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Chapter 1.  Introduction 

1.1 Problem Statement 

As assets age, they generally deteriorate, resulting in rising operating and maintenance 
(O&M) costs and decreasing salvage values. Furthermore, newer assets that are more efficient 
and better in retaining their value may exist in the marketplace and be available for replacement. 
For this reason public and private agencies that maintain fleets of vehicles and/or specialized 
equipment must periodically decide when to replace vehicles composing their fleet.  These 
equipment replacement decisions are usually based upon a desire to minimize fleet costs and are 
often motivated by the conditions of deterioration and technological changes, either separately or 
together (Hartman, 2005; Hartman, 2008). 

According to the Texas Department of Transportation (TxDOT), the department owns 
and maintains an active fleet of approximately 17,000 units and TxDOT annually disposes of 
approximately ten percent of its fleet. In terms of monetary value, TxDOT has a fleet valued at 
approximately $500,000,000, with an annual turnover of about $50,000,000 (TERM, 2004). Any 
methodology that can improve TxDOT’s replacement procedures can potentially save millions of 
dollars. 

Substantial cost savings with fleet management has been documented in management 
science literature. For example, a 1983 Interfaces article discussed how Phillips Petroleum saved 
$90,000 annually by implementing an improved system for a fleet of 5300 vehicles (Waddell, 
1983). Scaling up to the TxDOT fleet, the corresponding savings would be around $350,000 in 
2008 dollars. Similar savings were reported in presentations made by Mercury Associates 
(Mercury Associates Inc., 2002; 2005; 2007). 

The equipment replacement optimization (ERO) effort is also extremely important in the 
context of overall fleet management efforts. For example, the best equipment replacement 
decision tool in the world may not be very useful if there is no funding available to purchase new 
vehicles to replace the old ones. An ERO decision tool can be effectively used as part of a long-
range fleet replacement plan that can estimate the future budget required to meet predicted 
replacement needs for all future years. The primary function of equipment managers is to replace 
the right equipment at the right time and at the lowest overall cost. To accomplish this task, a 
theoretically sound and practically feasible ERO methodology must be developed to 
accommodate specific TxDOT needs. It is expected that a significant amount of money can thus 
be saved (Fan et al., 2011a).  

TxDOT Research Project 7-4941 (Weissmann and Weissmann, 2002; 2003a; 
Weissmann, et al., 2003b), Equipment Replacement Criteria Based on LCCBA, created a SAS 
decision analysis tool to be used by the department in its equipment replacement process. While 
the 7-4941 analysis tool met project scope within the data limitations existing at the time of its 
delivery, an improved vehicle cost data base will now allow a more normative decision support 
tool for fleet replacement optimization. In this sense, optimization means minimizing the life-
cycle sum of maintenance cost and replacement cost (new equipment price minus resale value). 
The Department needs a system which recommends whether to retain or replace a unit of 
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equipment, given that class of equipment’s age, mileage, resale value, and the cost of new 
equipment. TxDOT categorizes, accounts for, and replaces equipment based on classes of 
equipment; the new automated fleet optimization system must use these class codes. 

1.2 Objectives 

The objective of this report is to (1) evaluate commercial fleet management systems; (2) 
determine the best optimization methodology; (3) develop the model if this is cost-effective 
relative to purchasing a commercial model; and (4) validate the new model as needed using data 
available on TxDOT’s current fleet. To accomplish this project, the research team will formulate 
the ERO problem as an Integer Linear Programming (ILP) model, and develop both 
Deterministic Dynamic Programming (DDP) and Stochastic Dynamic Programming (SDP) 
approaches to solving the ERO problem. Certainly, this system is user-friendly and designed so 
that it can be easily used by non-technical district personnel (to evaluate individual district units 
against a class) and by technical division personnel (Fleet Manager) to develop optimal 
aggregate classcode replacement cycles. 

1.3 Expected Contributions 

To accomplish these objectives, several tasks have been undertaken. A comprehensive 
dynamic programming (DP)-based optimization solution methodology and optimization software 
has been developed to solve the ERO problem. In particular, it should be mentioned that the 
developed ERO solution methodology is very general and can be used to make optimal 
keep/replacement decisions for both brand-new and used vehicles both with and without annual 
budget considerations. 

An extensive review of the existing literature reveals that this is the first ERO software 
that is targeted at the real world application (using TxDOT’s current fleet data) and caters to 
TxDOT’s own needs. Furthermore, it is believed that this pilot work is very general and can 
potentially be an example to demonstrate the promising feasibility and also immediate usability 
of the DP-based optimization solution, which can yield substantial cost savings for years to come 
in the fleet management industry worldwide (Fan et al., 2011a; 2011b; 2011c). 

1.4 Report Overview 

The remainder of this report is organized as follows: Chapter 2 presents a comprehensive 
review of the state-of-the-art and state-of-the-practice literature on the ERO problem. Chapter 3 
provides a detailed model formulation for the ERO problem using an integer linear programming 
model, and two DP solution approaches are also developed, DDP and SDP. Chapter 4 describes 
the solution methodology for the ERO problem, which consists of three main components: 1) A 
SAS Macro based Data Cleaner and Analyzer; 2) A DP-based optimization engine; and 3) A 
Java based Graphical User Interface (GUI). Chapter 5 presents the Java GUI and its components 
along with a list of different software functionalities. Chapter 6 discusses the SAS Macro Data 
Cleaner and Analyzer, which undertakes the tasks of raw data reading, cleaning and analyzing, 
as well as cost estimation & forecasting. Chapter 7 presents the DP-based optimization engine, 
the DDP and SDP solution approaches for the ERO problem, and the development of Bellman’s 
and Wagner’s formulations, as well as the knapsack programming and computer implementation 
techniques. Chapter 8 presents case studies and comprehensive statistical analyses and detailed 
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optimization numerical results based on the real world TxDOT equipment replacement model 
(TERM) data using two typical classcodes as examples. Finally Chapter 9 concludes this report 
with a summary and a discussion of the directions for future research.  
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Chapter 2.  Literature Review 

2.1 Introduction 

This chapter provides a review and synthesis of the state-of-the-art and state-of-the-
practice literature on the ERO problem and commercial fleet management systems currently 
available worldwide. This should give a clear picture of the current situation in fleet management 
worldwide and the direction ERO may take in the near future.  

The following sections are organized as follows. Section 2.2 describes the current ERO 
status within the state of Texas. Section 2.3 provides a comprehensive review of the existing 
ERO status and commercial fleet management systems in other state Departments of 
Transportation (DOTs) and private companies. Section 2.4 details past and present ERO research 
from four different solution approaches. Finally, section 2.5 concludes this chapter with a 
summary. 

2.2 Existing ERO Status within the State of Texas 

2.2.1 Primitive TERM 

TxDOT uses the Texas Equipment Replacement Model (TERM) (TERM, 2004) to identify 
equipment items as candidates for equipment replacement one year in advance of need (This 
one year allows sufficient time for the procurement and delivery of a new unit). TxDOT’s 
Equipment Operations System (EOS), in operation since 1984, captures extensive 
information on all aspects of equipment operation. This system is used to provide historical 
data in a computerized approach. EOS historical cost data is processed against three preset 
standards/benchmarks for each identified equipment class. The criteria used for replacement 
in the approach are 1) Equipment age, 2) Life usage expressed in miles (or hours), and 3) 
Life repair costs (adjusted for inflation) relative to original purchase cost (including net 
adjustment to capital value) (TERM, 2004).  

In other words, TERM uses threshold values of age, use of an equipment unit, and repair cost 
as inputs for replacement. For example, current threshold values for dump trucks with 
tandem rear axles (referred to as classcode 540020 within TxDOT) for age, use, and repair 
cost are 12 years, 150,000 miles, and 100%, respectively. As a result, a dump truck with 
tandem rear axles, 43000+ lb. GVWR, State Series 990d, that is 12 years old, has 
accumulated 150,000 miles of usage, and whose life repair costs have exceeded one hundred 
percent of the original purchase cost, including net adjustments to capital value, meets all 
three criteria (TERM, 2004). 

2.2.2 UTSA-TERM 

Starting in 1997, UTSA created a SAS decision analysis tool to be used by the TxDOT in its 
equipment replacement process (Weissmann and Weissmann, 2002; Weissmann and 
Weissmann, 2003a; Weissmann et al, 2003b). The equipment replacement approach 
developed includes multi-attribute priority ranking combined with a life-cycle cost trend 
analysis. It allows the manager to select the attributes used to compare the challenged unit 
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with all other active units within a desired class or group, and use the life-cycle costs and 
multi-attribute ranking methodologies for equipment replacement (Weissmann et al, 2003c).  

While the UTSA-TERM analysis tool met project scope within the data limitations existing 
at the time of its delivery, an improved vehicle cost data base has been developed and will 
now allow a more normative decision support tool for fleet replacement optimization. It is 
known that there are several major improvements can be made to the UTSA-TERM model: 
First, although it can generate a priority list of equipment units for replacement for each 
classcode by comparing each other within the same classcode based on a specific method 
such as life-cycle cost trends, this may result in its “optimal” replacement decision being 
suboptimal. This is because the unit-level could have too many outliers in costs, mileage, etc. 
associated with each unit, and it does not track and use the classcode-level operating and 
maintenance cost, purchase cost, salvage value, etc. for replacement decision-making. 
Second, it is still very labor intensive (users have to try and get the priority replacement list 
for each classcode at a time - TxDOT has over 100 classcodes), heavily depends on the fleet 
managers’ experience (Fleet managers may have to determine and possibly try many weight 
sets and run the software for each, and compare many solutions before possibly reaching and 
selecting a final “good-looking” solution that they may be eventually satisfied with), and is 
not fully automated (one classcode at a time). Since TxDOT categorizes, accounts for, and 
replaces equipment based on classes of equipment, TxDOT needs a new, more robust fleet 
optimization system that must use these classcodes rather than individual pieces of 
equipment, can fully automate the process, and optimize the equipment keep/replacement 
decision based on that class of equipment’s age, mileage, resale value, and the cost of 
replacement equipment. 

The research efforts in this report will focus on addressing these issues. The ERO solution 
software developed as a result of this project is an advanced and fully automated software 
system that incorporates robust mathematical optimization models and reliable statistical cost 
estimation and forecasting models. With a click of the mouse button, the “one-stop 
shopping” seamless software system can automatically recommend robust optimization 
solutions based on the built-in cost statistical analysis. To accomplish this task, Java is 
carefully chosen as the programming language. DP and Knapsack programming are the 
designed optimization solution approaches. 

2.3 Existing ERO Status and Commercial Fleet Management Systems in 
Other State DOTs/Private Companies 

2.3.1 Existing Software Programs 

A significant number of software programs currently exist to assist in fleet management. One 
of the major fleet management software manufacturers is AssetWorks. Their programs and 
services are offered to a number of state DOTs and other public organizations. DOT users of 
AssetWorks’ software include Arizona, Minnesota, California (Caltrans), Delaware, Georgia, 
Maine, Michigan, Nevada, New Hampshire, New Jersey, New York, Virginia, and 
Washington (State Government, 2009). 
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2.3.2 Fleet Management Consultants 

Many firms provide consultant services to fleet managers. For some firms, Mercury 
Associates in particular, consulting services are their primary operations. For other firms, 
consulting on fleet management is merely a part of an overall fleet management business 
model. These types of firms also work with a variety of clients on fuel management, vehicle 
leasing, driver management, and other services. The following sections describe several 
specific fleet management firms.  

2.2.2.1. Mercury Associates 

Mercury Associates, a Washington D.C. fleet management firm, has experience with 
fleets of vastly different sizes, ranging from 25 to more than 650,000 vehicles. Their 
clients include private companies such as Laidlaw and General Motors, the US federal 
government, and a wide variety of state and local governmental agencies; clients have 
also owned a diverse set of fleets, from fire trucks, buses, trucks, bulldozers, and many 
more. Mercury has worked with 28 of the 50 U.S. states (more than any other fleet 
management consulting firm), 33 of the 50 largest US cities, and 30 colleges and 
universities. Mercury also provides an outsourcing feasibility study to any agency 
considering contracting with the company to handle some or all of the fleet management 
services.  

Mercury has worked with many state DOTs. Specific instances include the Delaware 
Department of Transportation contracting with Mercury in 2004 to perform a 
comprehensive fit-gap analysis of its existing information. The Delaware DOT then used 
this information to enhance its system of support for fleet operations (Mercury, 2009). 
New Mexico’s DOT, which manages about 6,000 vehicles, has also contracted with 
Mercury for both consulting services and training in fleet management best practices 
(Mercury, 2009).  

2.2.2.2. Automotive Resources International 

ARI is the largest privately-held fleet leasing and management company in the world.  
Founded 60 years ago, the company today manages more than 2,000 customer fleets in 
North America, or over 650,000 vehicles.  Many of these fleets are owned by city, 
county, state, and federal clients.  ARI is also partnered with companies in Japan, 
Columbia, Ireland, and South Africa (Strategic Consulting, 2009).    

2.2.2.3. Donlen Corporation 

Donlen claims to be the country’s fastest-growing fleet leasing and management 
company (Donlen Brochure, 2009).  The company, based out of Illinois, has 40 years of 
experience and has developed several in-house software solutions for its consulting 
operations.  The Vehicle Optimization Model (VOM) provides comparative data for 
hundreds of vehicle types regarding fuel efficiency, cost per mile, emissions, vehicle 
replacement analysis, etc.  The VOM also allows users to consider environmental impact 
as a key factor in their fleet management decisions.  Additional proprietary Donlen tools 
include FleetWeb, which allows a user to analyze available data on the entire fleet, and a 
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Fleet Optimization Scorecard, which provides recommendations for the fleet (Donlen 
Brochure, 2009). 

2.2.2.4. PHH Arval 

PHH, the nation’s second-largest provider of commercial fleet management services, 
provides a wide variety of fleet services to its clients, including accident management, 
financing, fuel management, new and used fleet vehicle sales, and regulatory services.  
The company also provides specialized services to managers of energy, utility, truck, and 
pharmaceutical fleets.  Their focus is on saving the client money and increasing the 
productivity of both drivers and vehicles.  While the company has a great deal of 
expertise in managing fleets, its level of management focuses more on the daily use of the 
vehicles as opposed to replacement analyses (About PHH Arval, 2009). 

2.2.2.5. Wheels, Inc.  

Wheels is a $2 billion company that manages more than 300,000 vehicles nationally.  The 
majority of its clients are manufacturing and pharmaceutical fleets; only a small 
percentage is transportation and public utility clients.  Wheels uses a proprietary analysis 
software called FleetView, which was released in 1999, to manage its fleets online.  The 
company also developed Vehicle Replacement Optimization, which it bills as the 
market’s first automated replacement analyzer (About Wheels, 2009).  

2.3.3 State DOTs 
 

Best practices of state DOTs are of particular interest to this study as DOT fleets are the most 
directly analogous to the fleet maintained by TxDOT.  Table 2.1 below shows the ten largest 
state DOT fleets as reported by Automotive Fleet magazine.  Several of these states are 
examined in further detail in the following sections.  In addition to the descriptions below, 
Indiana, Maine, Minnesota, and Washington have all begun using FleetFocus fleet 
management software from Maximus (and now should be referred to as AssetWorks because 
Maximus had sold its fleet software business to AssetWorks several years ago (Maximus, 
2006)). 

Table 2.1: Top 10 State DOT Fleets 
Rank State Vehicles

1 California 38,320
2 Florida 26,768
3 Texas 25,743
4 Georgia 19,691
5 New York 18,708
6 Pennsylvania 16,500
7 South Carolina 16,357
8 Virginia 15,823
9 Louisiana 13,000
9 New Jersey 13,000

Source: 2008-MY Statistics (2009) 
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2.2.3.1. California 

According to AssetWorks, California makes use of their fleet management software 
(State Government, 2009). However, the University of California at Davis has also hired 
Mercury Associates in 2006 to provide technical assistance in researching best business 
practices and best technology solutions for managing fleet utilization (Mercury, 2009). 
The study’s purpose was to make strategic recommendations to improve vehicle asset 
management for California state agencies and to lay the foundation for future fleet right-
sizing (Fleet Management, 2007).  

2.2.3.2. Florida 

As of 2002, Florida used thresholds for mileage or age in order to determine vehicle 
replacement priorities. For example, full-size pickups are replaced at 8 years or 95,000 
miles, dump trucks at 10 years or either 150,000 or 250,000 miles (depending on the 
capacity), hydraulic excavators at 8.000 hours or 12 years, and loaders at 10 years or 
6,000 hours (Weissmann and Weissmann, 2002).  In 2006, and 2007, Florida contracted 
with Mercury to evaluate its fleet management policies and practices. 

2.2.3.3. Georgia  

Georgia uses fleet management software from AssetWorks called FleetWorks (State of 
Georgia DOT, 2009). This program has been in use since 1998 and allows GDOT to 
carefully monitor its thousands of vehicles. Fleet management is carried out through 
GDOT’s Office of Property and Equipment Management (Note: GDOT’s website claims 
a fleet size of 8,600.) 

2.2.3.4. Virginia 

Over the past several years, Virginia Department of Transportation (VDOT) has 
contracted with Mercury to evaluate its fleet management and replacement 
methodologies (Mercury, 2009). Mercury assisted VDOT with the development of a fleet 
replacement planning and budgeting tool in 2005; today VDOT uses fleet management 
software by AssetWorks (State Government, 2009). 

2.2.3.5. Oregon 

Oregon’s DOT fleet is being studied as part of an ongoing equipment replacement study 
through TRB. The study, entitled “Green and Economic Fleet Replacement Modeling,” 
will analyze equipment cost and usage data in combination with emissions information to 
attempt to provide guidance to fleet managers on managing their fleets from an 
environmental perspective (2010-305, 2009).  

Additionally, Oregon State University, working with ODOT, has completed a study 
intended to improve ODOT’s existing fleet replacement model. The new model will be 
more accurate, more reliable, and more user-friendly (2010-305, 2009; Kim et al, 2009). 
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This study confirmed that most DOTs use fixed thresholds as a primary factor in 
equipment replacement decisions.  

2.2.3.6. South Dakota 

South Dakota is also undertaking a study on equipment replacement optimization; 
however, this study focuses on specific equipment types instead of being fleet-wide. In 
particular, South Dakota’s DOT is concerned with roadway analysis equipment: video 
monitor, computer monitors and hardware, GPS units, etc. SDDOT is particularly 
concerned with the effect that technological change will have on their replacement 
decisions (Sendelweck, 2008). 

2.2.3.7. Missouri 

In 2007, Missouri’s DOT chose the FASTER Fleet Management System, made by CCG 
Systems, Inc., for fleet and fuel management (Cable, 2007). 

2.2.3.8. Arizona 

Arizona uses FleetFocus fleet management software by AssetWorks. This software helps 
ADOT manage its 12,000 vehicle fleet. 

2.3.4 Private Vehicle Management 

AT&T currently has the largest fleet in the country with 86,099 vehicles.  Ranking second is 
UPS with 72,633 vehicles, and third is Verizon with 64,888 vehicles (AT&T Bumps UPS, 
2009). 

2.4 Existing ERO Research 

The ERO problem deals with the determination of the replacement schedule so that the 
life cycle costs over the horizon can be minimized. In other words, ERO determines the age at 
which to sell the asset so that costs (purchase cost plus O&M cost minus salvage value) are 
minimized over the defined horizon. Much research has been done in the ERO area. Depending 
on the assumptions made under certain scenarios, the ERO problem can be classified into and 
solved by four categories from the solution approach perspectives, which are detailed as follows. 

2.4.1 Minimum Equivalent Annual Cost (EAC) Approach 

The most basic ERO problem is studied under the assumption of no technological change 
over an infinite horizon (i.e., the equipment is needed indefinitely). The “no technological 
change” is sometimes also referred to as “stationary cost” by some researchers in the sense 
that an asset is replaced with the purchase of a new, identical asset with the same cost. Under 
this assumption, the optimal solution to the infinite-horizon equipment replacement problem 
with stationary costs is to continually replace an asset at the end of its economic life. The 
economic life of an asset is the age which minimizes the Equivalent Annual Cost (EAC) of 
owning and operating the asset. This cost includes purchase and O&M costs less salvage 
values. To determine the EAC when retaining an asset for n periods, all costs over the n 
periods must be converted into n equal and economically equivalent cash flows using the 
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interest rate. The economic life of an asset is typically computed by calculating the EAC of 
retaining an asset for each of its possible service lives, ages 1 through N, and the minimum is 
chosen from this set. In general, O&M costs rise with age whereas salvage values decline. 
Thus, the optimal solution trades off the high cost of replacement (purchase less salvage) 
versus increasing O&M costs over time. Once determined, the asset should be continuously 
replaced at this age under the assumption of repeatability and stationary costs (Hartman and 
Murphy, 2006). 

This Minimum EAC method has been commonly presented in many engineering economy 
books (Grant et al, 1990). Several research efforts have been conducted on the ERO problem 
using this Minimum EAC method where the tradeoff between the annualized capital and 
operating costs is explicitly considered (Hartman, 2005; Hartman, 2008; Weissmann et al, 
2003c; Hartman and Murphy, 2006; Gillespie and Hyde, 2004). The following Figure 2.1 
illustrates the tradeoff that is considered in this Minimum EAC method between the 
annualized capital and operating costs. 

 
2.1.a Adopted from Weissmann et al. 2003c 

 
2.1.b  Adopted from Hartman and Murphy, 2006 

Figure 2.1: Annualized Purchase Cost, O&M Cost, and Total (EAC) Costs 
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2.4.2 Experience/Rule based Approach 

As mentioned in section 2.2.1, TERM currently uses threshold values for age, use of an 
equipment unit, and repair cost as inputs for replacement (TERM, 2004). Also, in section 2.3, 
many other state DOTs use this experience/rule based approach to make keep/replacement 
decision for the equipment particularly during early stages. This experience/rule based 
approach to the ERO problem may work very well and can provide reliable keep/replacement 
decision for the fleet manager in some scenarios. However, this approach heavily depends 
upon the fleet manager’s engineering judgment and experience with the ERO. 

