder. These capacities are based on a 1-ft wide transverse
deck section as shown in Figure B6.

B} | 5" - - 12 -
[}
I - ]
23125 2
L ] W ] [ ] [-]
6.4375" ! : 8"
1 S | . ® ° ®
ML (]
S, AR R
Actual reinforcement Modified 1-ft
pattern section

Figure B6: Actual and modified 1-ft wide section of the concrete deck in the transverse direction

Positive Moment Capacity:

The assumed strain and stress failure profile are shown in Figure B7:
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Figure B7: Strain and stress gradients at positive moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the bottom reinforcement yields prior to failure. The top reinforcement is included in the
calculations for accuracy. The concrete strength is taken as 4 ksi, and the reinforcement strength
is taken as 60 ksi.

LetC=T:

C=085-fc" f;1c-b=085-4-085-12-¢c=34.68" ¢
Note: f; = 0.85 for 4 ksi concrete.

&s, boom = 0.003 - (6.4375-¢) /¢

&, 10p=0.003 - (2.3125-¢)/c

Thottom = Aspottom * fy =2 - 0.372 - 60 = 44.64 kips

Trop = Astop * €5, 10p “ Es =2+ 0.372 - 29,0000 - &;0p = 21,576 - &40

34.68 - ¢ =44.64 + 21,576 - &40p

34.68 - ¢c=44.64 + 21,576 - 0.003 - (2.3125-¢)/c
Iterating until the neutral axis depth is found, the solution is computed to be ¢ = 1.808 in.

&s, borom = 0.00768 > Yield strain (= 0.00207 for 60 ksi)

&s, 1op = 0.000837 < Yield strain (= 0.00207 for 60 ksi)

C =80.82 kips

Thotiom = 44.64 kips

Tp = 18.06 kips

Taking moments about the NA to solve for nominal moment capacity
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M,"=C-(c-Bi-cl2)+ Tip (2.3125 - &) + Toortom - (6.4375 - ¢)

M," = 80.82-(1.808 - 0.85-1.808/2) + 18.06-(2.3125 — 1.808) + 44.64-(6.4375 - 1.808)

M, =299.79 kips-in. = 24.98 kips-f{

Negative M oment Capacity:

The assumed strain and stress failure profile are shown in Figure B8:

8'.: = 8\' Tl‘ = A-. :f}'
8-\‘ Tb — A‘-.bE:Eit
N 5.9 l B‘ E‘
— D g —o0m 'C‘:-—O 56 Ce= O.SSf'cbﬁ:c
STRAIN STRESS

Figure B8: Strain and stress gradients at negative moment regions

According to ACI 318-08, it is assumed that the ultimate strain of concrete is 0.003 in./in.
and the top reinforcement yields prior to failure. The bottom reinforcement is included in the
calculations for accuracy. The concrete strength is taken as 4 ksi, and the reinforcement strength
is taken as 60 ksi.

LetC=T:
C=085-fc"-f;1-c-b=085-4-085-12-¢c=34.68" ¢
Note: f; = 0.85 for 4 ksi concrete.
&s, boom = 0.003 - (1.5625 -¢) / ¢
&s, top = 0.003 - (5.6875-¢)/c
Thotiom = As,bottom * €s, bottom * Es =2+ 0.372 - 29,0000 - &5 pottom = 21,576 * &5 bottom
Thop = Asrop *fy =2 - 0.372 - 60 = 44.64 kips
34.68 - ¢ =44.64 + 21,576 - & pottom
34.68 - ¢ =44.64 + 21,576 - 0.003 - (1.5625-¢)/c
Iterating until the neutral axis depth is found gives a solution of ¢ = 1.443 in.

&s, bottom = 0.000248 < Yield strain (= 0.00207 for 60 ksi)
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&s, top = 0.008824 > Yield strain (= 0.00207 for 60 ksi)
C=50.04 kips
Thorom = 5.35 kips
Top = 44.64 kips
Taking moments about the NA to solve for nominal moment capacity
M, =C-(c-P1-c/2)+ Twp (56875 -¢)+ Tpouom - (1.5625 - ¢)

M, =50.04 - (1.443 - 0.85 - 1.808/2) + 44.64 - (5.6875 - 1.808) + 5.35 - (1.5625 - 1.808)

M, = 205.62 kips-in. = 17.13 kips-fi

Bending and Shear Capacity Check:
The deflected shape of the concrete deck and the bending moment diagram—assuming

that the shear studs have adequate tensile capacity—is shown in Figure B9. The shear associated
with a plastic deck mechanism is

b

Figure B9: Deflected shape and moment diagram before any failure of shear studs

V=(M," + M,)s = (24.98 kip-ft + 17.13 kip-ft)/6.17 ft = 6.82 kips

Note: The spacing, s, is equal to the distance between the mid-width of the fractured girder’s
interior top flange and the edge of the interior top flange of the intact girder (6ft 2in.).