2.4.3 DDP Approach 

The solution of continuously replacing an asset at the end of its economic life based on the 
minimum EAC method is optimal only under the assumptions of an infinite horizon and 
stationary costs. However, many situations occur in practice in which an asset is required for 
a finite length of service (i.e., finite horizon). In particular, if the costs (including O&M cost 
and salvage value) are age based assuming constant or predetermined utilization over a finite 
horizon, the DDP approach is commonly used to solve the ERO problem. 

There is an enormous amount of research on the ERO with finite time horizon using DDP 
(Hartman, 2005; Waddell, 1983; Hartman and Murphy, 2006, Bellman, 1995; Wagner, 
1975). Furthermore, ERO in this case must make a decision about whether to replace or 
retain at each stage (typically annually) and this can be solved with two typical dynamic 
programming approaches, being Bellman’s (Bellman, 1995) or Wagner’s formulations 
(Wagner, 1975). 

Bellman introduced the first DDP solution to the finite horizon equipment replacement 
problem where the age of the asset defines the state of the system with the decision to keep or 
replace the asset at the end of each period (stage). The formulation is presented by the 
network shown in Figure 2.2. In this network, each node represents the age of the asset at that 
point in time, which is also the state space of the model. Each arc represents the decision to 
either keep (K) or replace (R) the asset. Keeping the asset connects nodes n and n+1 while 
replacing the asset nodes is shown by an arc connecting n and 1. An optimal policy with this 
model, in the form (K, K, R, K, K, …),  gives the optimal decision in each period. It can be 
seen that if an asset can be retained for a maximum of N periods, then the maximum number 
of states in a period is N. For a T-period problem, since there are a maximum of two 
decisions for any state, so the problem can be solved in O(2NT). Therefore, the computer 
complexity of Bellman’s algorithm is O(NT) (Bellman, 1955; Hartman, 2005; Hartman and 
Murphy, 2006). 
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Figure 2.2: Network Representation of Bellman’s Approach to the Equipment Replacement Problem 

Wagner provided an alternative dynamic programming formulation to Bellman’s solution in 
which the state of the system is the time period. In his approach, the decisions are the number 
of periods, 1, 2, . . . , N to retain an asset rather than whether to keep or replace the asset as 
shown in Bellman’s approach. Let the value of N be again the maximum allowable service 
life for the asset. Figure 2.3 gives a network representation of Wagner’s approach to the 
equipment replacement problem. In this network, each node represents the time period and 
each arc represents the amount of time that the asset is retained. If an arc connects nodes t 
and t+n, then it represents retaining an asset for n periods. The arcs are shown as Kn, 
meaning that the asset is to be kept for n periods. Since that there is a maximum of one state 
per period of time, N possible decisions for each state and T total periods, the problem can be 
solved in a computer complexity of O(NT) time, same as Bellman’s approach. Furthermore, 
in Wagner’s formulation, an optimal policy can be represented in the form of (n1, n2, n3,. . .) 
in which each value of n denotes the number of periods an asset is retained. It can be clearly 
seen that the policies of the Bellman and Wagner formulations are equivalent in that they can 
be converted to each other. For example, the time n1 in the Wagner model is equivalent to n1 
consecutive decisions of K followed by one of R, etc (Wagner, 1975; Hartman, 2005; 
Hartman and Murphy, 2006).  
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Figure 2.3: Network Representation of Wagner’s Approach to the Equipment Replacement Problem 

In addition, the DDP approach has been used to solve the ERO problem by few companies in 
the real world. For example, Waddell (Waddell, 1983) presented a model for the equipment 
replacement decisions and policies. It mentioned that a computer program using a DDP 
approach to optimize the projected discounted cash flow is used by the fleet managers at 
Phillips Petroleum Company for individual highway tractors as well as passenger cars and 
light trucks. Again, an annual cost savings of $90,000 was reported as the result of 
implementing this system for a fleet of 5300 vehicles. 

2.4.4 SDP Approach 

In the past, the main research study stream on the ERO problem is on using either the 
minimum EAC method or the DDP approach. The SDP approach is mainly used to solve the 
ERO problem with uncertainties and certainly this approach is problem specific and highly 
depends upon how the uncertainties are defined and studied. Meyer is one among very few to 
study the ERO problem under uncertainty perhaps due to computational constraints (Meyer, 
1971). With the advances in computing technology, a lot of research efforts have examined 
the ERO problem under uncertainties during the past decade as can be seen by much of 
Hartman’s research work.  

As mentioned by Hartman (Hartman, 2008), there are numerous complications to the 
traditional ERO problem, which include, but are not limited to: 1) Multiple Assets; This is 
referred to as parallel replacement analysis where there is interdependence between budgets 
or economics (Hartman, 2004); 2) Uncertainty in Asset Utilization; The vehicle usage may 
not be pre-determined but actually random and depends on the operating environment 
(Hartman, 2001); 3) Uncertainty in Technological Change; How future challengers are 
modeled to capture the uncertainty in the technological change can be rather complicated 
(Bean et al, 1994; Hartman and Rogers, 2006; Hopp and Nair, 1991; Rogers and Hartman, 
2005); 4) Uncertainty in the Time Horizon; and  5) Taxes (Hartman and Hartman, 2001).  

In particular, ERO with multiple assets and ERO with taxes are the extended types of ERO 
problems. Usually, the DDP approach can be used and applied to solve these two types of 
problems. However, if the uncertainties are also considered for either of these two problem 
types, the problem will be very hard to solve and is therefore not generally studied in the 
ERO with uncertainty problem. In this regard, there are three types of ERO problems with 
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uncertainties that have been investigated by Hartman (2008). The following gives a brief 
review on his research work: 

2.4.4.1. ERO Problem with Uncertainty in Asset Utilization 

Traditional deterministic economic replacement analysis optimizes asset purchase and 
sale decisions over a given horizon based on expected purchase, operating & 
maintenance, and salvage costs. As these costs are dependent on asset utilization, a 
constant or predetermined usage is generally assumed. However, due to randomness in 
real operations, these expected utilization schedules are normally not realized in practice, 
thus invalidating the replacement schedule under extreme conditions (Hartman, 2001). 

Hartman (2001; 2004) investigated the ERO problem with uncertainty in asset utilization 
and examined the effect of probabilistic asset utilization on replacement decisions 
through the use of stochastic dynamic programming. In his research, the solution 
determines minimum expected cost decisions for each state defined by the asset’s age and 
cumulative utilization in each period. These decisions generalize the definition of the 
economic life of an asset to include age and cumulative utilization. It is noted that 
assumptions common to replacement analysis allow the state space to grow linearly with 
time, avoiding dynamic programming’s “curse of dimensionality”. Examples with time 
invariant and variant economics were also presented and compared to traditional solution 
procedures. Figure 2.4 provides the SDP formulation with one challenger for the ERO 
problem with uncertainty in asset utilization. 

 
Figure 2.4: SDP Formulation with One Challenger for the ERO Problem with Uncertainty in Asset 

Utilization 

In addition, Hartman (2008) presented some interesting scenario analysis and reduction 
techniques for the SDP formulation. It was also concluded that asset utilization could be 
included in traditional equipment replacement models without much computational 
difficulty. 
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2.4.4.2. ERO Problem with Uncertainty in Technological Change 

Technological change is highly influential in equipment replacement problems and thus 
has been studied in great detail. Common assumptions include technological 
improvement at a continuous rate (Bean et al. 1994), according to a continuous function 
(Oakford et al. 1984), discontinuous technological change (Hopp and Nair 1991), or 
some combination (Rogers and Hartman 2005; Hartman and Rogers, 2006). 

In particular, Hartman and Rogers developed and compared two dynamic programming 
formulations (i.e., Bellman’s and Wagner’s as presented in section 2.4.3) for cases 
including probabilistic technology breakthrough arrivals, probabilistic costs associated 
with breakthrough technologies and multiple challengers. It was found that although both 
the Bellman and Wagner methods can be extended to deal with realities such as 
technological change and multiple challengers, the Wagner method is better because 
these intricacies are more easily captured (Hartman and Rogers, 2006). For example, 
multiple challengers can be modeled by parallel arcs in the network connecting nodes 
between different time periods. Thus, preprocessing can eliminate inferior arcs before 
solving the problem. This is not possible with Bellman’s formulation as the state space 
must be expanded to include the challenger type. Also, by analyzing the state space 
growth for each of these extensions under various parameter assumptions, Hartman and 
Rogers (2006) concluded that Wagner’s method is more likely to succeed in solving 
large-scale problems (multiple challengers over long time horizons). Figure 2.5 gives a 
graphical decision network for the ERO problem with uncertainty in technological 
change. 

 
Figure 2.5: A Decision Network for the ERO Problem with Uncertainty in Technological Change (Adopted 

from Hartman, 2008) 

It is noted that Hartman (2008) made some interesting economic implication conclusions, 
which included: 1) As the probability of new technology increases, length of time assets 
are retained decreases; and 2) Technological change generally induces faster 
replacement. 
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2.4.4.3. ERO Problem with Uncertainty in Horizon 

Generally speaking, often equipment is only required for a finite length of time because 
1) Equipment usage may be tied to a specific contract; and/or 2) Life of the service 
required may be finite. That is, the actual time required may be finite but uncertain 
because of uncertain production durations and/or temporary provision of service 
(Hartman, 2008). These situations might be compared to shortest path problems with 
uncertain distances (costs) or uncertain destinations (Hartman, 2008). In this case, the 
objective is still to minimize expected costs. However, many problems can exist when the 
horizon is finite but uncertain (Hartman, 2008). 

2.5 Summary  

A comprehensive review and synthesis of the current and historic research and 
development of the ERO problem, in both theoretical and practical applications, has been 
discussed in the preceding sections. This research is intended to provide a solid reference and 
assist in the model formulation and solution development of the ERO software. It also gives a 
clear picture of the current situation in fleet management worldwide and the direction ERO may 
take in the near future. 
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Chapter 3.  Model Formulation 

3.1 Introduction 

As discussed in the literature review conducted in Chapter 2, the ERO decision is usually 
based upon a desire to minimize fleet costs, which typically include the acquisition, operating 
and maintenance cost, and salvage value over a definite or infinite horizon. Section 2.4 provides 
a review of the literature on the existing ERO solution approaches. This chapter will formulate 
the ERO problem using the dynamic programming model. 

The following sections are organized as follows. Section 3.2 provides some background 
information about the integer linear programming (ILP) model. Some general dynamic 
programming (including both DDP and SDP) characteristics will then be discussed in Section 
3.3. Sections 3.4 and 3.5 present the detailed DDP and SDP model formulations respectively for 
the ERO problem. The mathematical notations and terminology used will be introduced in detail. 
Finally, section 3.6 concludes this chapter with a summary. 

3.2 ILP Model 

The ILP model involves minimization or maximization of a linear function subject to 
linear constraints where all the decision variables must take on integer values. Generally 
speaking, solving such models is non-deterministic polynomial-time hard (NP-hard) and 
computationally intractable, unless special problem structures exist. In other words, it generally 
will be very difficult to find the global optimal solution particularly when the problem to be 
solved becomes very large. Typical methods for solving small-medium sized ILP models and 
finding the global optimal solutions include the cutting-plane, branch and bound, branch and cut, 
and/or branch and price methods (Wolsey, 1998; Nemhauser and Wolsey, 1999). For large scale 
ILP models, heuristics or metaheuristics, (such as the local search, genetic algorithm, simulated 
annealing and tabu search methods) which can produce local optimal and possibly global optimal 
solutions within a reasonable amount of computational time, are commonly used to solve such 
NP-hard problems (Wolsey, 1998; Nemhauser and Wolsey, 1999). On the other hand, some NP-
hard ILP optimization models may not be so computationally intractable and can be solved very 
efficiently regardless of the problem size when the problems have their own special problem 
structures. For example, ILP models having the total unimoularity characteristics can be solved 
using a relaxed linear programming (LP) approach to get the integer optimal solutions much 
faster. Other instances such as the well-known NP-hard knapsack problem can be solved by DP 
very efficiently (Wolsey, 1998; Nemhauser and Wolsey, 1999).  

In particular, the ERO problem studied in this report has such special problem structures 
and can be formulated as an ILP model in which the objective is to minimize the total cost and 
the decisions to be made are to either replace or retain the unit of equipment at the beginning of 
each year. It should be noted that TxDOT fleet manager will replace the equipment unit at the 
end of each year if the optimal decision is to replace it at the beginning of that year --- This one 
year window allows sufficient time for the procurement and delivery of a new unit during that 
year. Previous research efforts have clearly indicated that the DP is the most efficient approach 
and can be effectively applied to solving the ERO problem (Hillier and Lieberman, 2005). The 
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general DP characteristics and detailed DDP and SDP model formulations for the ERO problem 
are presented in the following sections. 

3.3 General DP Characteristics 

The basic features that characterize DP solution algorithms can be presented as follows 
(Hillier and Lieberman, 2005): 1) The problem can be divided into stages with a policy decision 
required at each stage. The stages are usually related to time and are often solved by going 
backwards in time. 2) Each stage has a number of states associated with that stage. 3) The 
decision at each stage transforms the current state at this stage to a state associated with the 
beginning of the next stage (possibly with a probability distribution applied). 4) The solution 
procedure is designed to find an optimal policy for the overall problem, i.e., a prescription of the 
optimal policy decision at each stage for each of the possible states. 5) Given the current state, 
the optimal policy decision for the remaining stages is independent of decisions made in previous 
states. 6) The solution procedure begins by finding the optimal policy for the last stage. 7) A 
recursive relationship is available to traverse between the value of the decision at a stage N and 
the value of the optimum decisions at previous stages N+1. 8) When using the recursive 
relationship, the solution procedure starts at the end and moves backward stage by stage – each 
time finding the optimal policy for that stage – until the optimal policy starting at the initial stage 
is found (Wagner, 1975; Bertsekas and Tsitsiklis, 1996; Wolsey, 1998; Nemhauser and Wolsey, 
1999; Bertsekas, 2001; Bellman, 2003; Denardo, 2003; Hillier and Lieberman, 2005). 

DP can generally be classified into two categories: DDP and SDP. For DDP, the state at 
the next stage is completely determined by the state and policy decision at the current stage. SDP 
differs from DDP in that the state at the next stage is not completely determined by the state and 
policy decision at the current stage. Rather, there is a probability distribution applied for what the 
next state will be. However, the probability distribution is still determined entirely by the state 
and policy decision at the current stage (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2001; Ross, 
1995). In SDP, the decision maker’s goal is usually to minimize expected (or expected 
discounted) cost incurred or to maximize expected (or expected discounted) reward earned over 
a given time horizon.  

As mentioned previously, the ERO problem studied in this report also has its own special 
problem structures and therefore, applying either DDP or SDP to solve the ERO problem 
requires particular attention to its unique structures and appropriate solution algorithms must be 
developed to cater to the ERO needs. In addition, it should be mentioned that the DDP-based 
optimization approach, which assumes that the annual purchase cost, annual operating & 
maintenance cost, salvage value, and the usage of the equipment unit are constant or 
predetermined and can be forecasted using historical data, is presented in section 3.4. (Fan et al, 
2011b). However, due to uncertainty in real operations, these expected equipment utilization 
costs may not be realized, thus making the DDP decision sub optimal or worse under extreme 
conditions. In such cases, the SDP approach may be preferred. In this regard, the SDP approach 
is also developed and presented to solve the ERO problem in section 3.5. 

3.4 DDP Model Formulation 

Due to the abundance of research previously undertaken for DDP-based optimization and 
the complications involved in SDP-based optimization, this report first focuses on the DDP 
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solution approaches assuming that the annual purchase cost, annual operating & maintenance 
cost, salvage value, and the usage of the equipment unit are constant or predetermined and can be 
forecasted using historical data (Fan et al, 2011b). 

For the convenience of description, the DDP model formulation is organized in a 
systematic way and the following subsections present how to derive the optimal policy for the 
ERO problem using DP. The solution procedures are divided into three concrete steps: 1) 
Definition of appropriate stages and states; 2) Definition of the optimal-value function; and 3) 
Construction of a recursive computation relation. 

3.4.1 Stages and States 

Since the TxDOT fleet manager makes decisions as to whether to keep or replace a piece of 
equipment (based on the aggregated equipment’s classcode) at the beginning of each year, it 
is very natural to consider each year a stage. As a result, the year count (or index) is referred 
to as the stage variable and the age of the equipment in service at the beginning of each year 
as the state variable. 

For the convenience of presentation, the following mathematic notations are introduced: 

Set/Indices/Input Variables 
݅଴	  = the age of the unit of equipment at the starting stage 
݆଴	  = the usage of the unit equipment (represented in mileage) at the starting stage 
ܻ   = the current year in which the unit of equipment is waiting for the keep/replacement 

decision at the starting stage 
ܰ  = the user-specified maximum planning horizon for considering the keep/replacement 

decision 
௜ܷ = the usage (represented in mileage) of a unit of equipment during the decision year at 

the end of which the equipment turns ݅-year-old, ݅ ൌ ݅଴ ൅ 1, ݅଴ ൅ 2, ଴݅ݎ ൅ ܰ. 
 ௜ = the annual operating and maintenance (including downtime) cost of a unit ofܥ

equipment during the decision year at the end of which the equipment turns ݅-year-
old, ݅ ൌ ݅଴ ൅ 1, ݅଴ ൅ 2, ଴݅ݎ ൅ ܰ. 

௞ܲ  = the purchase cost of a new unit of equipment during year	݇, ݇ ൌ ܻ, ܻ ൅ 1,…1ܻ ൅
ܰ െ 1. 

௜ܵ,௒బ	 = the salvage value of a unit of equipment during the decision year at the end of 
which the equipment turns i-year-old, ݅ ൌ ݅଴ ൅ 1, ݅଴ ൅ 2,… , ݅଴ ൅ ܰ. 

The TxDOT fleet manager identifies equipment items as candidates for equipment 
replacement one year in advance due to the fact that generally one year is required to allow 
sufficient	time	for	the procurement and delivery of a new unit of equipment. In addition, it 
should be noted that the model formulated is very general and can be used to make optimal 
keep/replacement decisions for both brand-new and used vehicles with or without budget 
considerations. In this regard, it is assumed that all the equipment must be salvaged at the end 
of the planning horizon of ܰ years by the fleet manager if it is more than ܰ years old. 
Furthermore, the value of the planning horizon ܰ (i.e., the equipment maximum service life) 
is decided by the fleet manager. In this project, the TxDOT fleet manager highly 
recommended a planning horizon of 20 years. In other words, it is assumed that an 
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equipment unit will be kept no longer than 20 years. It is expected that as a result, the 
selection of the planning horizon ܰ may have some impacts on the equipment optimal 
keep/replacement decisions. However, it is also believed that ܰ=20 is a very reasonable 
value and is therefore highly recommended for the ERO problem for the State DOTs.  

It can be seen from the above notations that the equipment purchase cost ( ௞ܲ) is model year-
based, the annual operating & maintenance cost (ܥ௜) and the usage of the equipment unit ( ௜ܷ) 
are both age-based, and that the salvage value ( ௜ܵ,௒బ) is dependent upon both the model year 
and equipment age. All of this data comes from SAS as outputs of the SAS macro based Data 
Cleaner and Analyzer (Fan et al, 2011a; 2011b) and act as inputs to the DDP-based 
optimization engine. Moreover, it is recognized that it is standard practice to allow for 
discounting of future costs in any DDP model and solution process. Put another way, solving 
the ERO problem using the dynamic programming approach requires all costs (such as 
annual O&M costs including all repairs, regular maintenance and down time penalty costs, 
and salvage values, as well as purchase costs of the new model year) at each stage to be 
converted from the equipment model year (for the equipment purchase cost) and/or calendar 
year (for annual O&M costs and salvage value) to a benchmark year using the inflation rate. 
Such calculations of the discounting of future costs have been successfully performed (Fan et 
al, 2011b). Again, all equipment will be replaced at the end of the planning horizon of ܰ 
years.  

3.4.2 Optimal-Value Function 

For any given pair of stage and state, the optimal-value function is defined as a function that 
returns the least total cost from that point to the end of the planning horizon. In particular, for 
the ERO problem, the optimal-value function is defined as follows: 

௞ܶ
∗ሺ݅ሻ ൌ	minimal total cost from year ݇ onward (through the end of year ܰ), starting with  

      an ݅-year-old equipment in year ݇. 

3.4.3 Recursive Computation Relation 

The ERO problem can be presented as follows: At the beginning of year ݇ with an ݅-year-old 
equipment, the fleet manager has two available actions: either keep or replace. It should be 
noted again that the equipment will be used throughout that year ݇ regardless of the decision 
being “keep” or “replace”. Therefore, the annual operating and maintenance cost of that year 
is included as part of the costs under either decision scenario. The following presents both 
possible cases. 

Case I: Suppose that the action chosen is to keep the i-year-old equipment. Then, the 
immediate one-stage cost is simply	ܥ௜ାଵ. Since the next stage and state as a result of this 
action is ݇ ൅ 1 and	݅ ൅ 1, the minimal total future cost from that point to the end of the 
decision horizon is, by definition, ௞ܶାଵ

∗ ሺ݅ ൅ 1ሻ. It therefore follows naturally that the best 
possible total cost associated with the keep action is given by		ܥ௜ାଵ ൅ ௞ܶାଵ

∗ ሺ݅ ൅ 1ሻ. 

Case II: Suppose that the action chosen is to replace the i-year-old equipment instead. Then, 
the immediate one-stage cost is the sum of: ௞ܲ	(the purchase price of a new unit of equipment 
during the year ݇), െ	 ௜ܵାଵ,௒బ (the negative of the revenue from the salvage value of the now 
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ሺ݅ ൅ 1ሻ-year-old equipment at the end of the decision year when the equipment is ݅-year-old 
at the beginning of the decision year), + ܥ௜ାଵ (the annual operating and maintenance cost of 
the now (݅ ൅ 1ሻ-year-old equipment when ordering a new unit of equipment during that 
decision year). Since the next stage and state as a result of this action is ݇ ൅ 1 and	0, the 
minimal total future cost from that point to the end of the decision horizon is, by definition, 

௞ܶାଵ
∗ ሺ0ሻ. It therefore follows that the best possible total cost associated with the replace 

action is given by ௞ܲ െ ௜ܵାଵ,௒బ ൅ ௜ାଵܥ ൅ ௞ܶାଵ
∗ ሺ0ሻ. 

Since the goal of the ERO problem is to minimize the total cost, the recursive computation 
relation is presented as follows: 

௞ܶ
∗ሺ݅ሻ ൌ min	ሾ	ܥ௜ାଵ ൅ ௞ܶାଵ

∗ ሺ݅ ൅ 1ሻ, ௞ܲ െ ௜ܵାଵ,௒బ ൅ ௜ାଵܥ ൅ ௞ܶାଵ
∗ ሺ0ሻሿ . 

With this recursive computation relation in place, the final step of the solution procedure 
consists of the recursive computation of the 	 ௞ܶ

∗ሺ݅ሻ’s. By solving backwards, the ERO 
problem can potentially be solved efficiently and effectively using the DP approach. 

The model formulation of the ERO problem has been discussed above. This is a typical DP-
based ILP model. There has been an enormous amount of research on the ERO with finite 
time horizon using the DDP approach (Wagner, 1975; Bellman, 1995; Waddell, 1983; 
Hartman, 2005; Hartman and Murphy, 2006). However, it should be noted that almost all the 
previous research efforts are devoted to the DDP solution formulation and its limited 
applications to extremely simplified case studies and/or toy examples. The literature review 
indicates that there are very few research efforts made so far to apply such DDP approaches 
to solving the real world ERO problem. As a result, many underlying characteristics of the 
ERO problem are yet to be explored and identified. In this regard, the main contribution of 
this report is to develop a generalized DDP model and approaches for solving the real world 
ERO problems that are currently facing many State DOTs and many equipment fleets. 
Several characteristics underlying the ERO are presented and model results are generalized to 
make some very broad statements regarding ERO. Furthermore, the ERO software is 
developed to make a decision on whether to replace or retain equipment at the beginning of 
each year and this can be solved with the DP approach (either the Bellman or Wagner 
formulations).  

3.5 SDP Model Formulation 

As discussed in the above section 3.4, DDP optimizes the ERO decisions over a given 
horizon based on the expected purchase cost, annual O&M cost and salvage value. There has 
been an enormous amount of research on the ERO with finite time horizon using the DDP 
approach (Fan et al, 2011a; 2011b; Bellman, 1995; Bellman, 2003; Wagner, 1975; Waddell, 
1983; Hartman, 2005; Hartman and Murphy, 2006).  Reliable decisions can be produced and 
significant cost savings estimated by using the DDP approach using the real world data (Fan et 
al, 2011b, Waddell, 1983). However, there is an apparent shortcoming associated with this 
approach. For example, both the vehicle usage and the annual O&M cost are assumed to be 
constant or predetermined in DDP. Due to randomness in real operations, these expected 
equipment utilizations are normally not realized in practice, thus invalidating the replacement 
optimization decisions in some ways and making the DDP decision sub optimal or worse under 
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extreme conditions (Fan et al, 2011c). In such cases, SDP, which can explicitly consider the 
uncertainty in the vehicle utilization and the annual O&M cost accordingly, will undoubtedly be 
the preferred approach to solving the ERO problem. Meyer is one among the very few to study 
the ERO problem under uncertainty perhaps due to computational constraints (Meyer, 1971). 
With the advances in computing technology, a lot of research effort has examined the ERO 
problem under uncertainties during the past decade as can be seen by much of Hartman’s 
research work (Hartman and Rogers, 2006). However, none of these previous research efforts 
made uses the real world fleet cost/usage data and all previous case studies are limited and based 
on small examples. One will have reasonable doubts about whether the results presented were 
convincing or can be extended to real world applications. As a result, many underlying 
characteristics of the ERO SDP problem are yet to be explored and identified. An extensive 
review of the existing literature reveals that this is the first ERO SDP software that is targeted at 
the real world application (using TxDOT’s current fleet data) and can explicitly consider the 
uncertainty in the vehicle utilization and the annual O&M cost. The pilot SDP-based work is 
very general and is intended to make some very broad statements regarding the ERO and can 
potentially be an example to demonstrate its promising feasibility. When enough cost/mileage 
data is collected, the SDP-based optimization solution can also be of immediate use and will 
yield substantial cost savings for years to come in the fleet management industry worldwide. To 
that end, the SDP model formulation and solution approaches are investigated in detail in this 
report. The basic structure for the SDP is provided in the following Figure 3.1. 

 
Figure 3.1: The Basic Structure for the SDP (Hillier and Lieberman, 2005) 

For this illustration, let S represent the number of possible states at stage 1n and label 
the states on the right as .,,2,1 S  Given state ns and decision nx at stage n  the system goes to 

state i with probability ).,,2,1( Sipi   If the system goes to state i , the contribution of stage n  
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Due to the probabilistic structure of SDP, the relationship between ),( nnn xsf and 

)( 1
*

1  nn sf  is certainly more complicated than that for the DDP. Since the objective of the ERO 

problem is to minimize the expected cost in this scenario by minimizing the expected sum of the 
contributions from the individual stages, let ),( nnn xsf denote the minimum expected sum from 

stage n onward, given that the state and policy decision at stage n are ns and nx , respectively. 

This results in the following equation.  
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where this minimization is taken over the feasible values of 1nx . 

For the convenience of description, the SDP model formulation is organized in a 
systematic way and the following subsections present how to derive the optimal policy for the 
ERO problem using DP. The solution procedures are detailed in the same manner as the DDP 
solution procedures (see section 3.4); there may be some repeated work in the following sections 
but it is necessary to sufficiently describe the SDP model formulation.  

3.5.1 Stages and States 

Again, since the TxDOT fleet manager makes decisions as to whether to keep or replace a 
piece of equipment at the beginning of each year, it is very natural to consider each year a 
stage. As a result, the year count (or index) is referred to as the stage variable and the age of 
the equipment in service and the level of cumulative utilization at the beginning of each year 
as the state variable. 

For the convenience of presentation, the following mathematic notations are introduced: 

Set/Indices/Input Variables 
݅଴	  = the age of the unit of equipment at the starting stage. 
݆଴	  = the usage of the unit equipment (represented in mileage) at the starting stage. 
ܻ   = the current year in which the unit of equipment is waiting for the keep/replacement 

decision at the starting stage. 
ܰ  = the user-specified maximum planning horizon for considering the keep/replacement 

decision. 
݊௞ = the number of possible utilization levels during year	݇, ݇ ൌ ܻ, ܻ ൅ 1, ܻ ൅ ܰ െ 1. 
݉௧ೖ = the average vehicle utilization (represented in mileage) for annual discretized level 

index	ݐ௞ during year	݇, ݐ௞ ൌ 1, 2, … , ݊௞, ݇ ൌ ܻ, ܻ ൅ 1,… , ܻ ൅ ܰ െ 1. 
݈௞ = the realized mileage level used to represent the actual average vehicle utilization ݉௧ೖ  

                   during year	݇, ݇ ൌ ܻ, ܻ ൅ 1,… , ܻ ൅ ܰ െ 1. 
௜ܷ,௝,௟ೖ = the usage (represented in mileage) of a unit of equipment (with cumulative 

utilization ݆ already at the beginning of the year) at level ݈௞ during the decision year 
݇ at the end of which the equipment turns ݅-year-old, ݅ ൌ ݅଴ ൅ 1, ݅଴ ൅ 2, ଴݅ݎ ൅ ܰ. 
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൫݌ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯ ൌ the probability of a unit of equipment being utilized at level 
݈௞ାଵ during the decision year ݇ ൅ 1 at the end of which the equipment turns ሺ݅ ൅ 1ሻ-
year-old given that it was utilized at level ݈௞ during the decision year ݇ at the end of 
which the equipment turns ݅-year-old. 

 ௜,௝,௟ೖ = the annual operating and maintenance (including downtime) cost of a unit ofܥ
equipment (with cumulative utilization ݆ already at the beginning of the year) at level 
݈௞ during the decision year ݇ at the end of which the equipment turns ݅-year-old, 
݅ ൌ ݅଴ ൅ 1, ݅଴ ൅ 2, ଴݅ݎ ൅ ܰ. 

௞ܲ  = the purchase cost of a new unit of equipment during year	݇, ݇ ൌ ܻ, ܻ ൅ 1,…1ܻ ൅
ܰ െ 1. 

௜ܵ,௒బ,௝,௟ೖ	= the salvage value of a unit of equipment (that was purchase at year ଴ܻ and with 
cumulative utilization ݆ already at the beginning of the year) at level ݈௞ during the 
decision year ݇ at the end of which the equipment turns ݅-year-old, ݅ ൌ ݅଴ ൅ 1, ݅଴ ൅
2, ଴݅ݎ ൅ ܰ. 

The TxDOT fleet manager identifies equipment items as candidates for equipment 
replacement one year in advance due to the fact that generally one year is required to allow 
sufficient time for the procurement and delivery of a new unit of equipment. Also, it is 
assumed that all the equipment must be salvaged at the end of the planning horizon of ܰ 
years by the fleet manager if it is more than ܰ years old. Furthermore, the value of the 
planning horizon ܰ (i.e., the equipment maximum service life) is selected/decided by the 
fleet manager and the TxDOT fleet manager highly recommended a planning horizon of 20 
years in this project by assuming that an equipment unit will be kept no longer than 20 years. 
Although it is expected that the selection/determination of the planning horizon ܰ may have 
some impacts on the equipment optimal keep/replacement decisions, it is also believed that 
ܰ=20 is a very reasonable value and is therefore highly recommended for the ERO problem 
for the State DOTs. It should also be noted that since all cost and vehicle utilization 
estimation and forecasting obtained from SAS macro are conducted with equipment age 
being up to 20 years for any equipment units at the classcode level, the 20-year-old forecast 
will be used whenever the equipment age exceeds 20. 

It can be seen from the above notations that the equipment purchase cost ( ௞ܲ) is model year-
based. Both the annual operating & maintenance cost (ܥ௜,௝,௟ೖ) and usage of the equipment unit 
( ௜ܷ,௝,௟ೖ) are both age-based and the probability distribution of the annual vehicle utilization 
level may depend on the cumulative mileage up to the decision year. The salvage value 
( ௜ܵ,௒బ,௝,௟ೖ) depends upon not only the model year and equipment age, but also the cumulative 
mileage at the time of disposal. As discussed in two preceding papers (Fan et al, 2011a; 
2011c), all of this cost/mileage data and its probability distribution if any come from SAS as 
outputs of the SAS macro based data cleaner and analyzer, which will act as inputs to the 
SDP-based optimization engine. In addition, it should be noted that as a standard practice 
during the DP model and solution process, all such costs (such as annual O&M costs 
including all repairs, regular maintenance and down time penalty costs, and salvage values, 
as well as purchase costs of the new model year) at each stage have been converted from the 
equipment model year (for the equipment purchase cost) and/or calendar year (for annual 
O&M costs and salvage value) to a benchmark year using the inflation rate. 
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3.5.2 Optimal-Value Function 

Again, for any given pair of stage and state, the optimal-value function is defined as a 
function that returns the least total cost from that point to the end of the planning horizon. In 
particular, for the ERO problem, the optimal-value function is defined as follows: 

௞ܶ
∗ሺ݅, ݆ሻ ൌ	minimal total cost from year ݇ onward (through the end of year ܰ), starting with 

an ݅-year-old equipment with cumulative utilization ݆ at the beginning of year ݇. 

3.5.3 Recursive Computation Relation 

Again, the ERO SDP problem can be presented as follows: At the beginning of year ݇ with 
an ݅-year-old equipment with cumulative utilization ݆, the fleet manager has two available 
actions: either keep or replace. Note again that the equipment unit will be used throughout 
that year ݇ regardless of the decision being “keep” or “replace”. Therefore, the annual 
operating and maintenance cost with the same probability distribution of that year is included 
as part of the costs under either decision scenario. The following presents both possible 
cases. 

Case I: Suppose that the action chosen is to keep the ݅-year-old equipment with cumulative 
utilization ݆. Then, the immediate one-stage cost is simply	ܥ௜,௝,௟ೖ with probability 

൫݌ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯, ݈௞ ൌ ݉ଵ,݉ଶ,⋯݉௧ೖ. Since the next stage and state as a result of this 
action is ݇ ൅ 1 and	݅ ൅ 1 with cumulative utilization ݆ ൅ ݈௞, the minimal total future cost 
from that point to the end of the decision horizon is, by definition, ௞ܶାଵ

∗ ሺ݅ ൅ 1, ݆ ൅ ݈௞ሻ. It 
therefore follows naturally that the best possible total cost associated with the keep action is 

given by	∑ ൫݌ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯ ∗ ௜,௝,௟ೖܥൣ ൅ ௞ܶାଵ
∗ ሺ݅ ൅ 1, ݆ ൅ ݈௞ሻ൧

௟ೖୀ௠೟ೖ
௟ೖୀ௠భ

. 

Case II: Suppose that the action chosen is to replace the ݅-year-old equipment with 
cumulative utilization ݆ instead. Then, the immediate one-stage cost is the sum of: ௞ܲ	(the 
purchase price of a new unit of equipment during the year ݇), െ ௜ܵାଵ,௒బ,௝ା௟ೖ,௟ೖశభ (the negative 
of the revenue from the salvage value of the now ሺ݅ ൅ 1ሻ-year-old equipment with 
cumulative utilization ݆ ൅ ݈௞ at the end of the decision year when the equipment is ݅-year-old 
with cumulative utilization ݆ at the beginning of the decision year ݇), and 	ܥ௜,௝,௟ೖ with 

probability ݌൫ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯, ݈௞ ൌ ݉ଵ,݉ଶ,⋯݉௧ೖ (the annual operating and 
maintenance cost of the now (݅ ൅ 1ሻ-year-old equipment with cumulative utilization ݆ ൅
݈௞	when ordering a new unit of equipment during that decision year). Since the next stage and 
state as a result of this action is ݇ ൅ 1 and age 0 with mileage being 0, the minimal total 
future cost from that point to the end of the decision horizon is, by definition, ௞ܶାଵ

∗ ሺ0,0ሻ. It 
therefore follows that the best possible total cost associated with the replace action is given 

by ௞ܲ െ ௜ܵାଵ,௒బ,௝ା௟ೖ,௟ೖశభ ൅ ∑ ൫݌ൣ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯ ∗ ௜,௝,௟ೖ൧ܥ
௟ೖୀ௠೟ೖ
௟ೖୀ௠భ

൅ ௞ܶାଵ
∗ ሺ0,0ሻ. 

Since the goal of the ERO problem is to minimize the total cost, the recursive computation 
relation is presented as follows: 
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௞ܶ
∗ሺ݅, ݆ሻ ൌ ݉݅݊	 ቄ∑ ൫݌ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯ ∗ ௜,௝,௟ೖܥൣ ൅ ௞ܶାଵ

∗ ሺ݅ ൅ 1, ݆ ൅ ݈௞ሻ൧
௟ೖୀ௠೟ೖ
௟ೖୀ௠భ

, ௞ܲ െ

௜ܵାଵ,௒బ,௝ା௟ೖ,௟ೖశభ ൅ ∑ ൫݌ൣ ௜ܷାଵ,௝ା௟ೖ,௟ೖశభห ௜ܷ,௝,௟ೖ൯ ∗ ௜,௝,௟ೖ൧ܥ
௟ೖୀ௠೟ೖ
௟ೖୀ௠భ

൅ ௞ܶାଵ
∗ ሺ0,0ሻቅ . 

With this recursive computation relation in place, the final step of the solution procedure 
consists of the recursive computation of the 	 ௞ܶ

∗ሺ݅, ݆ሻ’s. By solving backwards using either 
Bellman’s (Bellman, 1995; Bellman, 2003) or Wagner’s formulations (Wagner, 1975), the 
ERO problem can potentially be solved efficiently and effectively using the SDP approach. 

3.6 Summary 

 The general characteristics of ILP and dynamic programming models were presented in 
this chapter, along with a detailed discussion of both DDP and SDP model formulations. The 
model formulations provide a solid basis for the future overall solution methodology and the 
specific DP-based Bellman’s and Wagner’s solution approaches, which will be discussed in 
detail in the following chapters. 
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Chapter 4.  Solution Methodology 

4.1 Introduction 

As mentioned before, the ERO problem involves minimizing total costs by making the 
decision to either keep or replace a unit of equipment at the beginning of each year. Chapter 3 
discusses the DDP and SDP model formulations for the ERO problem. This chapter will present 
the DP-based solution methodology in detail.  

The following sections are organized as follows. Section 4.2 provides a description of the 
general solution framework. Section 4.3 describes the Java-based graphical user interface (GUI). 
Section 4.4 discusses the SAS macro data cleaner and analyzer. Section 4.5 explains the DP-
based optimization engine that runs the ERO software. Finally, section 4.6 concludes this chapter 
with a summary. 

4.2 Solution Framework and its Distinct Features 

Figure 4.1 provides a flow chart of the proposed solution framework for the ERO 
problem, which consists of three main components: 1) A Java based Graphical User Interface 
(GUI) that takes parameters selected by users, displays the final results of the optimization, and 
coordinates the other two components; 2) A SAS Macro based Data Cleaner and Analyzer, 
which undertakes the tasks of raw data reading, cleaning and analyzing, as well as cost 
estimation & forecasting; and 3) A DP-based optimization engine that minimizes the total cost 
over a defined horizon. These three components are briefly discussed in the following sections 
and more detailed discussions of each of the three components can be found in chapters 5, 6 and 
7.  

Again, this is the first ERO software that is targeted at the real world application (using 
TxDOT’s current fleet data) and caters to TxDOT’s own needs. However, it is believed that this 
pilot work is very general and may/can potentially be an example to demonstrate the promising 
feasibility and also immediate usability of the DP-based optimization solution, which can yield 
substantial cost savings for years to come in the fleet management industry worldwide.  
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Figure 4.1: Flow Chart of the Developed ERO Solution Methodology 

4.3 Java GUI 

The Java GUI (which is written in Java code) has been developed to interact with the 
software users such as the fleet manager. It is designed to take the desired inputs from users and 
coordinate the SAS Macro Data Cleaner and Analyzer and the Optimization Engine. Once the 
optimization engine has made its decision, the results are presented to the software user (i.e., the 
fleet manager) either on screen or can be saved in EXCEL format through the GUI. A detailed 

Raw Data Reading:
1. Read TERM Data Over All Years 
from 1999 to the Most Recent Year 
(e.g., 2009) for All Classcodes or Any 
Classcode Possibly Specified By the 
User

Data Cleaning & Processing:
1. SAS Data Manipulation
2. Data Errors and Outliers Removal
3. Data Descriptive Analysis
4. Data Regression Modeling

Cost Forecasting & Data Generating:
1. Purchase Cost
2. Mileage
    Salvage Value    
    Operating & Maintenance Cost 

User Specified 
Parameters/Options

Display Results 
(Either in SAS Tables or EXCEL Formats)

Class code
Bechmark/Optimization

Forecast Data for:
1. Purchase Cost
2. Mileage
    Salvage Value    
    Operating & Maintenance Cost    

Optimized Results:
1. Keep/Replacement Decision and Associated Cost
2. Increases in Cost if Delaying Replacement
3. Cost Savings Compared to Benchmark

User

Java Graphical User 
Interface (GUI)

SAS Macro Data 
Cleaner & Analyzer Optimization Engine



31 

examination of the specific characteristics and functionalities of the Java GUI will be provided in 
chapter 5. 

4.4 SAS Macro Data Cleaner and Analyzer 

When an optimization is run, the user specified options which are input through the Java 
GUI, are passed on to the SAS Macro Data Cleaner and Analyzer. The SAS macro codes are 
then executed to process the raw data corresponding to the user’s inputs and his/her 
requirements. Raw TERM data is read and errors & outliers are removed, after which cost 
estimating, forecasting and data generating are performed. Several intermediate SAS tables are 
generated for the user’s review, and several internal tables (some dealing with the classcode-
level historic purchase cost data and future purchase cost forecasts, and the others containing the 
O&M cost, the salvage value, and the usage information for the classcode for each equipment 
age) are generated and passed on to the optimization engine. Further detailed information 
concerning the SAS Macro Data Cleaner and Analyzer and its data cleaning/analyzing 
procedures can be found in chapter 6.  

4.5 DP-based Optimization Engine 

Once the optimization engine (also written in Java code) receives the internal tables 
generated by the SAS macro codes it executes the DP-based optimization approaches and makes 
the best keep/replacement optimization decision. This decision is then passed on to the Java-
based graphical user interface (GUI) for the users to review or save.  

It should be noted that the proposed DP solution algorithms have been implemented and 
solved via backward recursion and Java based DP solution software is developed to minimize the 
total costs. The software developed can recommend an optimized solution whether to retain or 
replace a unit of equipment based on the equipment class, age, mileage, salvage value, and 
replacement cost from SAS macro codes. Additionally, the developed ERO solution 
methodology is very general and can be used to make optimal keep/replacement decisions for 
both brand-new and used vehicles both with and without annual budget considerations. In 
particular, knapsack programming optimization method will be used to solve the ERO problem 
under budget constraints in order to account for the optimal replacement of multiple equipment 
units. The Optimization Engine is further detailed in chapter 7.  

4.6 Summary 

The objective of this chapter is to present the basic framework of the ERO solution 
methodology and its three individual components. Major components designed, procedures 
followed, solution approaches developed, characteristics and functionalities of the ERO software 
development will be presented in detail in the following three chapters.  
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Chapter 5.  Java GUI 

5.1 Introduction 

As discussed in Chapter 4, the first component of the ERO software is the Java GUI. This 
chapter provides a basic description of the functions incorporated and the options available to the 
user through the Java GUI.  