The shear capacity is calculated using the ACI 318-08 equation for shear shown below.
The capacity is based on a 1-ft wide transverse deck section. The depth used in this equation is
the depth to the centroid of the tension reinforcement (6.4375 in.).

Ve=2-[f/ -b-d=2- 4000 - 12 - 6.4375 = 9.77 kips

Thus the maximum shear capacity of the deck is equal to the shear associated with the
plastic deck mechanism (6.82 kips/ft). Therefore, the total length required to transfer the 439.17-
kip force is:

ly=439.17/ 6.82 = 64.39 ft
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64.72 / 128 = 50.30 % of the span length

Shear Stud Check:

In order to determine the tensile strength of a shear stud group, the guidelines
recommended by Mouras (2008) are followed. The shear stud connections used in spans 17 and
18 of the Woodway Bridge consist of a group of three 6-in tall shear studs spaced transversely.
The haunch differs along the length of the bridge from 3.25 in. to 2 in. By using the modified
ACI 318-08 equations presented in Chapter 3 (and shown again below for convenience), the
tensile capacity of the shear stud group is calculated to be 16.8 kips throughout the bridge.

No=ke- Jf/ - "’ Equation 3-1 (ACI 318-08)
A
Nepg = ANC CWaN  WeeN " Wed N * Wen * Np Equation 3-2 (modified ACI 318-08)
NCO

N, = concrete cone breakout strength of a single isolated stud in a continuous piece of
cracked concrete (15.32 kips)

k. = 24 for cast-in-place shear studs
f.” = specified concrete compressive strength (4000 psi)

hy, = modified height of shear stud in concrete (4, = heor- dy = 5.625-3.25 =2.375 in. <
14/3=4.67 in. — h;, =4.67 in.)

her= effective height of shear stud in concrete, which is equal to the length of stud less
the height of the stud head (/. =6-0.375 = 5.625in.)

d;=haunch height (3.25 in.)

camin = distance between outer stud and the edge of flange (¢ min» = 3 in.)

N.pe = design concrete breakout strength of a stud or group of studs (16.8 kips)

Ane= projected concrete cone failure area of a stud group (Ane= 3 herwy = 236.25 in%)
Note: Ay.= 3 herwy because haunch confined full height projected cone area.

Aneo = projected concrete cone failure area of a single stud in continuous concrete (Ayq, =
9,2 = 196.28 in?)

¥, v = group effect modification factor for studs on a bridge girder (¥, y = 0.90 for 3
studs spaced transversely)
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Ween = eccentric load modification factor (Weey= 1)
Weq N = edge distance modification factor (weqny = 0.740.3 camin / (1.5 hep) = 0.81)
w.n = cracked concrete modification factor (. = 1.25 for cast-in studs)

The calculated tensile capacity of the group of studs is 16.8 kips. Using Equation 2-2, the
controlling failure mechanism (i.e., pull out of the shear studs or formation of a plastic hinge in
the concrete deck) can be determined. A strip width equal to the shear stud spacing of 12 inches
is used to calculate the tension in the stud group.

T=16.8 kips, Mo/b+ V'=24.98 - (12/12) / 7+ 6.82 - (12/12) = 10.39 kips

Because 7' > M>/b + V (i.e., shear stud capacity exceeds the tension generated by the deck
mechanism), the shear studs do not pull out; as a result, hinges form in the concrete deck.

Shear Check of the Composite Section at the Supportsdueto Torsion and Bending:

As stated previously, it is assumed that the entire weight of the bridge and live load are
applied to the intact girder. The shear at the abutments and at the interior pier of the bridge are
335.69 kips and 514.75 kips, respectively.