The following sections are organized as follows. Section 5.2 describes how the Java GUI 
is organized. Section 5.3 lists the individual functions associated with the Java GUI. Finally, 
section 5.4 concludes this chapter with a summary. 

5.2 Controllers and Views 

The Java GUI in the developed software consists of two packages including the 
Controllers Package (class OptimizerController) and the Views Package (classes HomeView and 
OptionsView). The OptimizerController class is responsible for managing the entire program and 
acts as a delegate between GUI windows (views), the SAS macro codes, and the optimization 
engine, located in the optimizer package. This class should be run to execute the program. The 
HomeView class is the first view that is displayed when the OptimizerController is run. This 
class is responsible for getting input from the user and handling any actions performed on all 
GUI objects. Any non-GUI actions (such as saving preferences or running the engine) are 
handled by calling OptimizerController. The OptionsView class creates and displays a GUI 
window for program options. For example, one of the options available is SAS Install Location 
which specifies the location of the executable for running SAS (e.g., C:\Program Files\SAS\SAS 
9.2\sas.exe). When saving options, the OptimizerController is called and it handles saving using 
preferences. 

Figure 5.1 is a flow chart of the Java GUI OptimizerController package and provides a 
screenshot of the Java GUI in which the functionalities discussed in section 5.3 are incorporated. 
Figures 5.2 and 5.3 provide detailed flow charts for the OptimmizerController and HomeView 
respectively.  
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Figure 5.1: Flow Chart of the Java GUI OptimizerController and a Screenshot of the Java GUI 

Figure 5.1a: 
OptimizerController 
Flow Chart 

Figure 5.1b Java GUI 
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Figure 5.2: Flow Chart for the OptimizerController 
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Figure 5.3: Flow Chart of the HomeView 
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5.3 Software Development and Functionalities 

The Java-based GUI has been designed such that the user may easily select, from a variety of 
options, the exact parameters he/she wishes to use for optimization. These options are briefly 
described below, for more information on the different functions incorporated in this software 
please refer to the Product 1 (Practical Guidelines on ERO) in Appendix A.  

 The user can choose to run optimization on either a single, specific classcode, or all 
classcodes for which there is available data.  

 The user can specify to run optimization for a specific equipment unit, for brand new 
equipment units, or for all equipment units.  

 The software allows the user to specify budget constraints.  
 Two different approaches for forecasting cost and usage data are available (these are Cost 

Current Trend and Cost Equal Mileage). 
 “Current Trend” --- Takes all the information from current TERM data that are “error- 

and outlier- free” and assumes that the same trend will continue for all future years. For 
example, the current TERM data shows that equipment utilization decreases as 
equipment gets older and therefore it is assumed this trend will continue. 

 “Equal Utilization” --- Takes the average mileage across all equipment with same 
classcode and uses this number for the utilization for all equipment during that year. Note 
that the year-to-year utilization for the same classcode can still be different under this 
assumption. 

 Optimization can be run with two different time windows; either the 20 year window 
suggested by TxDOT or the Benchmark year (2/3) option which only forecasts as far ahead 
as the next replacement.  

 The user can choose to run the software using SAS automatically generated cost data or use 
the Editable cost data and make any changes to it as they might consider necessary and use 
such cost manually at the beginning of each year. 

 The software gives the option to conduct the cost calculation by either Inflation Rate of by 
Cost of Money.  

 The software allows users to selectively “Clean the data.” 
 The user can choose from several different approaches, namely; DDP, SDP 2-Level, or SDP 

3-Level; and Bellman or Wagner. 
 The user can also choose to delay the replacement of equipment or replace it early by 

specifying a positive or negative delay time.  
 The software gives an EXCEL report for the cost savings by comparing the optimal solution 

with the benchmark rules and it provides an EXCEL report for the cost savings by comparing 
the optimal solution with the “delay by N years” option or “ignore the optimized decision” 
option (i.e. delay by 0 years).  

 Finally, users can add new annual TERM data at the beginning of each year and make 
dynamic keep/replacement decisions for any chosen classcode or equipment units. 

More details regarding the options available in the Java GUI can be found in the Product 
Report in Appendix A.  
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5.4 Summary 

The Java GUI is discussed in this chapter, along with its detailed software functionalities. 
For a more detailed presentation of the input and other options and how to use them, please refer 
to the Product 1 (Practical Guidelines on Equipment Replacement Optimization) which can be 
found in Appendix A to this report.  
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Chapter 6.  SAS Macro Data Cleaner and Analyzer  

6.1 Introduction 

The ERO is a truly complex problem and the current TxDOT TERM data contains 
extensive information that must be extracted and processed. The flow chart in Figure 6.1 also 
presents the sequence of the SAS macro codes, which implements and documents the 
comprehensive raw TERM data reading, cleaning, and processing, as well as the statistical 
modeling and cost forecasting processes. 

  

Figure 6.1: SAS Macro Flow Chart 

The following sections are organized as follows. Section 6.2 describes how the SAS 
macro codes are used to read, clean, and process the TxDOT TERM data. Section 6.3 explains 
how the data forecasts are generated for the salvage values and the purchase costs. Finally, 
section 6.4 concludes this chapter with a summary. 

6.2 Data Reading, Cleaning, and Processing 

6.2.1 Raw Data Reading 

As shown in the Figure 6.1, the first two steps are to read the raw data and to clean and 
process the data in the SAS macro data reader and analyzer. To accomplish this task, several 
source files written by the SAS macro codes are developed to read the TxDOT TERM raw 
data records from year 1999 to the most recent year (e.g., 2009). The specific steps taken 
during the data cleaning process are shown as follows: 1) Only records of “ACTIVE” 
equipment units are kept, which are equipment units with status not being “P” (purchase 
order processed), “Q” (requisitioned), “X” (retired equipment with payment pending); or “Z” 
(retired already); 2) Records with potential data errors (such as those with model year being 
zero) are identified, red-flagged and excluded from further analysis; 3) Records with 

Raw Data Reading:
1. Read TERM Data Over All Years from 
1999 to the Most Recent Year (e.g., 2009) 
for All Classcodes or Any Classcode 
Possibly Specified By the User

Data Cleaning & Processing:
1. SAS Data Manipulation
2. Data Errors and Outliers Removal
3. Data Descriptive Analysis
4. Data Regression Modeling

Cost Forecasting & Data Generating:
1. Purchase Cost
2. Mileage
    Salvage Value    
    Operating & Maintenance Cost 
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exceptionally high and incomparable cost (e.g. if total purchase cost, the sum of the purchase 
cost and the net adjusted capital cost, is $9,484,823.00, it is deemed as exceptionally high for 
a single piece of equipment), such records are red-flagged and passed on to the later outlier 
treatments for possible removal. 4) If a piece of equipment has usage data for year zero, then 
this record is thrown out based upon advice from the project director. To further clarify this 
treatment, an example is provided as follows: Suppose in year 2003, the fleet manager 
ordered a piece of equipment whose model year is 2004 and used it for a short period of time 
during the 2003 year. Equipment age calculated using this equation (equipment age = current 
year – model year + 1) is 0, but the actual year of usage is 1. Since TxDOT uses model year 
(rather than the actual year of usage) to calculate the cost information for all datasets in any 
given year, to avoid confusion, such records are excluded from further analysis in the defined 
project scope. 

6.2.2 Data Processing and Outlier Treatment 

The current raw TxDOT TERM data, which includes age, miles (or hours) of operation, 
downtime, as well as O&M costs, has outliers in the variables. To get a quality result out of 
DP-based optimization solutions to the ERO problem, one needs to treat these outliers very 
carefully. Having realized the importance of proper outlier treatments, the state-of-the-art and 
state-of-the-practice outlier treatment techniques have been carefully reviewed. In order to 
ensure data quality, several advanced data cleaning and outlier treatment techniques have 
been explored and experiments are undertaken to remove all records with exceptionally low 
or high age, miles (or hours) of operation, downtime, as well as O&M costs. There are at 
least three approaches that can be used for outlier treatments (Fan et al, 2011a): 1) One 
relatively simple method is based upon the statistical confidence interval concept. That is, 
95% of the data in a normally distributed distribution will lie within 1.96 standard deviates of 
the mean of the distribution. Therefore, one can treat any values more extreme than the mean 
plus and minus 1.96 standard deviates as outliers and discard them from analysis. 
Unfortunately, both the mean and the sample variance of a distribution (and therefore its 
standard deviation) suffer from the heavy influence of extreme values. As a result, using this 
rule-of-thumb does NOT always yield the desired result because the standard deviation is 
made too large by the very values that one would otherwise like to discard from the analysis 
(Shoemaker, 1999); 2) The second approach to outlier treatments is to use the median rather 
than the mean as the measure of central tendency; and 3) The third approach is to use an IQR 
(inter-quartile-range) computation. To accomplish the task, one must compute the inter-
quartile-range (IQR) for continuous data and then take a multiple of it as a cut-off value to 
define values which are considered outliers. This method has been detailed in the work of 
Shoemaker (Shoemaker, 1999) as a very robust technique for identifying outliers: treat any 
value greater than the 75th percentile plus 1.5 times the inter-quartile distance, or less than the 
25th percentile minus 1.5 times the inter-quartile distance as an outlier. According to many 
researchers, this technique was deemed as robust because it uses the quartile values instead 
of variance to describe the spread of the data and quartiles are less influenced by extreme 
values. Since this has been reported to be an extremely effective and widely used approach 
for outlier treatments, Shoemaker’s IQR approach is used to treat the outliers of all cost/time 
variables.  For example, some data records have exceptionally high total purchase cost (i.e., 
the sum of the purchase cost and the net adjusted capital cost) for a single piece of equipment 
and therefore are excluded for further analysis after the outlier treatments. 
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Note that solving the ERO problem using the dynamic programming approach requires all 
cost information (such as annual O&M costs including all repairs, regular maintenance and 
down time penalty costs, and salvage values, as well as purchase costs of the new model 
year) at each stage (i.e., decision year). It is necessary to convert all costs from the equipment 
model year (for the equipment purchase cost) and calendar year (for annual O&M costs and 
salvage value) to a benchmark year using the inflation rate (i.e., currently the benchmark is 
2009 but the user can specify any year).  The default adjustments are made based on the 
Consumer Price Index (CPI) inflation rate data published by U.S. Bureau of Labor Statistics 
(CPI Inflation Calculator, Bureau of Labor Statistics, 2009).  

The following Table 6.1 provides a summary of the number of records (by year) obtained 
including the current TxDOT TERM raw data records, the active equipment records, total 
records after removing data errors, and total records after outlier treatments. As one can see, 
active equipment records consist of an average of 86% of the raw data and only about 0.2% 
of them have errors. Out of all error-free active records, approximately 27% have outliers. 
Overall, the number of active records deleted (either having outliers or with errors) accounts 
for 27.3 percent of all active equipment records. This is not a small fraction and it is therefore 
expected that this outlier treatment process will significantly improve the quality and 
reliability of the later cost estimation and data forecasting. 

Table 6.1: Yearly Records Obtained during the Data Cleaning Process 

 

During the process of SAS macro data cleaning and analyzing as well as cost data forecasting 
& generating, all produced SAS datasets are kept as intermediate tables in case the fleet 
manager or software users wish to examine these intermediate tables to see whether the data 
cleaning process has been performed in a reasonable way. Also, these tables can serve as 
roadmaps for internal software developing and testing purposes. 

6.3 Cost Forecasting and Data Generating 

As part of the SAS macro data cleaner and analyzer, several salvage value calculations and 
data forecasting methods are also carefully examined. Several advanced linear and nonlinear 
mathematical models have been developed and a series of regression analyses are conducted 
to ensure data forecasting quality. After conducting numerous cost modeling experiments and 
comprehensive DDP solution tests, there has been enough evidence to indicate that all data 
forecasting, in particular the salvage value, downtime cost and the purchase cost forecasting, 
are very important factors for the ERO problem and can have a truly significant impact on 
the ERO keep/replace decision. Correctly forecasting the salvage value and other costs is 
extremely important to the ERO problem because they are used at each stage and are 
associated with each replace/keep decision. The following two subsections will present the 
salvage value calculation and purchase cost calculation in detail. 

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Total Records 20368 19992 20335 19714 20152 20192 20973 21336 21378 20191 19147

Active Equipment 
Records

17188 17209 17472 17317 17187 17759 17779 18072 17900 17046 16415

Total Records After 
Removing Errors

17126 17174 17443 17283 17157 17733 17752 17998 17833 17020 16370

Total Records After 
Removing Outliers

12288 12374 12647 12651 12465 12876 12954 12895 13049 12590 12222



42 

6.3.1 Salvage Value Calculation 

In this report the development of a more robust salvage value estimation model for both 
heavy and light vehicles has been experimented with. The development process for each of 
these models is described below. 

For heavy vehicles, the salvage value analysis completed by Lucko (Lucko, 2003) is used. In 
this analysis, Lucko provides ratios for salvage values as compared to original purchase 
prices for several vehicle types at ages zero to fifteen years. Specifically, Lucko looked at 11 
different equipment types and 28 categories by size as measured by horse power, standard 
operating weight, or bucket volume. Lucko’s analysis looks at four vehicle manufacturers: 
Caterpillar, Deere, Komatsu, and Volvo. Each of these four does not produce all of the 28 
types of vehicles, but for vehicles produced by more than one manufacturer, salvage values 
are similar between manufacturers. Therefore, because Caterpillar has the most complete set 
of salvage values, these values have been chosen to be the salvage value model used in this 
project. The exception is for Track Dozers (0-99 HP), for which Komatsu data was used 
because Caterpillar does not manufacture a track dozer of this size. 

In describing the analyzed vehicle types, Lucko states: “The equipment types studied are 
hydraulic excavators (track-type, wheel-type), loaders (wheel-type, track-type, backhoes, 
integrated toolcarriers), rear-dump haulers (rigid frame, articulated), track dozers, motor 
graders, and wheel tractor scrapers. Rare or specialty types of equipment like cranes, rollers, 
and trenching and boring machines were not considered.” For the salvage value models, 
careful judgment has been used to match Lucko’s vehicle types with those defined by 
TxDOT. Not all of the TxDOT vehicle types have a corresponding Lucko vehicle type. A 
table of heavy vehicle comparisons and a table of heavy vehicle salvage value ratios are 
provided below. 
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Table 6.2: Heavy Vehicle Type Comparisons 

 

TxDO T Class Code TxDO T Vehicle  Type Lucko Vehicle  Type

1010 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, TO 29', INC TRUCK Rigid-Frame Truck (0-99,999 lbs)

1020 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 30-39', INC TRUCK Rigid-Frame Truck (0-99,999 lbs)

1030 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 40-59', INC TRUCK Rigid-Frame Truck (0-99,999 lbs)

1040 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 60' +, INC TRUCK Rigid-Frame Truck (0-99,999 lbs)

1050 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, MILEAGE Rigid-Frame Truck (0-99,999 lbs)

11010 ASPHALT DISTRIBUTOR, TRUCK MOUNTED, (INCLUDES TRUCK) Rigid-Frame Truck (0-99,999 lbs)

12010 ASPHALT MAINTENANCE UNIT, 600  GAL, TRAILER MOUNTED Rigid-Frame Truck (0-99,999 lbs)

12020 ASPHALT MAINTENANCE UNIT, 1000 GAL, TRAILER MOUNTED Rigid-Frame Truck (100,000+ lbs)

12030 ASPHALT MAINTENANCE UNIT, TRUCK MOUNTED Rigid-Frame Truck (0-99,999 lbs)

12040 ASPHALT MAINTENANCE UNIT, DUMPBODY CONTAINED Rigid-Frame Truck (0-99,999 lbs)

14000 ASPHALT MELTING KETTLE (HTR), TRAILER MOUNTED Rigid-Frame Truck (100,000+ lbs)

19000 ASPHALT RECLAIMER/STABILIZER, CLASS I, SP, < 94.5 CUT WIDTH Rigid-Frame Truck (100,000+ lbs)

44000 EARTH BORING MACHINE, TRUCK MOUNTED (INCLUDES TRUCK) Rigid-Frame Truck (100,000+ lbs)

52010 CRANE, CARRIER MOUNTED, CABLE OR TELESCOPING NA

52020 CRANE, CRAWLER TYPE, CABLE CONTROL NA

54000 CRANE, TELESCOPING BOOM, TRUCK MOUNTED (INCLUDES TRUCK) Rigid-Frame Truck (0-99,999 lbs)

56000 CRANE, YARD/INDUSTRIAL, SELF PROPELLED NA

64000 DYNAMIC DEFLECTION SYSTEM, TRAILER MOUNTED Rigid-Frame Truck (0-99,999 lbs)

70010 EXCAVATOR, HINGED OR TELESCOPING BOOM, CRAWLER TYPE Track Excavator (25,000-49,999 lbs)

70020 EXCAVATOR, HINGED BOOM, PNEUMATIC TIRED CARRIER Track Excavator (25,000-49,999 lbs)

75010 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS I Track Excavator (25,000-49,999 lbs)

75020 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS II Track Excavator (25,000-49,999 lbs)

75030 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS III Track Excavator (25,000-49,999 lbs)

80000 FORKLIFT, ELECTRIC Wheel Loader (0-1.9 CY)

85010 FORKLIFT, ENGINE DRIVEN, UP TO 3,999 LB CAPACITY Wheel Loader (0-1.9 CY)

85020 FORKLIFT, ENGINE DRIVEN, 4,000 LB AND OVER CAPACITY Wheel Loader (2-3.9 CY)

90010 GRADER, MOTOR, CLASS I, UP TO 109 H.P. Motor Grader (0-149 HP)

90020 GRADER, MOTOR, CLASS II, 110-134 H.P. Motor Grader (0-149 HP)

90030 GRADER, MOTOR, CLASS III, 135-149 H.P. Motor Grader (0-149 HP)

90040 GRADER, MOTOR, CLASS IV, 150  H.P. AND GREATER Motor Grader (150+ HP)

110010 LOADER, CRAWLER, UP TO 1.9 CU.YD. CAPACITY Track Loader (0-1.9 CY)

110020 LOADER, CRAWLER, 2 CU. YD. CAPACITY AND GREATER Track Loader (2+ CY)

115000 LOADER, PNEUMATIC TIRED, SKID STEER Wheel Loader (0-1.9 CY)

115010 LOADER, PNEUMATIC TIRED, UP TO 1 1/2 CY Wheel Loader (0-1.9 CY)

115020 LOADER, PNEUMATIC TIRED, 1 1/2 CY Wheel Loader (0-1.9 CY)

115030 LOADER, PNEUMATIC TIRED, 2 CY Wheel Loader (2-3.9 CY)

115040 LOADER, PNEUMATIC TIRED, 2 1/2 AND 3 CY Wheel Loader (2-3.9 CY)

132040 MOWER, TRAIL TYPE, ROTARY, 9 FT  AND GREATER NA

136010 MOWER, SLOPE, SIDE BOOM, TRACTOR MOUNTED, INC TRACTOR NA

140040 PAINT STRIPE MACHINE, 2 COLOR, MULTI-LINE, TRUCK MOUNTED Rigid-Frame Truck (0-99,999 lbs)

154000 PAVEMENT PROFILING MACHINE, SELF PROPELLED Rigid-Frame Truck (100,000+ lbs)

156010 PAVER, BITUMINOUS, SELF PROPELLED Rigid-Frame Truck (100,000+ lbs)

162020 PULVERIZER-MIXER, EARTH, SELF PROPELLED Rigid-Frame Truck (100,000+ lbs)

170010 ROLLER, FLATWHEEL, SELF PROPELLED 4-6 TON W/PNMTC TRS NA

170020 ROLLER, FLATWHEEL, SELF PROPELLED 5-8 TON NA
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Table 6.3: Heavy Vehicle Type Comparisons Cont. 

 
 

TxDO T Class Code TxDO T Vehicle  Type Lucko Vehicle  Type

170030 ROLLER, FLATWHEEL, SELF PROPELLED 8-14 TON NA

174010 ROLLER, PNEUMATIC TIRED, SELF PROPELLED NA

176010 ROLLER, TAMPING, SELF PROPELLED NA

178010 ROLLER, VIBRATING, SELF PROPELLED NA

178020 ROLLER, VIBRATING, SELF PROPELLED W/PNEUMATIC TIRES NA

186000 SIGN, ELECTRONIC CHANGEABLE, TRAILER MOUNTED NA

186010 SIGN, ELECTRONIC CHANGEABLE, TRAILER MOUNTED, SOLAR PWRED NA

192010 SPRAYER, HERBICIDE/INSECTICIDE, TRUCK MOUNTED (INC TRK) Articulated Truck (0-49,999 lbs)

194010 SPREADER, AGGREGATE, SELF POWERED NA

202010 SWEEPER, ROAD, SELF PROPELLED Articulated Truck (0-49,999 lbs)

204020 SWEEPER, STREET, TRUCK MOUNTED NA

204030 SWEEPER, STREET, TRUCK MOUNTED, REGENERATIVE AIR, UP TO 5.9 CY NA

204040 SWEEPER, STREET, TRUCK MOUNTED, REGENERATIVE AIR, 6 CY & UP NA

214000 TANK, WATER, TRUCK MOUNTED, INCLUDES TRUCK, MILEAGE Articulated Truck (0-49,999 lbs)

214010 TANK, WATER, TRUCK MOUNTED, INCLUDES TRUCK, HOURLY Articulated Truck (0-49,999 lbs)

220010 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) TO 100 HP Track Dozer (0-99 HP)

220020 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) 100-129 HP Track Dozer (100-199 HP)

220030 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) 130-179 HP Track Dozer (100-199 HP)

230010 TRACTOR, PNEUMATIC TIRED, TO 49 HP (TRACTOR ONLY) Wheel Loader (0-1.9 CY)

230020 TRACTOR, PNEUMATIC TIRED, 50-64 HP (TRACTOR ONLY) Wheel Loader (2-3.9 CY)

230030 TRACTOR, PNEUMATIC TIRED, 65 HP & GREATER (TRACTOR ONLY) Wheel Loader (2-3.9 CY)

240020 TRACTOR, PNEUMATIC TIRED, W/LOADER & BACKHOE, TO 60 HP Backhoe Loader (0-0.9 CY)

240030 TRACTOR, PNEUMATIC TIRED, W/LOADER AND BACKHOE, 60 HP & UP Backhoe Loader (1+ CY)

260010 TRAILER, EQUIPMENT, TILT BED/UTILITY, TO 24,000 LB CAPACITY Articulated Truck (0-49,999 lbs)

260020 TRAILER, EQUIPMENT, TILT BED/UTILITY, 24,000 LB CAP & GREATER Articulated Truck (0-49,999 lbs)

260030 TRAILER, EQUIPMENT, GOOSENECK Articulated Truck (0-49,999 lbs)

280010 TRAILER, TRANSPORT, PLATFORM Articulated Truck (0-49,999 lbs)

280020 TRAILER, TRANSPORT, SIGN Articulated Truck (0-49,999 lbs)

480010 TRUCK, PLTFM, PLTFM DUMP, STAKE, 8600-14999 GVWR Articulated Truck (0-49,999 lbs)

490010 TRUCK, LIGHT/MEDIUM, 14,500 TO 18,999 GVWR Articulated Truck (0-49,999 lbs)

500010 TRUCK, ALL BODY STYLES, 15,000-18,900 GVWR Articulated Truck (0-49,999 lbs)

510010 TRUCK, ALL BODY STYLES, 19,000-20,900 GVWR Articulated Truck (0-49,999 lbs)

520010 TRUCK, ALL BODY STYLES EXC CONV DUMP, 21000-25400 GVWR Articulated Truck (0-49,999 lbs)

520020 TRUCK, CONVENTIONAL DUMP, 21000-25400 GVWR Articulated Truck (0-49,999 lbs)

520030 TRUCK, EJECTION TYPE MATERIAL BODY, 21000-25400 GVWR Articulated Truck (0-49,999 lbs)

530010 TRUCK, ALL BODY STYLES, EXC CONV DUMP/WRKR 25500-28900 Articulated Truck (0-49,999 lbs)

530020 TRUCK, CONVENTIONAL DUMP, 25500-28900 GVWR Articulated Truck (0-49,999 lbs)

530030 TRUCK, EJECTION TYPE MATERIAL BODY, 25500-38900 Articulated Truck (0-49,999 lbs)

540010 TRUCK, DUMP, SINGLE REAR AXLE,29000-42900 GVWR Articulated Truck (0-49,999 lbs)

540020 TRUCK, DUMP, TANDEM REAR AXLE, 43000 GVWR AND GREATER Articulated Truck (50,000+ lbs)

550010 TRUCK, ALL STYLES EXC DUMP, SINGLE REAR AXLE 29000-38900 Articulated Truck (0-49,999 lbs)

550020 TRUCK, ALL STYLES EXC DUMP, TANDEM REAR AXLE 39000 + Articulated Truck (0-49,999 lbs)

600010 TRUCK TRACTOR, SINGLE REAR AXLE, UP TO 60000 GCWR Articulated Truck (50,000+ lbs)

600020 TRUCK TRACTOR, SINGLE REAR AXLE, 60000 GCWR & GREATER Articulated Truck (50,000+ lbs)

600030 TRUCK TRACTOR, TANDEM REAR AXLE, ALL GCWR Articulated Truck (50,000+ lbs)
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Table 6.4 Heavy Vehicle Salvage Value Ratios 
Years of Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Track Excavator (0-24,999 lbs) 0.6477 0.5682 0.4962 0.4317 0.3746 0.3251 0.2830 0.2484 0.2213 0.2016 0.1895 0.1848 0.1848 0.1848 0.1848 0.1848 
Track Excavator (25,000-49,999 lbs) 0.5494 0.4998 0.4543 0.4128 0.3754 0.3419 0.3125 0.2871 0.2657 0.2483 0.2350 0.2256 0.2203 0.2190 0.2190 0.2190 
Track Excavator (50,000-74,999 lbs) 0.5188 0.4521 0.3919 0.3381 0.2908 0.2500 0.2157 0.1878 0.1664 0.1515 0.1431 0.1412 0.1412 0.1412 0.1412 0.1412 
Track Excavator (75,000-99,999 lbs) 0.5820 0.5037 0.4328 0.3693 0.3131 0.2643 0.2228 0.1887 0.1620 0.1426 0.1306 0.1259 0.1259 0.1259 0.1259 0.1259 
Track Excavator (100,000+ lbs) . . . . . . . . . . . . . . . . 
Wheel Excavator (All Sizes) 0.6367 0.5658 0.5010 0.4421 0.3893 0.3426 0.3019 0.2672 0.2386 0.2160 0.1994 0.1889 0.1845 0.1845 0.1845 0.1845 
Wheel Loader (0-1.9 CY) 0.5249 0.4899 0.4570 0.4260 0.3971 0.3702 0.3452 0.3223 0.3013 0.2824 0.2655 0.2505 0.2376 0.2266 0.2177 0.2108 
Wheel Loader (2-3.9 CY) 0.6565 0.5939 0.5363 0.4835 0.4356 0.3925 0.3543 0.3209 0.2925 0.2688 0.2501 0.2361 0.2271 0.2229 0.2229 0.2229 
Wheel Loader (4-5.9 CY) 0.6270 0.5659 0.5099 0.4590 0.4132 0.3725 0.3368 0.3062 0.2807 0.2603 0.2450 0.2347 0.2295 0.2294 0.2294 0.2294 
Wheel Loader (6+ CY) 0.6107 0.5362 0.4686 0.4078 0.3538 0.3066 0.2661 0.2325 0.2057 0.1857 0.1725 0.1660 0.1660 0.1660 0.1660 0.1660 
Track Loader (0-1.9 CY) 0.5268 0.4868 0.4496 0.4153 0.3839 0.3554 0.3297 0.3068 0.2868 0.2697 0.2555 0.2441 0.2355 0.2298 0.2270 0.2270 
Track Loader (2+ CY) 0.6704 0.6147 0.5639 0.5180 0.4771 0.4412 0.4102 0.3841 0.3629 0.3467 0.3355 0.3292 0.3278 0.3278 0.3278 0.3278 
Backhoe Loader (0-0.9 CY) . . . . . . . . . . . . . . . . 
Backhoe Loader (1+ CY) 0.6195 0.5576 0.5007 0.4486 0.4016 0.3594 0.3222 0.2900 0.2626 0.2403 0.2228 0.2103 0.2028 0.2001 0.2001 0.2001 
Integrated Toolcarrier (All Sizes) 0.7118 0.6304 0.5556 0.4874 0.4257 0.3706 0.3221 0.2802 0.2449 0.2162 0.1940 0.1784 0.1694 0.1670 0.1670 0.1670 
Rigid-Frame Truck (0-99,999 lbs) 0.5511 0.5090 0.4696 0.4332 0.3996 0.3688 0.3410 0.3159 0.2938 0.2745 0.2580 0.2445 0.2337 0.2259 0.2209 0.2187 
Rigid-Frame Truck (100,000+ lbs) 0.6053 0.5582 0.5134 0.4707 0.4302 0.3920 0.3559 0.3220 0.2903 0.2609 0.2336 0.2085 0.1857 0.1650 0.1465 0.1303 
Articulated Truck (0-49,999 lbs) 0.5444 0.4783 0.4179 0.3633 0.3145 0.2715 0.2342 0.2028 0.1771 0.1572 0.1430 0.1347 0.1321 0.1321 0.1321 0.1321 
Articulated Truck (50,000+ lbs) 0.5204 0.4550 0.3955 0.3421 0.2946 0.2531 0.2177 0.1882 0.1648 0.1473 0.1358 0.1304 0.1304 0.1304 0.1304 0.1304 
Track Dozer (0-99 HP) 0.5537 0.5025 0.4554 0.4124 0.3734 0.3385 0.3077 0.2810 0.2584 0.2399 0.2254 0.2150 0.2087 0.2065 0.2065 0.2065 
Track Dozer (100-199 HP) 0.6500 0.5783 0.5129 0.4536 0.4006 0.3537 0.3130 0.2786 0.2503 0.2283 0.2124 0.2027 0.1993 0.1993 0.1993 0.1993 
Track Dozer (200-299 HP) 0.7084 0.6506 0.5978 0.5500 0.5071 0.4693 0.4364 0.4085 0.3856 0.3676 0.3547 0.3467 0.3437 0.3437 0.3437 0.3437 
Track Dozer (300-399 HP) 0.6973 0.6230 0.5552 0.4940 0.4392 0.3911 0.3494 0.3144 0.2858 0.2638 0.2483 0.2394 0.2370 0.2370 0.2370 0.2370 
Track Dozer (400+ HP) 0.5961 0.5253 0.4614 0.4043 0.3540 0.3105 0.2738 0.2440 0.2210 0.2048 0.1954 0.1928 0.1928 0.1928 0.1928 0.1928 
Motor Grader (0-149 HP) 0.7229 0.6577 0.5976 0.5425 0.4924 0.4474 0.4074 0.3725 0.3426 0.3178 0.2980 0.2832 0.2735 0.2688 0.2688 0.2688 
Motor Grader (150+ HP) 0.7408 0.6751 0.6146 0.5592 0.5090 0.4640 0.4241 0.3894 0.3599 0.3355 0.3163 0.3022 0.2933 0.2895 0.2895 0.2895 
Wheel-Tractor Scraper (0-74,999 lbs) 0.8119 0.7322 0.6586 0.5910 0.5294 0.4739 0.4244 0.3809 0.3435 0.3122 0.2868 0.2675 0.2543 0.2471 0.2459 0.2459 
Wheel-Tractor Scraper (75,000 lbs) 0.7102 0.6599 0.6119 0.5662 0.5229 0.4819 0.4432 0.4069 0.3729 0.3413 0.3120 0.2851 0.2605 0.2382 0.2183 0.2007 

 
Salvage Value Reference: Lucko, G. A Statistical Analysis and Model of the Residual Value of Different Types of Heavy Construction 
Equipment.  Diss.  Virginia Polytechnic Institute and State University, 2003.
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For light vehicles, Kelly Blue Book (KBB) values were used. Each vehicle in the 2008 data 
set was assumed to be in good condition and have the default options installed, and KBB’s 
“private party” values were considered to be the best proxy for auction values. (Certainly it is 
realized that Kelly Bluebook is a consumer oriented publication and that in some cases, 
auction results may be the best data source for salvage values. In addition, the Blackbook and 
other value guides based on commercial auction data, such as Manhiem and Richie Brothers, 
may be more appropriate for DOT fleets for certain cases.) Once salvage values were 
determined for each of the light vehicles in the 2008 fleet, a variety of different models were 
examined to find the best fit for the data using the simplest model structure. A table of light 
vehicle classcodes is also provided below.  

Table 6.5: Light Vehicle ClassCodes 

 

Two final calibrated models are developed to estimate/forecast the equipment salvage value 
(at the end of each decision year) using its original purchase cost and the equipment age 
(represented in years) as the independent variables for both heavy and light vehicle types and 
they are provided respectively in the following: 

 For Heavy Vehicle: Salvage	Value ൌ Original	Purchase	Price ∗ 0.6075 ∗ ݁ି଴.଴଻଼∗ா௤௨௜௣௠௘௡௧_஺௚௘ 

 For Light Vehicle: Salvage	Value ൌ Original	Purchase	Price ∗ ݁െ0.14∗݁݃ܣ_ݐ݊݁݉݌݅ݑݍܧ		

Also the ܴଶ values of both models (about 0.95) are fairly high, indicating that the models 
account for a high percentage of the total amount of variation in salvage values. Moreover, 
both types of vehicles have simplistic exponential model structures and the only inputs 
needed to determine the salvage value is the age of the vehicle (in years) and the original 

20020 AUTOMOBILES, SEDAN, 100 THRU 112.9 IN. WHEELBASE

20030 AUTOMOBILES, SEDAN, 113 IN. WHEELBASE AND GREATER

25010 AUTOMOBILES, STATION WAGONS, UP TO 112.9 IN. WHEELBASE

400010 TRUCK, 4-WD UTILITY AND CARRYALL

400020 TRUCK, 4-WD PICKUP, ALL STYLES

400030 TRUCK, 2-WD UTILITY VEHICLE, 3961-5000 GVWR

410010 TRUCK, CARRYALL, UP TO 6950 LB GVWR

410020 TRUCK, CARRYALL, 7000 LB GVWR AND GREATER

420010 TRUCK, CARGO OR WINDOW VAN, MINI, UP TO 6200 LB GVWR

420020 TRUCK, CARGO OR WINDOW VAN, FULL-SIZE, 6200 LB GVWR & UP

430010 TRUCK, LIGHT DUTY, PICKUP, UP TO 4600 LB GVWR

430020 TRUCK, LIGHT DUTY, PICKUP, 4600 - 6199 LB GVWR

430030 TRUCK, LIGHT DUTY, OTHER BODY STYLES, 4600-6199 GVWR

430040 TRUCK, HEAVY DUTY COMPACT, 4320-5600 GVWR

430050 TRUCK, EXTENDED CAB COMPACT, 4245-5034 GVWR

430070 TRUCK, EXTENDED CAB 1/2 TON, 6000-6799 GVWR

440010 TRUCK, LIGHT DUTY, PICKUP, 6200-7999 LB GVWR

440020 TRUCK, LIGHT DUTY, OTHER BODY STYLES, 6200-7999 GVWR

440030 TRUCK, EXTENDED CAB 3/4 TON, 6800-9000 GVWR

450010 TRUCK, LIGHT DUTY, 8000-8599 GVWR, PICKUP BODY

450020 TRUCK, LIGHT DUTY, 8000-8599 GVWR, OTHER BODY STYLES

460010 TRUCK, LIGHT DUTY, 8600-14999 GVWR, PICKUP BODY

460020 TRUCK, LIGHT DUTY, 8600-14999 GVWR, OTHER BODY STYLES

470020 TRUCK, LIGHT DUTY, CR CAB, 7901-8599 GVWR, OTHER BODY STYLES

470030 TRUCK, LIGHT DUTY, CR CAB, 8600-14999 GVWR, OTHER BODY STYLES
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purchase cost, two data points that will undoubtedly be attached to the vehicle at all times. 
Most importantly, both exponential models can ensure that the salvage values will always be 
greater than 0 but will never exceed the original equipment purchase price for both heavy and 
light vehicles. After comprehensive testing, calibrating, and validating, both models seem to 
be very good and transferrable, and therefore are employed in the software to solving the 
ERO problem. 

6.3.2 Purchase Cost Calculation 

To derive the best models, several linear and nonlinear mathematical models were explored 
and advanced smoothing methods were developed to forecast equipment purchase cost (vs. 
model year), the annual O&M cost and the annual mileage (both vs. equipment age). The 
annual O&M cost per mile is also calculated using the equipment age as the only dependent 
variable. 

In particular, the SAS macro source codes developed compare the following five different 
types of models: 1) Linear Model; 2) Polynomial Model; 3) Logarithm Model; 4) 
Exponential Model; and 5) Power Model. It should be noted that Types 2)-5) are all 
nonlinear models. The following shows the model forms: 

1. Linear Model: ݕ ൌ ܽ ൅  ;ݔܾ
2. Polynomial Model: ݕ ൌ ଷݔܽ ൅ ଶݔܾ ൅ ݔܿ ൅ ݀; 
3. Logarithm Model: ݕ ൌ ܽ ln ݔ ൅ ܾ; By taking the regression of ݕ vs. ln  one can get the ,ݔ

model. 
4. Exponential Model: ݕ ൌ ܽ݁௕௫ or ln ݕ ൌ ln ܽ ൅ By taking the regression of ln ;ݔܾ  ,ݔ .vs ݕ

one can get the model. 
5. Power Model: ݕ ൌ ௕ or lnݔܽ ݕ ൌ ln ܽ ൅ ܾ ln By taking the regression of ln ;ݔ vs. ln ݕ  ,ݔ

one can get the model. 

The developed SAS macro codes have the capability of running through all linear and 
nonlinear models as described above. It can automate the model selection process by 
identifying the best model using the highest R-square value for forecasting the equipment 
purchase cost (using model year), and annual O&M cost/mile (using equipment age) for any 
chosen class code.In particular, it has been observed that for some classcodes even the best 
forecasting model with the highest R2 value can produce negative forecasted purchase cost 
due to limited data or exhibited patterns within the data. In such cases the increasing adjusted 
purchase cost method is used for both code development and testing purposes. This method 
is currently under investigation and will be refined as the line of this research matures. 

6.4 Summary 

This chapter describes the TERM raw data cleaning and outlier treatments, as well as the cost 
forecasting and data processing performed by SAS macro codes. After the TERM data has been 
cleaned and analyzed, the SAS macro will generate several cost/mileage forecasting tables, 
which serve as the inputs to the DP-based optimization Engine to make the best possible 
keep/replace decision. Detailed information about the optimization engine will be discussed in 
the next chapter. 
  



48 

  



49 

 

Chapter 7.  DP-based Optimization Engine 

7.1 Introduction 

To solve the ERO problem, a DP-based optimization engine has been developed, which 
includes both DDP and SDP and uses both Bellman’s and Wagner’s approaches. The 
optimization engine receives the tables generated by SAS and uses the information to determine 
the optimized decision for both brand-new and used vehicles both with/without annual budget 
considerations. 

The following sections are organized as follows. Section 7.2 details the DDP solution 
approach, including the Bellman’s and Wagner’s Formulations. A small example is also 
designed and stepped-through to illustrate the Bellman’s formulation and its solution process. 
Section 7.3 provides an explanation the SDP solution approach. The SDP state-space issue is 
also discussed along with the presentation of scenario reduction treatments to resolve such issue. 
Section 7.4 discusses the knapsack programming that is used in the second-round optimization to 
explicitly account for the ERO under annual budget constraint. Section 7.5 describes the 
computer implementation techniques developed to solve the ERO problem. Finally, section 7.6 
concludes this chapter with a summary. 

7.2 DDP Solution Approach 

7.2.1 Bellman’s DDP Formulation 

Bellman (Bellman, 1995) introduced the first DDP solution to the finite horizon equipment 
replacement problem where the age of the asset defines the state of the system with the 
decision to keep or replace the asset at the end of each period (stage).  

The Bellman DDP approach has been implemented so that the solution caters to TxDOT’s 
needs in solving the ERO problem. The formulation is presented in the network shown in 
Figure 7.1. In this network, each node represents the age and the usage (i.e., mileage/hours) 
of the asset at that point in time, which is also the state space of the model. Each arc 
represents the decision to either keep (K) or replace (R) the asset. Keeping the asset connects 
nodes n (i.e., n-year-old) and n+1 (i.e., n+1-year-old) while replacing the asset is shown by 
an arc connecting n and 0. An optimal policy with this model, in the form (K, K, R, K, K, 
…),  gives the optimal decision at the beginning of each year. It can be seen that if an asset 
can be retained for a maximum of ܰ periods, then the maximum number of states in a period 
is ܰ. For an ܰ-period problem, since there are a maximum of two decisions for any state, the 
problem can be solved using the following calculation: O(State of year 1 + State of year 2 + 

… + State of year ܰ) = O (1 + 2 + 3 + … + ܰ + 1) = O( 
ேሺேାଵሻ

ଶ
൅ 1).  Therefore, the 

computer complexity of Bellman’s algorithm is O(ܰଶ). 
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Figure 7.1: Bellman’s DDP Approach to Solving the ERO Problem 

 
7.2.2 Wagner’s DDP Formulation 

Wagner (Wagner, 1975) provided an alternative DP formulation to Bellman’s solution in 
which the state of the system is the number of years an asset is to be kept. Let the value of N 
be again the maximum allowable service life for the asset. In Wagner’s approach, the 
decisions are the number of periods, 1, 2, . . . , N to retain an asset rather than whether to 
keep or replace the asset as shown in Bellman’s approach. 

The Wagner DDP approach has been implemented to meet TxDOT’s needs in solving the 
ERO problem. Figure 7.2 gives a network representation of Wagner’s approach to the ERO 
problem. In this network, each node represents the time period and each arc represents the 
amount of time that the asset is retained. If an arc connects nodes t and t+n, then it represents 
retaining an asset for n periods. The arcs are shown as Kn, meaning that the asset is to be kept 
for n periods. Since there is a maximum of one state per period of time, ܰ possible decisions 
for each state and ܰ total periods, the problem can be solved in a computer complexity of 
O(ܰଶ) time, the same as Bellman’s approach. Furthermore, in Wagner’s formulation, an 
optimal policy can be represented in the form of (n1, n2, n3,. . .) in which each value of n 
denotes the number of periods an asset is kept. It can be clearly seen that the policies derived 
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from the Bellman and Wagner formulations are equivalent in that they can be converted to 
each other. For example, the time n1 in the Wagner model is equivalent to n1

 consecutive 
decisions of K followed by one of R, etc.  