The unsupported load, which is first carried by the fractured girder, has to be transferred
to the intact girder. In addition to all the transferred loads, a torque is applied to the intact girder
due to the eccentricity between the chord of the intact girder bearings and the center of gravity
(CG) of each load. The eccentricities of each load can be computed using Equation 2-5 through
Equation 2-19. This bridge has the following geometric characteristics:

1. Rwr=1,896.9 ft, Liyr= 127 ft, ¢ = 0.06695 rad

2. Rrg=1,910.82 ft, Oyrc = 0 rad, 6,7 = 0.0084 rad, 6> = 0.0251 rad, O3 = 0.067 rad,
0,.; =0.0303 rads

3. Rrrg=1917.07 ft, Oyrc = 0 rad, 0,76 = 0.067 rad, 6., = 0.0335 rad

4. Rpr=1910.72 ft, Oyrg = 0 rad, 6,76 = 0.067 rad, 6,, = 0.0335 rad

5. R[G = 1,8969 ft . (901(; =0 rad, 91[G = 0.0084 rad, 92[G = 0.0251 rad, 93[G = 0.067 rad,
0,; =0.0303 rad

6. Rrig=1,890.65 ft , Oprg =0 rad, 0,56 = 0.067 rad, 6, = 0.0335 rad

7. Rpig=1,897 ft, Oy = 0 rad, 6,16 = 0.067 rad, 6, =0.0335 rad

8. RTRUCK: 1,911 ft, QOTRUCK =0.0335 rad, HITRUCK =0.0482 rad, gTRUCK =(.04085 rad

The center of gravity of each component is found by inserting the above values in Equation 2-18.

D, =1910.45f1
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Dy =1916.71fi
D, =191036f1
D, =1896.53 ft

D, =1890.30 11

D, =1896.65fi

Dyepex =1910.98 fi

By using Equation 2-19, the eccentricity of each component can be found as follows:
erg=1,910.45 - 1,896.9 - c0s(0.06691/2) = 14.61 ft
errg=1,916.71 - 1,896.9 - c0s(0.06691/2) = 20.87 ft
eprc=1,910.36 - 1,896.9 - c0s(0.06691/2) = 14.52 ft
eic=1,896.53 - 1,896.9 - c0s(0.06691/2) = 0.69 ft
erig=1,890.3 - 1,896.9 - c0s(0.06691/2) = -5.54 ft
epic=1,896.65 - 1,896.9 - c0s(0.06691/2) = 0.81 ft
erruck = 1,910.98 - 1,896.9 - c0s(0.06691/2) = 15.14 ft

As aresult, the torques due to each load are computed to be:
trg = 84.48 - 14.61 = 1,234.25 kips-ft
trrg = 41.6 - 20.87 = 868.19 kips-ft
tprg = 169.09 - 14.52 = 2,455.19 kips-ft
tic = 84.48 - 0.69 = 58.29 kips-ft
trig =41.6 - (-5.54) = -230.46 kips-ft
tpig =169.09 - 0.81 = 136.96 kips-ft
trruck = 144 - 15.14 =2,180.16 kips-ft

Therefore, the torque developed in the composite section at the support is equal to:
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T=(1,234.25 + 868.19 + 2,455.19 + 58.29 -230.46 + 136.96 + 2,180.16) / 2 = 3,351.29
kip-ft

To compute the shear flow of the closed section, Equation 2-20 is used.
qg=T/2 A4)=3,351.29/(2 - 4,534.07/144) = 53.22 kips/ft = 4.44 kips/in
The shear stress due to torsion in every component of the composite section is calculated as:
tconc. pEck = q | t cone. peck = 4.44 /8 = 0.56 ksi
twes = q | twes =444/ 0.625 = 7.1 ksi
8077, FLANGE = q | t porT France = 4.44 / 1.375 = 3.23 ksi

The flexural shear is assumed to be carried by the webs of the composite section because
the contribution of the bottom flange and the concrete deck is small. The flexural shear stress in
the webs of the composite section is calculated below:

TFlexural WEB Abutm. — V] / (2'hWEB'tWEB'COS(14°)) =335.69/ (2556565/8097) =497 ksi
TElexural WEB Pier = V2 / (2‘hWEB'tWEB'COS(14°)) =514.75/ (2556565/8097) =7.63 ksi

Note: The factor 2 accounts for the fact that the composite sections consist of two webs, which
share the total flexural shear. The cos(14°) accounts for the fact that the webs are inclined.

The shear stress that develops in the concrete deck due to torsion is equal to 0.56 ksi.
According to ACI 318-08, the shear capacity of a reinforced concrete section is:

VS: At ﬁt'b'cote/s.
Consequently,
Vrorsion = q-b = 4.44-84 = 372.96 kips < Vs= A, f,-b-cotl/s= 0.62-60-84/5 = 624.96 kips

The shear stresses in the steel girder are checked according to the AASHTO
Specifications. The shear stress in the webs of the end panel should be limited to either the shear-
yielding or shear-buckling resistance. The nominal shear stress resistance of the web panel (z,) is
computed as the product of the shear-buckling resistance to the shear yield strength ratio (C)
times the plastic shear stress (z,) (i.e., 7,=C'7,). The plastic shear stress is equal to 0.58f,,,. The
ratio C is determined as below:

1t 2 <112 [ EE then c=1.0
tw fvw
If1.12 E—k<2S1.40 E—kthen C=ﬁ E—k
f w tW f w D/ tw f w
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If2>1.40 E—kthen C= 1.57 5 E—k
tw fvw (D/tw) fyw

For spans 17 and 18 of the Woodway Bridge, D = 55.66 in., #,, =5/8 in., E = 29,000 ksi,
Jfyw =50 ksi. The factor £ is calculated as

L
Y
D

where dj is the spacing from the support to the first stiffener adjacent to the support (128 in.).

AASHTO limits the factor dy/D for end panels to 1.5. The end panel of the bridge considered in

this example is located at the end of the girder, and dy/D=2.30>1.5; thus, dy/D=2.30. By inserting
the value of dy/D in the equation for £, this value is calculated to be 5.95.

Because 2 = ﬂ =89.06>1.40 E—k =82.24
Z‘W 5/8 w

oo 15T (K)o
(D)1, ) |

Having all the variables defined, the nominal shear stress (7,) is computed to be 7,=0.68-0.58:f,,,
=19.72 ksi.

The total shear stress in the webs is due to a combination of the flexural and torsional
shear stresses. As shown in Figure B10, the shear stresses are added and subtracted in the east
and west web, respectively. The east web controls because the shear from flexure and torsion
add. The total shear stress that develops in the end panel of the east web is calculated to be 70741
= Twe T TFiewwa wip = 1.1 + 7.63 = 14.73 ksi at the abutment and t7o74r = Twes + Triexural WEB =
7.1 +4.97 = 12.07 ksi at the interior pier. Both values are less than 7, =19.72 ksi based on
AASHTO Specifications. Summarizing the calculations, it is found that all the components of
the section have adequate capacities to sustain the applied load.

w

| \\ o

—

Figure B10: Flexural and torsional shear stresses on the composite section
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The end diaphragm, which connects both girders, must be checked to ensure that it has
adequate capacity to resist the torque applied to the intact girder. This torque is equilibrated
through the reaction forces acting at the bearings, and these reaction forces cause shearing in the
end diaphragm. The forces acting on each side of the end diaphragm can be calculated as
follows:

Vep=T/1l,=3,351.29 / 13.92 = 240.75 kips, where T is the torque applied on the intact
girder and /, is the distance between the two bearings. The nominal shear strength of the end
diaphragm can be computed according to AASHTO Sec. 6.10.9.2.

Vu=C-Vp, where Vp=0.58-F,,-D-t,, = 0.58-50-52.38-0.75=1139.27 kips, k=5, and C is

calculated as C = ﬁ ﬂ = (.86 because
D/tw fyw

1.12 E—k:60.31<2:ﬁ:69.84<1.40 E—k:75.39
fyw tw 075 fyw

Thus, the shear strength of the end diaphragm (V, = 0.86-1139.27 = 979.77 kips) is
adequate to resist the applied shearing force (Vzp = 240.75 kips).

Because the analysis presented above indicates that the capacity of this bridge is
controlled by the formation of a plastic hinge line above both interior top flanges, the ultimate
load is estimated from the initial checks and not from the Yield Line Model. Following the same
procedure as described in Example 2, the initial checks determine the ultimate truck load that this
bridge will sustain in the event of a fracture. After several iterations, it is found that the ultimate
truck load is 4.30xHS-20 (309.6 kips). The buckling shear stress in the webs of the end section
controls the maximum truck load that this bridge can sustain. The moment at the mid-span of the
intact girder produced by the dead load and this 309.6-kip truck load is:

Mp End section = 22,816.71 kip-ft > M 0 = 12,211 kip-fi

The bottom flange at the pier section needs to be checked for torsion and bending.
According to AASHTO Sec. 6.11.8.2.2, the slenderness ratio for the compression flange is

A=bpl t,=51.75/1375=42

For F,.= 50 ksi, £,=4.43 ksi, £ = 29,000 ksi, k=4 and k, = 5.34

2
A= 1—3-(£J =0.988
F

yec

0.57
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R, = =1.594
F F 2 2 2
l. A il +4. f" . i
2 FyL ch FyL kS
Because R, - KE_ 27.55 <M=42<R,- KE_ 76.78,
FJ/C EVC
_bfc ' F,
F T . T ’ tf' kE
F.=R,-R,-F |A—|A——" 1—sin| — a =47 3 lksi
g R,-F, 2 R, — R,