 
Figure 7.2: Wagner’s DDP Approach to Solving the ERO Problem 

It should be noted that some pre-processing work is required with Wagner’s approach. The 
pre-computing allows for costs to be tracked so that all arcs can be solved and compared. In 
addition, both the Bellman and Wagner methods can be used to get identical optimal ERO 
solutions with almost the same efficiency (i.e., produce the same results in roughly the same 
amount of time). The Bellman approach may seem more straightforward; however, the 
Wagner method is better and easier to capture all necessary intricacies dealing with reality 
such as technological change and multiple challengers (Hartman and Rogers, 2006). For 
example, multiple challengers can be modeled by parallel arcs in the network connecting 
nodes between different time periods. Thus, preprocessing can eliminate inferior arcs before 
solving the problem. This is not possible with Bellman’s formulation as the state space must 
be expanded to include the challenger type. Also, by analyzing the state space growth for 
each of these extensions under various parameter assumptions, Hartman and Rogers 
(Hartman and Rogers, 2006) concluded that the Wagner method is more likely to succeed in 

Y+1 Y+2 Y+3 Y+N-1 Y+N

K3

K2

K1 K1

KN-1

Y

Note:
a. State is the number of years an asset is to be kept as shown in the subscript of K. This tree 
describes how the decision is made for a piece of equipment that is i0-year old with mileage j0 starting 
at year Y through period year Y+N (i.e., N time period). 

b. The trio                                      means the equipment is 0-year old with mileage 0 at the beginning of 
year Y+3 of the starting node. The mileage of ui is the usage during each year at the end of which the 
equipment age becomes i-year old associated with the “Keep” decision and starting at year Y+3.

K1

)Y,UUj ,i( 2100 

)Y,UUUj ,i( 32100 

)Y,Uj ,i(
 1-N

1 i
i00 





)2Y, U,0( 1 )Y,Uj ,i( 100  )1Y, U,0( 1 

K2 )1Y,U U,0( 21 

K1

KN )Y,Uj ,i(
N

1 i
i00 





KN-2

)1-NY, U,0( 1 

)2Y,U ,0(
 2-N

1 i
i 



KN-3 )2Y,U ,0(
 3-N

1 i
i 



KN-1

KN-2

)1Y,U ,0(
 1-N

1 i
i 



)1Y,U ,0(
 2-N

1 i
i 



KN-4 )3Y,U ,0(
 4-N

1 i
i 



KN-3 )3Y,U ,0(
 3-N

1 i
i 



)3Y,U ,0(
 4-N

1 i
i 


KN-4



52 

solving large-scale problems (multiple challengers over long time horizons). For future 
solution development and testing, as well as algorithm comparison and benchmarking 
purposes, both approaches are chosen and illustrated here in this report. 

7.2.3 Stepped-through Examples and Numerical Results 

The following section presents a simple numerical example to illustrate and step-through the 
Bellman DDP solution process.  

Suppose that a piece of equipment of a classocde 100010 is needed for four years (i.e., ܰ ൌ
4). At the beginning of the current decision year of 2004, one has 2-year-old equipment. The 
annual cost of operating and maintaining this equipment is a function of its age; and this cost 
function is given by: ܥଵ ൌ ଶܥ ,10 ൌ ଷܥ ,20 ൌ ସܥ ,40 ൌ ହܥ ,50 ൌ 60, and ܥ଺ ൌ 80. The 
purchase price of a new unit of equipment is 60, i.e., ଶܲ଴଴ସ ൌ 60, ଶܲ଴଴ହ ൌ 60, ଶܲ଴଴଺ ൌ 60, 
and ଶܲ଴଴଻ ൌ 60. (This price can be easily changed and adapted to reflect price variations over 
time.) When such equipment is no longer needed at the end of year ܰ, it will be salvaged and 
the salvage value is also a function of its age and the model year when it was bought. Since 
଴ܻ, the model year of a piece of equipment is already known and fixed in the calculation 

process, it is removed in the salvage value notation ௜ܵ௒బ	for the convenience of description 
and it is assumed that this function is given by: ଵܵ ൌ 30, ܵଶ ൌ 25, ܵଷ ൌ 20, ܵସ ൌ 15, 
ܵହ ൌ 10, and ܵ଺ ൌ 5. 

Figure 7.3 presents a Bellman DDP approach to solving this ERO problem for this simple 
example. 

 
Figure 7.3: Bellman’s DDP Approach to Solving a Simple Example of the ERO Problem 
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A “dynamic” replacement policy is a specification of a sequence of “keep” or “replace” 
actions, one for and at the beginning of each year. Two simple examples are the policy of 
replacing the equipment every year and the policy of keeping the equipment every year until 
salvaging it at the end of period N. The ERO for this simple case is to find the optimal policy 
which achieves the minimum total cost over the entire planning horizon. 

To illustrate the calculation of total cost, consider the policy of replacing the equipment at the 
beginning of every year. Recall that the initial condition is to start with a 2-year-old 
equipment item. If this equipment is salvaged, then one will pay p for a new equipment unit, 
receive ܵଷ from the salvage at the end of the current year when the equipment turns 3-year-
old, and incur ܥଷ for operating and maintaining the current equipment before replacing it 
with a new unit of equipment. It follows that the total cost for the first year is given by 
ଶܲ଴଴ସ െ ܵଷ ൅  ଷ. Similarly, for both the second and the third year, the annual cost is given byܥ
ଶܲ଴଴ହ െ ଵܵ ൅ ଵ and ଶܲ଴଴଺ܥ െ ଵܵ ൅  ଵ respectively. Finally, since the equipment in service isܥ

salvaged, at age 6, at the end of year 4 (or at the beginning of year 5), the annual cost is given 
by ଶܲ଴଴଻ െ ଵܵ ൅  :ଵ. Hence, the total cost over the entire planning horizon isܥ

ሺ ଶܲ଴଴ସ െ ܵଷ ൅ ଷሻܥ ൅ ሺ ଶܲ଴଴ହ െ ଵܵ ൅ ଵሻܥ ൅ ሺ ଶܲ଴଴଺ െ ଵܵ ൅ ଵሻܥ ൅ ሺ ଶܲ଴଴଻ െ ଵܵ ൅  ଵሻܥ
ൌ ሺ60	 െ 	20	 ൅ 	40ሻ ൅ ሺ60	 െ 	30	 ൅ 	10ሻ ൅ ሺ60	 െ 	30	 ൅ 	10ሻ ൅ ሺ60	 െ 	30	 ൅ 	10ሻ	
ൌ 200.	

As a second example, the total cost for the policy of never replacing the equipment until 
salvaging it at the end of the planning horizon can be easily calculated as: 

ሺܥଷሻ ൅ ሺܥସሻ ൅ ሺܥହሻ െ ሺ ଶܲ଴଴଻ െ ܵ଺ ൅  ଺ሻܥ
ൌ 40 ൅ 50 ൅ 60 ൅ ሺ60	 െ 	5	 ൅ 	80ሻ	 
ൌ 285.	

It follows that this policy is worse than the previous one. Now, with two available actions for 
each year, the total number of possible policies is finite, and it is equal to 2ேିଵ ൌ 2ଷ ൌ 8. 
Therefore, continuation of similar calculations for the remaining 6 policies will eventually 
lead to the identification of the optimal policy. However, for problems with a longer planning 
horizon, a naïve approach (i.e., brutal enumeration) will be very time-consuming. As a result, 
an efficient and effective DDP approach is very desirable. 

Beginning with the specification of the boundary condition, it is convenient to view the end 
of year 4 as the beginning of a final stage 5, where the only available action is to purchase a 
new unit of equipment, salvage the equipment in service, and operate and maintain this piece 
of equipment. Since the revenue received from salvaging a piece of equipment can be 
interpreted as a negative cost, this yields the boundary condition specified in the table below. 

Stage 4: 
݅ ସܶ

∗ሺ݅ሻ 
0 60+ (-30) + 10 = 40 
1 60 + (-25) + 20 = 55 
2 60 + (-20) + 40 = 80 
5 60 + (-5) + 80 = 135 
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Note that the highest possible state is 5. This is a consequence of the fact that year 1 begins 
with a 2-year-old equipment and the planning horizon is 4 years. Also note that the state 3 
and 4 are non-existing as can be seen from Figure 7.3. 

Stage 3 is now considered, where the highest possible state is 4. For state 0, the one-stage 
costs associated with the keep and replace actions are 	ܥଵ ൌ 10 and	 ଶܲ଴଴଺ െ ଵܵ ൅ ଵܥ ൌ 60 െ
30 ൅ 10	 ൌ 40, respectively. For state 1, the one-stage costs associated with the keep and 
replace actions are 	ܥଶ ൌ 20 and	 ଶܲ଴଴଺ െ ܵଶ ൅ ଶܥ ൌ 60 െ 25 ൅ 20	 ൌ 55, respectively. 
Finally, for state 4, the one-stage costs associated with the keep and replace actions are 
ହܥ	 ൌ 60 and	 ଶܲ଴଴଺ െ ܵହ ൅ ହܥ ൌ 60 െ 10 ൅ 60	 ൌ 110, respectively. Substitution of these 
one-stage costs and the relevant ସܶ

∗ሺ݅ሻ’s from the stage-4 table above into the recursive 
computation relation 

ଷܶ
∗ሺ݅ሻ ൌ min	ሾ	ܥ௜ାଵ ൅ ସܶ

∗ሺ݅ ൅ 1ሻ, ଶܲ଴଴଺ െ ௜ܵାଵ ൅ ௜ାଵܥ ൅ ସܶ
∗ሺ0ሻሿ . 

now yields the table below. 

Stage 3: 
 Actions   
݅ Keep Replace ଷܶ

∗ሺ݅ሻ Optimal Action 
0 10 + 55 = 65 60 + (-30) + 10 + 40 = 80 65 Keep 
1 20 + 80 = 100 60 + (-25) + 20 + 40 = 95 95 Replace 
4 60 + 135 = 195 60 + (-10) + 60 + 40 = 150 150 Replace 

Next, move back one more stage to stage 2, where the highest possible state is 3. For all three 
states, the one-stage costs associated with the keep and replace actions are identical to the 
ones computed earlier in stage 3. Substitution of these one-stage costs and the 
relevant	 ଷܶ

∗ሺ݅ሻ’s from the stage-3 table into the recursive computation relation 

ଶܶ
∗ሺ݅ሻ ൌ min	ሾ	ܥ௜ାଵ ൅ ଷܶ

∗ሺ݅ ൅ 1ሻ, ଶܲ଴଴ହ െ ௜ܵାଵ ൅ ௜ାଵܥ ൅ ଷܶ
∗ሺ0ሻሿ . 

yields the table below. 

Stage 2: 
 Actions   
݅ Keep Replace ଶܶ

∗ሺ݅ሻ Optimal Action 
0 10 + 95 = 105 60 + (-30) + 10 + 65 = 105 105 Keep or Replace 
3 50 + 150 = 200 60 + (-15) + 50 + 65 = 160 160 Replace 

Note that for state 0, the costs associated with the keep and replace actions are tied at 105; 
therefore, both actions are optimal. 

Finally, in stage 1, the only state is 2. Substitution of 	ܥଷ ൌ 40, ଶܲ଴଴ସ െ ܵଷ ൅ ଷܥ ൌ 
60 െ 20 ൅ 40 ൌ 80, ଶܶ

∗ሺ0ሻ ൌ 	105, and ଶܶ
∗ሺ3ሻ ൌ 160  

into the recursive computation relation 

ଵܶ
∗ሺ2ሻ ൌ ݉݅݊	ሾ	ܥଷ ൅ ଶܶ

∗ሺ3ሻ, ଶܲ଴଴ସ െ ܵଷ ൅ ଷܥ ൅ ଶܶ
∗ሺ0ሻሿ . 
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yields the table below. 

Stage 1: 
 Actions   
݅ Keep Replace ଵܶ

∗ሺ݅ሻ Optimal Action 
2 40 + 160 = 200 60 + (-20) + 40 + 105 = 185 185 Replace 

Since ଵܶ
∗ሺ2ሻ ൌ 185, the minimal total cost from year 1 to the end of year 4, starting with a 2-

year-old equipment in year 1, is 185. 

The sequence of optimal actions can be read from the above tables sequentially as follows. 
An inspection of the stage-1 table shows that the original 2-year-old equipment unit should 
be immediately replaced. This implies that the state (age) of the equipment in service at the 
start of year 2 will be 0. Next, inspection of the first row of the stage-2 table shows that the 
equipment unit can either be kept or replaced in year 2. The first row of the stage-3 table 
shows that the new equipment unit should be kept at the start of year 3 if the decision is to 
replace the equipment at the start of year 2. Or it is shown that the now-1-year-old equipment 
should be replaced at the start of year 3 if the decision is to keep the equipment at the start of 
year 2. Finally, the unit of equipment should be replaced at the end of the planning horizon 
(i.e., the start of year 4). Thus, the optimal policy prescribes the following sequence of 
actions: “replace, replace, keep, and replace” or “replace, keep, replace, and replace”. This 
completes the solution of the simple example. 

7.3 SDP Solution Approach 

7.3.1 Bellman’s Formulation for the ERO SDP problem 

Figure 7.3 shows a complete “Keep-Replace” Bellman’s formulation example starting with a 
brand-new equipment unit for the ERO SDP problem with uncertainty in vehicle utilization 
for the SDP 2-Level case after conducting the scenario reduction treatment. In Figure 7.3, the 
square nodes represent the decision to either keep or replace the equipment unit. The circular 
nodes represent chance nodes as the equipment utilization level is uncertain and the path 
taken from theses nodes defines the cumulative equipment utilization in the next stage. The 
path taken from the circular nodes are defined as ݑଵ and ݑଶ which represent two feasible (i.e., 
the high and low) equipment utilization levels. Additionally, all nodes at time ܰ are 
connected to a dummy node at time ܰ+1 which represents the salvage of the equipment unit 
after the final stage of the finite horizon problem. It should be also noted that the total cost 
would include the purchase cost, the expected annual O&M cost and salvage value. 
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Figure 7.4: A Complete “Keep-Replace” SDP Formulation for the ERO Problem with Uncertainty in Asset 

Utilization: the 2-Level Case after Conducting the Scenario Reduction Treatment 
 
7.3.2 SDP State-Space Consideration and Scenario Reduction Treatments 

As mentioned above, the Bellman’s approach can be used to solve the ERO SDP problem. 
However, the use of DP is very limited in some cases - this phenomenon is commonly 
termed “curse of dimensionality”. For example, the ERO SDP solution procedure without 
scenario reduction treatment has a general state-space issue that can result in the exponential 
growth in the computer memory and software computational time with the increase in time 
horizon. Two SDP approaches (SDP 2-Level and SDP 3-Level) have been developed based 
on the number of levels of annual equipment utilization each uses. The SDP 2-Level 
approach uses simple high and low utilization levels while the SDP 3-Level approach uses 
high, medium, and low utilization levels. For a simple case where the decision is to 
continuously keep until the maximum time window is reached, Figures 7.5.a and 7.5.b 
provide the SDP formulation for the ERO problem with uncertainty in asset utilization: 
“Curse of Dimensionality” for the naïve method for both the SDP 2-Level and the SDP 3-
Level approaches and Table 7.1 provides a summary of the state-space for each approach 
with and without reduction treatment for the “Curse of Dimensionality” ERO Problem. As 
one can clearly see from Figures 7.5.a and 7.5.b and Table 7.1, both the total number of the 
asset utilization levels starting at next equipment age (i.e., nodes) grows exponentially as the 
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equipment age increases even for a simple annual low or high mileage utilization case. In 
other words, if the SDP solution employs the Bellman’s approach this simple way, the 
computer memory required and the software computational time will increase exponentially 
with the increase in time horizon. Specifically, it can be seen that both the number of arcs 
and the number of nodes for the SDP 2-Level and 3-Level naïve method scenarios grow at a 
rate of 2ே and 3ே respectively.  

Figure 7.5.a SDP 2-Level with Naïve Method Figure 7.5.b SDP 3-Level with Naïve Method 

Figure 7.5.c SDP 2-Level with Treatments Figure 7.5.d SDP 3-Level with Treatments 
Figure 7.5: SDP 2-Level and SDP 3-Level Formulations for the ERO Problem with Uncertainty in Asset 

Utilization: “Curse of Dimensionality” for the Naïve Method, and Scenario Analysis and Reduction 
Treatments 

Clearly, implementing the Bellman’s approach to solving the ERO SDP problem requires 
careful consideration and special treatments in order to resolve such issue as exponential 
growth in memory/performance as time horizon increases. Figures 7.5.c and 7.5.d provide 
the SDP formulation for the ERO problem with uncertainty in asset utilization: scenario 
analysis and reduction techniques for both the 2-Level and 3-Level cases. As one can clearly 
see from both Figures 7.5.c and 7.5.d, and Table 7.1 after the scenario reduction treatments, 
both the total number of asset utilization levels during the current equipment age (i.e., arcs) 
and the total number of the asset utilization levels starting at next equipment age (i.e., nodes) 
now grows linearly (rather than exponentially) as the equipment age increases. In other 
words, the computer memory and software computational time after the scenario reduction 
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treatments will be significantly reduced compared to the naïve DP method and both will 
increase only linearly with the increase in time horizon. 

Table 7.1: Summary of the State-Space for the SDP 2-Level and SDP 3-Level Formulations with and without 
Scenario Reduction Treatments 

 

Additionally, once the SAS macro has finished the scenario reduction treatments, it generates 
the model year-based equipment purchase cost, the model year- and equipment age-based 
salvage value, and the equipment age-based annual operating and maintenance cost data with 
associated probabilities. This information is passed on to the Java codes and read to the SDP 
optimization engine to assist in the equipment optimization decisions. The SDP optimization 
framework is then used to solve the SDP-based ERO problem in the developed SDP 
optimization software. Certainly, the total cost would include the purchase cost; the expected 
annual O&M cost and salvage value. 

Figure 6 provides a screen shot of the output of SAS macro and input to DDP optimization 
engine for the DDP-based ERO software. Figure 7 and 8 presents a screen shot of the output 
of SAS macro and input to SDP optimization engine for the SDP 2-Level and SDP 3-Level 
cases respectively after the scenario reduction treatments.  

With Treatment? 1 2 3 4 … N-1 N
No 2 4 8 16 …

Yes 2 4 6 8 … 2*(N‐1) 2*N

No 3 9 27 81 …

Yes 3 9 15 21 … 6*(N‐1)‐3 6*N‐3

No 2 4 8 16 … 1

Yes 2 3 4 5 … N 1

No 3 9 27 81 … 1

Yes 3 5 7 9 … 2*(N‐1)+1 1
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Total Number of the Asset 
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Figure 7.6: A Screen Shot of the Output of SAS Macro and Input to DDP Optimization Engine (DDP Case) 
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Figure 7.7: A Screen Shot of the Output of SAS Macro and Input to SDP Optimization Engine: the 2-Level 

Case After Using the Reduction Techniques (SDP 2-Level Case) 
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Figure 7.8: A Screen Shot of the Output of SAS Macro and Input to SDP Optimization Engine: the 3-Level 

Case After the Reduction Techniques (SDP 3-Level Case) 

7.4 Knapsack Programming 

As mentioned before, the proposed DP solution algorithms have been implemented via 
backward recursion and a DP-based solution software has been developed to minimize the total 
costs in this report. The software developed can recommend an optimized solution on whether to 
retain or replace a unit of equipment for both brand-new and used vehicles both with and without 
annual budget considerations. This decision is based on the equipment class, age, mileage, 
salvage value, and replacement cost which come from SAS macro codes. The knapsack 
programming optimization method is used to solve the ERO problem with budget consideration 
in order to account for the optimal replacement of multiple candidate equipment units subject to 
the annual budget constraint. 

The knapsack problem is a problem in combinatorial optimization: Given a set of items, 
each with a weight and a value, determine the number of each item to include in a collection so 
that the total weight is less than or equal to a given limit and the total value is as large as 
possible. It derives its name from the problem faced by someone who is constrained by a fixed-
size knapsack and must fill it with the most useful items (Hillier and Lieberman, 2005). In the 
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ERO context, the size of the knapsack is determined by the annual budget and the set of items is 
the list of candidate equipment units for replacement. The cost of replacement is modeled as the 
weight of the items and value of the items is represented as the cost savings of each replacement 
compared to the benchmark solution. The program maximizes the benefit of replacement 
compared to the benchmark decision and chooses the most optimal solution (i.e., an optimal list 
of equipment units for replacement) that fits the annual budget for the decision year.  

In summary, if the software user needs to make ERO decisions only at the classcode level 
(i.e. for brand-new equipment units), without budget consideration, then only the DP 
optimization will be called upon to determine optimal solution (i.e. how many years to keep and 
when to replace for the entire solution window) as a general guideline. However, if the software 
user needs to make ERO decisions for each individual or all the equipment units, then both the 
DP and Knapsack programming optimizations will be executed to determine the optimal solution 
list of candidate equipment units for replacement for the current decision year subject to the 
specified annual budget constraint. In the latter case, the cost increase associate with immediate 
or delayed replacement decisions compared to the DP-based optimized solutions will be used as 
the input to the knapsack programming optimization. The knapsack programming optimization 
will seek to maximize the benefits for the user given the specified annual budget for the decision 
year and produces a final equipment replacement recommendation file which contains the 
optimal equipment replacement results. Detailed information can be found in Appendix A to this 
report. 

7.5 Computer Implementation Techniques 

To successfully implement the Bellman and Wagner formulations to solve the ERO 
problem, an efficient and effective data structure is designed and implemented by developed Java 
computer codes. The model year-based equipment purchase cost, the equipment age-based 
salvage value, and the equipment age-based annual operating and maintenance cost data that 
come from SAS (Fan et al, 2011a) are read and processed by the Java codes through three 
steps/layers within the Optimization Engine. The first layer is reading the classcode; the second 
layer is reading the equipment age and the third layer is reading the equipment utilization and 
associated probability calculated based on the TxDOT’s historical equipment utilization data 
over all available years (to accommodate the different mileage usage levels). A series of 
dynamically allocated arrays are developed to store the data (Fan et al, 2011b; 2011c). Both 
Bellman’s and Wagner’s approaches are solved backward and the recursive functions are called 
efficiently. Most importantly, the way that the DP-based Bellman and Wagner formulations are 
handled, work effectively and efficiently for both DDP- and SDP-based ERO solutions.  Put 
another way, different utilization levels can be accommodated by the current data structures very 
efficiently. 

7.6 Summary 

As one of the most critical components to solve the ERO problem, the DP-based 
optimization engine, which makes the best keep/replace decisions, is discussed in detail in this 
chapter. Both the DDP and SDP solution approaches, and both Bellman’s and Wagner’s 
formulations, as well as the knapsack programming optimization, are described in detail along 
with the computer implementation techniques used to develop this software. These solution 
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approaches have been implemented and DP-based ERO software has been developed 
successfully. In next chapter, detailed case studies and comprehensive numerical results will be 
presented.  
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Chapter 8.  Case Studies and Numerical Results 

8.1 Introduction 

In chapter 7, a DP-based optimization engine, which consists of the DDP and SDP based 
solution approaches, both Bellman’s and Wagner’s formulations, as well as the Knapsack 
programming in the second round optimization (which can account for the ERO with budget 
consideration), have been discussed,  implemented and developed for solving the ERO problem. 
A series of unit tests and comprehensive logic tests were designed and conducted to ensure the 
correct logic of all three major components, the Java GUI, the DP-based Optimization Engine, 
and SAS macro codes. Comprehensive integration tests were also performed for software 
integration purposes among all components and this effort has been successful as well. Many 
EXCEL spreadsheets were also developed to test and benchmark the optimization engine 
solution by checking all of the computed costs at each stage and confirming other calculated 
values. Finally, this DP-based ERO software system has also been validated and tested using 
current TxDOT TERM data for many classcodes.  The results are very promising and also very 
encouraging as indicated by the fact that substantial cost savings compared to the current TxDOT 
experience/rule-based replacement criteria can be estimated. 

The rest of this chapter is organized as follows. Section 8.2 provides the statistical 
analyses numerical results obtained as results of the SAS macro codes. Section 8.3 describes the 
representative DDP-based optimization results using two classcodes (one heavy vehicle and one 
light vehicle) from the real world TERM data as examples. Section 8.4 discusses the SDP-based 
optimization results using the same two classcodes as examples. Finally, section 8.5 concludes 
this chapter with a summary. 

8.2 Statistical Analyses Numerical Results 

As mentioned in sections 6.2 and 6.3, after a series of data reading, cleaning, processing, 
and outlier treatments steps are undertaken by SAS macro code, a clean dataset without data 
errors and outliers is obtained. Based on this dataset, in-depth statistical modeling and numerical 
result analyses are performed. Although one might argue that the statistical modeling and 
numerical analyses may most likely depend upon the specific classcode chosen, it has been 
confirmed after comprehensive testing that all numerical results of all classcodes seem to follow 
similar patterns and exhibit shared general characteristics. The subsequent section uses classcode 
540020 as an example to present the underlying characteristics and trends that are very 
representative of most classcodes in the real world of TxDOT’s TERM data. 

8.2.1 Purchase Cost vs. Model Year 

Figures 8.1 through 8.14 provide graphs presenting the relationships of purchase cost vs. 
model year, and O&M cost/mile/down time vs. equipment age for vehicle class code 540020. 
As one can clearly see from the first four graphs, as model year increases, the non-adjusted 
original total purchase cost increases noticeably. However, if one takes into account the 
inflation rate, the adjusted total purchase cost seems to decrease initially and then increase 
slightly into the future although the pattern is not very clear. This is probably because the 
equipment normally gets more expensive as the technology usually advances and therefore, 
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the purchase cost in the absolute dollar values increases along the years. However, 
accounting for economy-dependent inflation rate adds more complexities and therefore will 
make the prediction for the inflation-adjusted total purchase cost less reliable and 
unpredictable. In this regard, the results might suggest that it would be better for one to 
forecast the original purchase price first and then make the inflation adjustment rather than 
forecasting the adjusted total purchase cost directly. 

8.2.2 O&M Cost/Mileage/Down Time vs. Equipment Age 

Graphs 8.5 through 8.14 show several very interesting results. For example, as equipment 
age increases, the total O&M cost per mile (or total O&M cost per hour) increases. This is 
probably true because new equipment generally becomes more fuel-efficient over the years 
as the technology advances. Another important point is that as equipment ages, both the 
equipment utilization (i.e., actual usage in miles or hours) and commit hours decrease 
noticeably. In particular, the adjusted total O&M cost increases initially and then decreases 
as equipment ages. The down time also exhibits the same pattern, i.e., it increases initially 
and then decreases as equipment ages. Again, both phenomena might be due to the fact that 
as equipment gets older, it becomes relatively less efficient and the risk of equipment being 
down generally increases. As a result, the adjusted total O&M cost increases initially and the 
down time might also increase (particularly when equipment utilization is equal or close-to 
equal). On the other hand, as equipment ages, the equipment utilization decreases. These two 
effects will cancel each other up to a point, and after that point, the decreases in the O&M 
cost due to less utilization will outweigh and therefore the adjusted total O&M cost will 
begin to decrease. The same logic applies to the down time. The decreases in equipment 
utilization forces the down time to begin to decrease after a certain point. 

 
Figure 8.1: Non-adjusted Original Total Purchase Cost vs. Model Year  
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Figure 8.2: Average Non-adjusted Original Total Purchase Cost vs. Model Year  

 
Figure 8.3: Inflation-adjusted Total Purchase Cost vs. Model Year  
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Figure 8.4: Average Adjusted Total Purchase Cost vs. Model Year  

 
Figure 8.5: Inflation-adjusted Total O&M Cost vs. Equipment Age  
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Figure 8.6: Average Adjusted Total O&M Cost vs. Equipment Age  

 
Figure 8.7: Inflation-adjusted Total O&M Cost per Mile vs. Equipment Age  
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Figure 8.8: Average Adjusted Total O&M Cost per Mile vs. Equipment Age  

 
Figure 8.9: Usage Miles vs. Equipment Age  
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Figure 8.10: Average Usage Miles vs. Equipment Age  

 
Figure 8.11: Commit Hours vs. Equipment Age  
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Figure 8.12: Average Commit Hours vs. Equipment Age  

 
Figure 8.13: Down Time vs. Equipment Age  
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Figure 8.14: Average Down Time vs. Equipment Age  

8.2.3 Cost Estimation and Forecasting Model Performance 

As for the cost estimation and forecasting model performance, extensive modeling 
experiments show that nonlinear models appear to outperform linear models (as discussed in 
section 6.3.2) in most cases for almost all classcodes. However, which nonlinear model type 
performs better than others will depend upon the specific classcode chosen and dependent 
variables included in the model. This clearly suggests the benefits and flexibility of the 
developed SAS macro codes which automate the model selection process. 

8.3 DDP Optimization Results 

It should be noted that the developed solution methodology in this report is very general 
and can be used to make optimal keep/replacement decisions for both brand-new and used 
vehicles both with and without annual budget considerations. In other words, the developed 
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keep/replacement decisions (i.e., how many years to keep) for a particular classcode containing 
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Select the equipment units for annual replacement from a solution space that is composed of all 
the candidate equipment units that are eligible for replacement based on the annual budget and 
other constraints, if any (see section 8.5). Also, it should be noted that all numerical results are 
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8.3.1 Solution Computational Time 

The computational time of the DDP-based ERO software for all classcodes was examined. It 
was found that the computational time is very uniform and it takes an average of 10 seconds 
for the ERO software to provide the best optimized decision for each classcode. It takes a 
total of about 32 minutes to loop through all (i.e., 194) classcodes and output all optimized 
solutions in an EXCEL file for either “Current Trend” or “Equal Utilization” approach.  

8.3.2 Solution Quality Comparisons and Result Analyses 

A comparison of the solution quality for the DDP-based ERO software (optimization 
solution) and the current replacement criteria (benchmark) for classcodes 420010 and 520020 
is given in Table 8.1. The optimization solutions include both “Current Trend” and “Equal 
Mileage” scenarios. As can be seen, the objective function values (represented in $ value) are 
smaller (more desirable) for the DDP-based ERO software (optimization solution) than the 
current replacement criteria (benchmark solution) for both classcodes under both scenarios. 
This is expected because the DDP solution algorithm ensures that all solutions (paths) are 
explored by solving backward (which of course also includes the current purely experience-
based replacement benchmark solution) and can therefore guarantee that the best solution is 
also found by selecting the solution path with minimum total cost over the definite horizon 
(determined by the benchmark year). Therefore, the optimal objective function value in the 
former case is always less than that in the latter case.  

Also as can be seen from Table 8.1 using classcode 420010 with the “current trend” approach 
as an example, the best optimized decision is to replace the equipment 4 times over the 20 
year window while the current benchmark rules recommends a different replacement solution 
(keep it for 9 years and replace it at the end of 10th year). Obviously, these two solutions are 
quite different from each other and the results indicate that using the developed DDP-based 
ERO software can significantly improve the replacement procedures and can result in 
substantial cost savings every year. Specifically, for classcode 420010, it is about 
$4,728.87/20 = $236.44 per year and for classcode 520020, it is $1651.03/20 = $82.55 per 
year. The average of the cost savings for these two classcode will be ($236.44 + $82.55)/2 = 
$159.50 per year. Considering there are 194 classcodes used by TxDOT and on average each 
classcode includes 84 pieces of equipment, a cost savings of $159.50*194*84 = 
$2,599,171.26 might be expected. As can also be seen from Table 8.1, an even larger cost 
savings of $4,449,113.55 for the “equal mileage” approach can be estimated using the same 
calculation method. Therefore, one might expect a cost savings of as much as two million 
dollars annually for the agency for either approach. 
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Table 8.1: Solution Quality Comparisons between the DDP Optimized Solution and the Current Benchmark 
Solution for Classcodes 420010 and 520020 under “Current Trend” and “Equal Mileage” Scenarios  

 

8.3.3 Solution Implications 

In addition, from Table 8.1 the results seem to suggest relatively major changes to 
replacement policies. Comprehensive testing indicates that both the optimal 
keep/replacement decision and predicted cost savings largely depend upon the salvage value 
calculation, the annual operating and maintenance cost, and particularly the purchase cost 
forecasting that comes from the SAS macro data analyzer and cleaner (Fan et al, 2011a). 

Decision Cost Decision Cost Decision Cost Decision Cost
1 K $2,881.39 K $2,881.39 K $2,368.04 K $2,368.04
2 R $9,050.29 K $3,320.66 K $2,618.53 K $2,618.53
3 K $2,881.39 K $3,782.13 K $2,895.52 K $2,895.52
4 K $3,320.66 K $4,256.11 K $3,201.82 K $3,201.82
5 K $3,782.13 K $4,732.92 R $15,863.04 K $3,540.51
6 K $4,256.11 K $5,202.88 K $2,368.04 K $3,915.03
7 R $17,989.34 K $5,656.32 K $2,618.53 K $4,329.16
8 K $2,881.39 K $6,083.55 K $2,895.52 K $4,787.11
9 K $3,320.66 K $6,474.89 K $3,201.82 K $5,293.49

10 K $3,782.13 R $25,673.63 K $3,540.51 R $24,706.41
11 K $4,256.11 K $2,881.39 K $3,915.03 K $2,368.04
12 K $4,732.92 K $3,320.66 R $21,714.35 K $2,618.53
13 R $21,887.57 K $3,782.13 K $2,368.04 K $2,895.52
14 K $2,881.39 K $4,256.11 K $2,618.53 K $3,201.82
15 K $3,320.66 K $4,732.92 K $2,895.52 K $3,540.51
16 K $3,782.13 K $5,202.88 K $3,201.82 K $3,915.03
17 K $4,256.11 K $5,656.32 K $3,540.51 K $4,329.16
18 K $4,732.92 K $6,083.55 K $3,915.03 K $4,787.11
19 K $5,202.88 K $6,474.89 K $4,329.16 K $5,293.49
20 R $26,202.97 R $29,674.69 R $26,238.13 R $28,707.47

Total $135,401.15 Total $140,130.02 Total $116,307.49 Total $119,312.30
Cost Savings $4,728.87 Cost Savings $3,004.81

1 K $1,865.53 K $1,865.53 K $820.84 K $820.84
2 K $2,915.71 K $2,915.71 K $1,031.38 K $1,031.38
3 K $3,916.86 K $3,916.86 K $1,295.92 K $1,295.92
4 K $4,864.60 K $4,864.60 K $1,628.32 K $1,628.32
5 K $5,754.55 K $5,754.55 K $2,045.97 K $2,045.97
6 K $6,582.32 K $6,582.32 K $2,570.75 K $2,570.75
7 K $7,343.55 K $7,343.55 K $3,230.14 K $3,230.14
8 K $8,033.85 K $8,033.85 K $4,058.65 K $4,058.65
9 R $47,607.00 K $8,648.84 K $5,099.67 K $5,099.67

10 K $1,865.53 K $9,184.14 R $47,180.66 K $6,407.71
11 K $2,915.71 R $52,129.15 K $820.84 K $8,051.25
12 K $3,916.86 K $1,865.53 K $1,031.38 R $54,248.30
13 K $4,864.60 K $2,915.71 K $1,295.92 K $820.84
14 K $5,754.55 K $3,916.86 K $1,628.32 K $1,031.38
15 K $6,582.32 K $4,864.60 K $2,045.97 K $1,295.92
16 K $7,343.55 K $5,754.55 K $2,570.75 K $1,628.32
17 K $8,033.85 K $6,582.32 K $3,230.14 K $2,045.97
18 K $8,648.84 K $7,343.55 K $4,058.65 K $2,570.75
19 K $9,184.14 K $8,033.85 K $5,099.67 K $3,230.14
20 R $60,198.47 R $57,327.35 R $56,080.19 R $51,627.85

Total $208,192.39 Total $209,843.42 Total $146,824.13 Total $154,740.07
Cost Savings $1,651.03  Cost Savings $7,915.94   

Cost Current Trend Cost Equal Mileage
DDP Solution Benchmark Solution DDP Solution Benchmark Solution

Classcode

420010

520020

Year
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However, after comprehensive testing and results analyses, it seems that if the adjusted 
purchase cost is increasing, the ERO solution suggests early replacement for light vehicles 
and late replacement for heavy vehicles. This might be expected because heavy vehicles are 
normally much more expensive, depreciate less rapidly, and therefore will be more desirable 
to keep a little longer than light vehicles. On the other hand, light vehicles are generally less 
expensive, depreciate more rapidly, and therefore it will be more desirable to replace as early 
as possible in order to minimize the total costs. However, if the adjusted purchase cost is flat 
and either including or excluding the fuel cost as part of the decision process, the ERO 
solution generally suggests as late as possible replacement for both light and heavy vehicles. 
More comprehensive testing on the impact of uncertain forecasted purchase cost on the ERO 
decisions is currently under way. 

8.4 SDP Optimization Results 

8.4.1 Solution Computational Time 

The computational time of the SDP-based ERO software for all classcodes was also 
examined. It was found that the computational time is very uniform for the SDP 2-Level 
approach and it takes an average of 10 seconds for the ERO software to provide the best 
optimized decision for each classcode, which is almost identical to the DDP approach (Fan et 
al, 2011b). As a result, it takes a total of about 32 minutes to loop through all (i.e., 194) 
classcodes and output all optimized solutions in an EXCEL file. However, the SDP 3-Level 
approach appears to be less uniform and most classcodes takes more time to run; the average 
for this approach was nearly 30 seconds for the ERO software to provide the best optimized 
decision for each classcode with probabilistic vehicle utilization. It therefore takes a total of 
about 97 minutes to loop through all (i.e., 194) classcodes and output all optimized solutions 
in an EXCEL file for the “current trend” approach in which the probability distribution of the 
vehicle utilization is forecasted based on the historical data. Such results for the SDP 
approach for each individual and all classcodes clearly indicate the need to conduct the 
scenario reduction treatment in the SDP state-space as shown in section 7.3.2 and also show 
its immediate effectiveness in enforcing the linear (instead of exponential) growth in both the 
computer memory and solution computation time. 

8.4.2 Solution Quality Comparisons and Results Analyses 

A comparison of the solution quality for the DDP solution, the SDP 2-level and 3-level 
optimization solutions, and the current benchmark solutions for classcodes 420010 and 
520020 is given in Table 8.2. As can be seen, the objective function values (represented in $ 
value) for each approach are smaller (more desirable) than for the corresponding benchmark 
solutions for both classcodes. This is expected because each approach ensures that all 
solution paths (which certainly include the current purely experience-based replacement 
benchmark solution) are explored by solving backward. This guarantees that the best solution 
is also found by selecting the solution path with minimum total cost over the definite horizon 
(determined by the benchmark year).  
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Table 8.2: Solution Quality Comparisons between the SDP and DDP Optimized Solutions and the Current 
Benchmark Solution for ClassCodes 420010 and 520020 

 

In addition, one may notice that the total cost of the benchmark solutions for the DDP, SDP 
2-Level and SDP 3-Level approaches are all different. This is expected because the DDP 
approach uses the classcode-level cost/mileage forecast for all future years to calculate the 
benchmark decision year, while both SDP approaches generate and use cost/mileage 
forecasts for each individual and all the vehicle utilization levels (low-high for 2-Level, or 
low-medium-high for 3-Level) and their associate probability distributions for all future 
years to determine the benchmark decision year. This can cause the expected cost/mileage 
data to be slightly different between the different solution approaches. 
 

Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost Decision Cost
1 K $2,881.39 K $2,881.39 R $5,269.29 K $2,469.76 K $2,469.76 K $2,469.76
2 R $9,050.29 K $3,320.66 R $6,101.20 K $3,448.38 R $8,794.86 K $3,065.23
3 K $2,881.39 K $3,782.13 K $2,469.76 K $3,696.17 K $2,469.76 K $3,724.82
4 K $3,320.66 K $4,256.11 K $3,448.38 K $4,038.96 K $3,065.23 K $4,198.20
5 K $3,782.13 K $4,732.92 K $3,696.17 K $4,503.90 K $3,724.82 K $4,783.81
6 K $4,256.11 K $5,202.88 K $4,038.96 K $5,070.60 R $15,601.30 K $4,967.72
7 R $17,989.34 K $5,656.32 R $17,760.33 K $5,556.50 K $2,469.76 K $5,478.87
8 K $2,881.39 K $6,083.55 K $2,469.76 K $6,007.50 K $3,065.23 K $5,779.37
9 K $3,320.66 K $6,474.89 K $3,448.38 K $6,474.89 K $3,724.82 K $6,151.15
10 K $3,782.13 R $25,673.63 K $3,696.17 R $25,478.75 K $4,198.20 R $25,413.79
11 K $4,256.11 K $2,881.39 K $4,038.96 K $2,469.76 K $4,783.81 K $2,469.76
12 K $4,732.92 K $3,320.66 K $4,503.90 K $3,448.38 R $21,279.03 K $3,065.23
13 R $21,887.57 K $3,782.13 R $21,755.29 K $3,696.17 K $2,469.76 K $3,724.82
14 K $2,881.39 K $4,256.11 K $2,469.76 K $4,038.96 K $3,065.23 K $4,198.20
15 K $3,320.66 K $4,732.92 K $3,448.38 K $4,503.90 K $3,724.82 K $4,783.81
16 K $3,782.13 K $5,202.88 K $3,696.17 K $5,070.60 K $4,198.20 K $4,967.72
17 K $4,256.11 K $5,656.32 K $4,038.96 K $5,556.50 K $4,783.81 K $5,478.87
18 K $4,732.92 K $6,083.55 K $4,503.90 K $6,007.50 K $4,967.72 K $5,779.37
19 K $5,202.88 K $6,474.89 K $5,070.60 K $6,474.89 K $5,478.87 K $6,151.15
20 R $26,202.97 R $29,674.69 R $26,103.16 R $29,479.81 R $27,230.39 R $29,414.86

Total $135,401.15 Total $140,130.02 Total $132,027.48 Total $137,491.88 Total $131,565.38 Total $136,066.51
Cost Savings $4,728.87 Cost Savings $5,464.40 Cost Savings $4,501.13   

1 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53 K $1,865.53
2 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71 K $2,915.71
3 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86 K $3,916.86
4 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60 K $4,864.60
5 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55 K $5,754.55
6 K $6,582.32 K $6,582.32 R $39,399.23 K $6,582.33 K $6,582.32 K $6,582.32
7 K $7,343.55 K $7,343.55 K $1,865.53 K $7,343.55 K $8,567.48 K $8,567.48
8 K $8,033.85 K $8,033.85 K $2,915.71 K $10,042.31 K $8,033.85 K $8,033.85
9 R $47,607.00 K $8,648.84 K $3,916.86 K $10,090.31 R $47,607.00 K $8,648.83
10 K $1,865.53 K $9,184.14 K $4,864.60 K $11,152.17 K $1,865.53 K $8,309.46
11 K $2,915.71 R $52,129.15 K $5,754.55 R $53,735.05 K $2,915.71 R $49,987.96
12 K $3,916.86 K $1,865.53 K $6,582.33 K $1,865.53 K $3,916.86 K $1,865.53
13 K $4,864.60 K $2,915.71 R $47,495.25 K $2,915.71 K $4,864.60 K $2,915.71
14 K $5,754.55 K $3,916.86 K $1,865.53 K $3,916.86 K $5,754.55 K $3,916.86
15 K $6,582.32 K $4,864.60 K $2,915.71 K $4,864.60 K $6,582.32 K $4,864.60
16 K $7,343.55 K $5,754.55 K $3,916.86 K $5,754.55 K $8,567.48 K $5,754.55
17 K $8,033.85 K $6,582.32 K $4,864.60 K $6,582.33 K $8,033.85 K $6,582.32
18 K $8,648.84 K $7,343.55 K $5,754.55 K $7,343.55 K $8,648.83 K $8,567.48
19 K $9,184.14 K $8,033.85 K $6,582.33 K $10,042.31 K $8,309.46 K $8,033.85
20 R $60,198.47 R $57,327.35 R $53,674.70 R $58,768.83 R $58,057.28 R $57,327.35

Total $208,192.39 Total $209,843.42 Total $211,685.59 Total $220,317.24 Total $207,624.37 Total $209,275.40
Cost Savings $1,651.03  Cost Savings $8,631.65   Cost Savings $1,651.03   

SDP Solution Benchmark Solution
SDP 3-Level Approach

420010

520020

Classcode

SDP Solution
SDP 2-Level ApproachDDP Approach

Year DDP Solution Benchmark Solution Benchmark Solution
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As one can also see from Table 8.2, using classcode 420010 with the “current trend” 
approach as an example, the SDP 2-Level approach results in the most savings and suggests 
5 replacements over the 20 year window while the benchmark solution suggests replacement 
at years 10 and 20 only. While the SDP 3-Level solution and the DDP solution offer similar 
replacement strategy the difference in savings comes from the difference in the expected 
costs associated with each approach; these results indicate that using the developed SDP-
based ERO software can significantly improve the replacement procedures and can result in 
substantial cost savings every year. Specifically, for classcode 420010, the estimated savings 
is about $5,464.40/20 = $273.22 per year for a single piece of equipment. For classcode 
520020 the SDP 2-level solution estimates the cost savings with replacement on years 6, 13, 
and 20 of $8,631.65/20 = $431.58 per year, which is much greater than either the DDP or the 
SDP 3-level solutions. The average of the cost savings for these two classcodes will be 
($273.22 + $431.58)/2 = $352.40 per year. Considering there are 194 classcodes used by 
TxDOT and on average each classcode includes 84 pieces of equipment, a cost savings of 
$352.40*194*84 = $5,742,730.77 might be expected. As can also be seen from Table 8.2, a 
relatively smaller cost savings of $2,506,389.98 for the SDP 3-Level approach can be 
estimated using the same calculation method. Therefore, one might expect a cost savings of 
several million dollars annually for the agency for the SDP approaches. 