As before, the moment capacity of the pier section is equal to the product of the elastic
section modulus and the allowable stress. The elastic section modulus remains constant and is
equal to:

S=1/y,=5318.92in’ =3.08 ft’

According to AASHTO Sec. 6.11.8.2.2, the allowable stress in the bottom flange is equal to
47.31 ksi. Thus, the moment capacity of the pier section is equal to:

Mpier Seciion = 251,638.10 kip-in. = 20,969.84 kip-ft > M e = 13,107 kip-f{

Thus, the negative plastic moment capacity has sufficient capacity to sustain the entire dead load
of the bridge plus the truck live load.
The force needed to be transferred is found to be:

F=(0.567-80+0.763 - 32+ 0.919 - 16) + (2.642 + 0.65) - 128/2 + 309.6 = 604.77 kips

IF = 604.77 kipg

The length of the bridge needed to transfer the load F based on the flexural capacity of the bridge
is:

Iy=604.77/6.82 = 88.68 ft
88.68 / 128 = 69.28 % of the span length

The flexural shear at the abutment and the interior support is found to be:

Vi = Voo + Virvex = 214.63 + 260.27, [Vipum = 474.9 Kips

Vpier = Vpr + Viruck = 377.14 + 295.86, [Vpier = 673 Kips|
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The torques associated with each load are:

trg = 84.48 - 14.61 = 1,234.25 kips-ft

trrg =41.6 - 20.87 = 868.19 kips-ft

tprg = 169.09 - 14.52 =2,455.19 kips-ft

tig = 84.48 - 0.69 = 58.29 kips-ft

trig =41.6 - -5.54 = -230.46 kips-ft

tpig =169.09 - 0.81 = 136.96 kips-ft

trruck = 309.6 - 15.14 = 4,687.34 kips-ft
Therefore, the torque developed in the composite section at the support is equal to:
T=(1,234.25 + 868.19 + 2,455.19 + 58.29 -230.46 + 136.96 + 4,687.34) / 2 = 4,604.88 kip-ft
To compute the shear flow of the closed section, Equation 2-20 is used.
qg=T/(2-A4)=4,604.88/(2 - 4,534.07/144) = 73.12 kips/ft = 6.09 kips/in

The shear stresses in the concrete deck, webs, and bottom flange are computed by following the
same procedure as before:

tconc. peck = q /'t conc. peck = 6.09 / 8 = 0.76 ksi

tweg = q / tweg = 6.09 /0.625 = 9.74 ksi

TB01T. FLANGE = q /'t BorT. FranGe = 6.09 / 1.375 = 4.43 ksi

TFlexuralWEB Abutm. = Vabum | (2-hwep-tweg cos(14°)) =474.9 / (2:55.656-5/8-0.97) = 7.04 ksi
TFlexuralWEB Pier = Vpier | (2-hwestweg cos(14°)) = 673/ (2:55.656-5/8-0.97) = 9.98 ksi

The shear stress that develops in the concrete deck due to torsion is equal to 0.76 ksi.
According to ACI 318-08, the shear capacity of a reinforced concrete section is:

VS: At ﬁt'b'cote/s.
Thus,
Vrorsion = q-b =6.09-84 = 511.56 kips < Vs= A, f,-b-cotl/s= 0.62-60-84/5 = 624.96 kips

As stated previously, the shear stress in the webs is a combination of the flexural and
torsional shear stress, and the response of the east web controls because the shear from flexure
and torsion add. The total shear stress that develops in the east web is calculated to be:
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TTOTAL Abutm = TWEB™Y TFlexuraWEB Abutm = 9. 74 +7.04 = 16.78 ksi < 7, =23.49 ksi.
TTOTAL Pier = TWEB™T TElexuralWEB Pier = 9.74 +9.98 =19.72 ksi = Tn =19.72 ksi.

The end diaphragm, which connects both girders, has adequate capacity to resist the
torque applied to the intact girder.

Vep =T/ I, =4,604.88 / 13.92 = 330.81 kips, where T is the torque applied on the intact
girder and /, is the distance between the two bearings. Thus, the shear strength of the end
diaphragm (7, = 0.86-1139.27 = 979.77 kips) is adequate to resist the applied shearing force
(Vep = 330.81 kips). Finally, it is found that the ultimate load is equal to 4.30xHS-20 Trucks
(309.6 kips).
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