8.4.3 SDP vs. DDP 

After conducting comprehensive testing, all three approaches have produced promising 
results and can yield significant cost savings compared to the current TxDOT benchmark 
decisions. While DDP is generally more stable and reliable in terms of its cost forecasting 
quality because of the relatively abundant aggregate data for each classcode, the SDP 
approaches are set up to allow the user (i.e., the fleet manager) to obtain more realistic results 
if a large enough and reliable data set exists for each classcode at different vehicle utilization 
levels. In other words, while using the same data, DDP generates the classcode-level 
cost/mileage forecast for each equipment age using all the data and SDP will need to 
partition the same data into separate vehicle utilization levels and generate the cost/mileage 
forecasts and associate probability distributions for each individual and all levels for each 
equipment age. In this regard, the SDP produces more realistic/reliable results when 
sufficient data is available. Such sufficient data currently exists for only certain classcodes, 
and the others will require additional data in the future. In this regard, the SDP approach is 
still in somewhat of an early development stage and will be more promising for a future 
application as this line of research matures and the data collection effort accumulates. 

8.5 Solution Generation under Annual Budget Constraints 

Sections 8.3 and 8.4 show the numerical results and provides a general guide for the 
equipment keep/replacement decisions (i.e., how many years to keep) for two particular 
classcodes containing brand-new equipment without considering any budget constraints. In 
so doing, the annual budget constraints, which may exist in the real world for government 
agencies and private fleet sectors, are not explicitly considered. However the developed 
solution methodology in this report can also be used to select the equipment units for annual 
replacement based on the annual budget constraints and possibly some other constraints 
specified by the fleet manager. The classcode 420020 shown in Table 8.2 and section 8.4.2 is 
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a good example of why such additional constraints are needed. As mentioned previously the 
SDP 2-Level solution for this classcode suggests replacement on years 1 and 2; however, 
replacing any one- or two-year old equipment unit does not make much sense intuitively. To 
circumvent this issue, the TxDOT fleet manager made the recommendation that the actual 
equipment replacement age should not be different from the current TxDOT benchmark 
replacement rule by more or less than 3 years. To solve the ERO problem under such 
constraints, the following steps are undertaken. 

First, the cost of NOT replacing an equipment unit when it should be replaced is estimated by 
comparing the total cost of the optimal solution to the minimum total cost incurred when 
delaying replacing equipment by a certain number of years. The increases in cost are 
quantified for each feasible replacement year and are used as inputs to the second round of 
optimization. Next, based on these cost inputs, a second round of optimization (i.e., the 
Knapsack programming), which can explicitly consider any annual budget constraints and 
possibly some other constraints specified by the fleet manager, is used to select the 
equipment units for annual replacement from a solution space that consists of all equipment 
units that are eligible for replacement. The main objective of this Knapsack programming is 
to maximize the benefits produced (i.e., minimize the total costs increased due to delay for 
equipment replacement) in order to embody a mixture of both TxDOT’s short-term and long-
term interests. Preliminary result indicates that a significant amount of cost savings can be 
estimated by using the developed solution methodology when using an annual budget of 15 
million dollars for the TxDOT’s current TERM data. 

8.6 Summary 

This chapter discusses some comprehensive statistical analyses, DDP and SDP 
optimization results using the real world TxDOT TERM data. Preliminary testing indicates that a 
significant amount of cost savings (i.e. millions of dollars) can be estimated annually by using 
the developed ERO solution software for brand-new or used equipment units with or without 
annual budget consideration for the TxDOT. 
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Chapter 9.  Summary and Conclusions 

9.1 Introduction 

As assets age, they generally deteriorate, resulting in rising operating and maintenance 
(O&M) costs and decreasing salvage values. Furthermore, newer assets that are more efficient 
and better in retaining their value may exist in the marketplace and be available for replacement. 
For this reason public and private agencies that maintain fleets of vehicles and/or specialized 
equipment must periodically decide when to replace vehicles composing their fleet. These 
equipment replacement decisions are usually based upon a desire to minimize fleet costs and are 
often motivated by the conditions of deterioration and technological changes (Hartman, 2005; 
Hartman, 2008). 

The primary function of this report is to develop an ERO decision tool that can be 
effectively used as part of a long-range fleet replacement plan to replace the right equipment at 
the right time and at the lowest overall cost. To accomplish this task, a theoretically sound and 
practically feasible ERO methodology has been developed to accommodate specific TxDOT 
needs. It is expected that a significant amount of money will be saved (Fan et al., 2011a; 2011b; 
2011c).  

The rest of this chapter is organized as follows. Section 9.2 provides a brief review of the 
methods used to solve the ERO problem as well as the features included in the developed ERO 
software. Section 9.3 details the directions that should be taken in future research in order to 
improve the ERO decision making process. 

9.2 Summary and Conclusions 

This report has described the ERO problem as it might apply to agencies or companies 
that maintain vehicle fleets. An extensive review of the current literature and state-of-the-
art/practices concerning the ERO problem has been conducted. Existing ERO status within the 
state of Texas, consulting companies, and other state DOTs has been investigated. The current 
state of ERO research is reviewed and four different approaches for solving the ERO problem 
are discussed, these are the EAC approach, the Experience/Rule based approach, the DDP 
approach, and the SDP approach. It is determined that the ERO problem can be formulated as an 
ILP model in which the objective is to minimize the total cost and the decisions to be made are to 
either replace or retain the unit of equipment at the beginning of each year.  

The developed solution framework for the ERO problem in this report consists of three 
main components: 1) A Java based GUI that takes parameters selected by users, displays the 
final results of the optimization, and coordinates the other two components; 2) A SAS Macro 
based Data Cleaner and Analyzer, which undertakes the tasks of raw data reading, cleaning and 
analyzing, as well as cost estimation & forecasting; and 3) A DP-based optimization engine that 
minimizes the total cost over a defined horizon. 

In particular, the SAS Macro Data Cleaner and Analyzer takes the user specified options 
through the Java GUI and undertakes a series of steps when an optimization is run. In such steps, 
raw TERM data is read and errors & outliers are removed, after which cost estimating and 
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forecasting are performed. Several intermediate SAS tables are generated for the user’s review, 
and several internal tables (some dealing with the historic equipment purchase cost data and 
purchase cost forecasts, and the others containing the O&M cost, the salvage value, and the 
usage information for the classcode for each equipment age) are generated and passed on to the 
optimization engine. Once the DP-based optimization engine (also written in Java code) receives 
the internal tables generated by the SAS macro codes it executes the DP-based optimization 
approaches and makes the best keep/replacement optimization decision. This decision is then 
passed on to the Java-based GUI for the users to review or save.  

It should be noted that the proposed DP solution algorithms have been implemented and 
solved via backward recursion and Java based DP solution software is developed to minimize the 
total costs. The software developed can recommend an optimized solution whether to retain or 
replace a unit of equipment based on the equipment class, age, mileage, salvage value, and 
replacement cost from SAS macro codes. The DP-based optimization engine has been 
formulated for both the DDP approach and the SDP approach; Bellman’s and Wagner’s 
formulations have also been incorporated to solve the ERO problem. The DDP solution approach 
optimizes the ERO decisions over a given time horizon based on the expected purchase cost, 
annual operating & maintenance cost, and salvage value. Due to uncertainty in real operations, 
these expected equipment utilization costs may not be realized, for such cases, the SDP solution 
approach has also been developed with uncertainty in asset utilization. Effective scenario 
reduction treatments are developed to resolve the “curse of dimensionality” issue in the state-
space domain that is inherent to the DP method to ensure that the computer memory and solution 
computational time required will not increase exponentially with the increase in time horizon.  

Additionally, the developed ERO solution methodology is very general and can be used 
to make optimal keep/replacement decisions for both brand-new and used vehicles both with and 
without annual budget considerations. Most importantly, knapsack programming used in the 
second round of optimization can explicitly consider any annual budget constraints and select the 
equipment units for annual replacement from a solution space composed of all the equipment 
units that are eligible for replacement. 

The developed ERO software contains many features and options that can be employed 
by the user to get the results that are best suited to his/her specific needs. Optimization can be 
run on a single classcode, a specific classcode, or all classcodes for which there is available data 
and for a specific equipment unit, brand new equipment units, or all equipment units. The 
software allows the user to specify budget constraints, the time window, the inflation rate, the 
cost of money, and the desired number of years to delay the replacement of the selected 
equipment. The user can choose between two different cost forecasting approaches, Cost Current 
Trend or Cost Equal Mileage; and several different solution approaches; DDP, SDP 2-Level, or 
SDP 3-Level, and Bellman or Wagner. The user can choose to run the software using SAS 
automatically generated cost data or use the Editable cost data that they have provided manually 
at the beginning of each year, and users can selectively “Clean the data.” Finally, users can add 
new annual TERM data at the beginning of each year and make dynamic keep/replacement 
decisions for any chosen classcode or equipment units. 

Comprehensive testing and statistical analyses have been conducted and numerical results 
show several trends that are consistent across classcodes for the majority of the TERM data. 
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Firstly, as model year increases, the non-adjusted original total purchase cost increases 
noticeably. This is probably due to the fact that as the technology advances, equipment normally 
gets more expensive and therefore, the purchase cost in the absolute dollar values increases along 
the years. However, accounting for economy-dependent inflation rate adds more complexities 
and therefore will make the prediction for the inflation-adjusted total purchase cost less reliable 
and unpredictable. After adjustment the total purchase cost seems to decrease initially and then 
increase slightly into the future although the pattern is not very clear. Secondly, as equipment 
age increases several things happen; the equipment utilization decreases, the commit hours 
decrease, the total OM cost per mile/hour increases, and the down time seems to stay flat. This 
might be due to the fact that as equipment gets older, the risk of equipment being down generally 
increases and the down time might also increase assuming equal mileage being used. On the 
other hand however, as equipment ages, the equipment utilization decreases. These two effects 
cancel each other and that may explain why the down time almost stays the same as equipment 
ages. 

After comprehensive testing and analyses some implications can also be seen about the 
cost estimation and forecasting model performance as well as the DDP and SDP optimization 
performance. While nonlinear models seem to outperform linear models in most cases, which 
nonlinear model type performs better than others will depend upon the specific classcode chosen 
and the dependent variables included in the model. The developed SAS macro codes automate 
the model selection process and have the flexibility to find the best model type for the specific 
classcode chosen. Furthermore, all testing indicates that the DP-based optimization engine will 
perform very efficiently and effectively. The computational time is very uniform for both the 
DDP solution approach and the SDP 2-Level solution approach, which takes an average of 10 
seconds for the ERO software to provide the best optimized decision for each classcode. It takes 
a total of about 32 minutes to loop through all (i.e., 194) classcodes and output all optimized 
solutions. The SDP 3-Level solution approach, however, is less uniform and takes approximately 
30 seconds per classcode and a total of nearly 97 minutes to loop through all classcodes.  

Extensive testing of the TERM data also indicates that the ERO decision, for DDP, SDP 
2-Level and SDP 3-Level approaches using either Bellman’s or Wagner’s formulations, gives a 
smaller (more desirable) cost than the current benchmark solution strategy. This is expected 
because the DP-based solution algorithm ensures that all solution paths are explored (which of 
course also includes the current purely experience-based replacement benchmark solution) by 
solving backward and can therefore guarantee that the best solution is also found by selecting the 
solution path with minimum total cost over the definite horizon (determined by the benchmark 
year).  

Additionally, it seems that if the adjusted purchase cost is increasing, the ERO solution 
suggests early replacement for light vehicles and late replacement for heavy vehicles. This might 
be expected because heavy vehicles are normally much more expensive than light vehicles and 
generally depreciate less rapidly than light vehicles. It therefore will be more desirable to keep 
heavy vehicles longer than light vehicles which are replaced as early as possible in order to 
minimize the total costs. However, if the adjusted purchase cost is flat and either including or 
excluding the fuel cost as part of the decision process, the ERO solution generally suggests as 
late as possible replacement for both light and heavy vehicles. In this regard more 
comprehensive testing is currently under way. 
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As mentioned earlier, all three approaches have produced promising results and can yield 
significant cost savings compared to the current TxDOT benchmark decisions. While DDP is 
generally more stable and reliable in terms of its cost forecasting quality because of the relatively 
abundant aggregate data for each classcode, the SDP approaches are set up to allow the user to 
obtain more realistic/reliable results when sufficient data is available. In this regard, the SDP 
approach is still in somewhat of an early development stage and will be more promising for a 
future application as this line of research matures and the data collection effort accumulates. 

Most importantly, the developed solution methodology in this report can be used to select 
the equipment units for replacement based on the annual budget constraints by the fleet manager.  
To solve the ERO problem under such constraints, the cost of NOT replacing an equipment unit 
when it should be replaced is first estimated by comparing the total cost of the optimal solution 
to the minimum total cost incurred when delaying replacing equipment by a certain number of 
years. The increases in cost are quantified for each feasible replacement year and are used as 
inputs to the second round of optimization. Based on these cost inputs, the developed Knapsack 
programming is used to select the equipment units for annual replacement from a solution space 
that consists of all equipment units that are eligible for replacement. The main objective of this 
Knapsack programming is to minimize the total costs increased due to delay for equipment 
replacement in order to embody a mixture of both TxDOT’s short-term and long-term interests. 
Preliminary result indicates that a significant amount of cost savings can be estimated by using 
the developed solution methodology when using an annual budget of 15 million dollars for the 
TxDOT’s current TERM data. 

9.3 Directions for Future Research 

The formulated ERO model, as well as the developed Bellman’s and Wagner’s solution 
approaches, appears to be both theoretically sound and practically feasible. The DP-based 
solution software optimizes the ERO decisions over a given time horizon based on the expected 
purchase cost, annual operating & maintenance cost, and salvage value. Significant cost savings 
can be estimated by using the developed ERO software. 

The developed DDP approach assumes that these costs/values are constant or 
predetermined. It should be noted that while the DDP approach works well for nearly all 
classcodes. However, due to uncertainty in real operations, these expected equipment utilization 
costs may not be realized, in such cases, the developed SDP approach may be preferred. 
However, the SDP approach currently requires additional historic data for many classcodes and 
the lack of a large enough and reliable data set for some classcode/equipment units may prevent 
the SDP software from generating the most reliable solutions possible. It is anticipated as the 
data collection effort accumulates, more reliable results can be thus achieved for the SDP 
approach. Future research will be directed toward these ends with further insight provided for 
applying and solving real world instances of the ERO problem under uncertainties.  

In addition, the impact of the uncertain future purchase cost and the down time costs on 
the ERO keep/replacement decision and its total cost is currently under scrutiny. Additionally, 
advanced and realistic estimation and forecasting methods will be developed for the annual 
O&M cost and mileage. More computational insights into the ERO problem and the solution 
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implications for each individual and all classcodes will be forthcoming and presented as this line 
of research matures. 
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Appendix A: Practical Guidelines on Equipment Replacement 
Optimization                                      

Chapter A.1: Introduction 
 

A.1.1 WHAT IS EQUIPMENT REPLACEMENT OPTIMIZATION? 

As assets age, they generally deteriorate, resulting in rising operating and maintenance (O&M) 
costs and decreasing salvage values. Furthermore, newer assets that are more efficient and better 
in retaining their value may exist in the marketplace and be available for replacement. The 
conditions of deterioration and technological changes, either separately or together, often 
motivate equipment replacement decisions (Hartman, 2005; Hartman, 2008). According to the 
Texas Department of Transportation (TxDOT) (TERM, 2004), the department owns and 
maintains an active fleet of approximately 17,000 units and TxDOT annually disposes of 
approximately ten percent of its fleet. In terms of monetary value, TxDOT has a fleet valued at 
approximately $500,000,000, with an annual turnover of about $50,000,000 (TERM, 2004). 
Equipment Replacement Optimization (ERO) can improve TxDOT’s replacement procedures 
and potentially save millions of dollars. 

Substantial cost savings with fleet management has been documented in management 
science literature. For example, a 1983 Interfaces article (Waddell, 1983) discussed how Phillips 
Petroleum saved $90,000 annually by implementing an improved system for a fleet of 5300 
vehicles. Scaling up to the TxDOT fleet, the corresponding savings would be around $350,000 in 
2008 dollars. Similar savings were reported in presentations made by Mercury Associates 
(Mercury Associates, 2002; 2005; 2007). 

The equipment replacement optimization effort is also extremely important in the context 
of overall fleet management efforts. For example, the best equipment replacement decision tool 
in the world may not be very useful if there is no funding available to purchase new vehicles to 
replace the old ones. The ERO decision tool can be effectively used as part of a long-range fleet 
replacement plan that can estimate the future budget required to meet predicted future 
replacement needs. The primary function of equipment managers is to replace the right 
equipment at the right time and at the lowest overall cost. To accomplish this task, a theoretically 
sound and practically feasible equipment replacement optimization methodology has been 
developed to accommodate specific TxDOT needs. It is expected that a significant amount of 
money will thus be saved. 

 
A.1.2 HOW DOES EQUIPMENT REPLACEMENT OPTIMIZATION WORK? 

Figure A.1.1 provides a flow chart of the developed solution framework for the ERO problem, 
which consists of three main components: 1) A SAS Macro based Data Cleaner and Analyzer, 
which undertakes the tasks of raw data reading, cleaning and analyzing, as well as cost 
estimation and forecasting; 2) A Dynamic Programming (DP)-based optimization engine that 
minimizes the total cost over a defined horizon; and 3) A Java based Graphical User Interface 
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(GUI) that takes parameters and inputs selected by users and coordinates the Optimization 
Engine and SAS Macro Data Cleaner and Analyzer (Fan et al, 2011a). 

As one can see, the GUI has been developed using Java programming language to 
interact with the software users such as the fleet manager. It takes all inputs from users, processes 
them using Java codes, and calls SAS macro codes by passing on the user-specified 
classcode/equipment units with other options. The SAS macro codes then process the raw data 
corresponding to the user’s inputs and his/her requirements. Raw TERM data is read and errors 
and outliers are removed. Cost estimating and forecasting as well as data generating are 
performed. Several intermediate SAS tables are generated for the user’s review and passed on to 
the optimization engine, some being the equipment purchase cost forecasts for each decision year 
over a defined future time horizon (which depend on the equipment model year), and others 
containing the annual/accumulative O&M cost, the salvage value at the end of each decision 
year, and the annual/ accumulative mileage information for the classcode for each equipment 
age. After receiving these tables from the SAS macro codes, the optimization engine (also 
written in Java code) executes the DP-based optimization approaches and makes the best 
keep/replacement optimization decision. The knapsack programming optimization method will 
be used to solve the ERO problem under budget constraint to account for the optimal 
replacement of multiple equipment units. The decision results are either presented to the software 
user (i.e., the fleet manager) on screen or they can be saved and viewed in an EXCEL format 
through the GUI (Fan et al, 2011a). 

It should be noted that we have implemented the proposed DP solution algorithms via 
backward recursion and developed Java based DP solution software to minimize the total costs. 
The software developed can recommend an optimized solution whether to retain or replace a unit 
of equipment based on the equipment class, age, mileage, salvage value, and replacement cost 
from SAS macro codes. In particular, it should be mentioned that the developed ERO solution 
methodology in this project is very general and can be used to make optimal keep/replacement 
decisions for both brand-new and used vehicles, both with and without annual budget 
considerations (all will be discussed in Chapter A.4). Furthermore, the developed software 
system is very user-friendly and designed so that it can be easily used by non-technical personnel 
(to evaluate individual district units against a class) and by technical division personnel (Fleet 
Manager) to develop optimal aggregate classcode replacement cycles (Fan et al, 2011a). 
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Figure A.0.1 Flow Chart of the Developed DP-based Equipment Replacement Optimization Solution 
Methodology 
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Chapter A.2: Installation 
 

A.2.1 SYSTEM REQUIREMENTS 

The software is designed to run on systems with Microsoft™ XP or better. The recommended 
settings are as follows: 

• 2.20 GHz Processor 
• 1.96 GB of RAM 
• The most recent version of Java Runtime Environment 
• Full version of licensed SAS software must be installed 

 
A.2.2 DOWNLOAD AND INSTALL JAVA RUNTIME ENVIRONMENT 

The software requires that Java Runtime Environment be installed on the computer. This process 
requires the user to download an executable file that includes all the files needed for the 
complete installation. The user does not need to remain connected to the Internet during the 
installation. The file can also be copied to a computer that is not connected to the Internet. 

• Go to the manual download page: http://java.com/en/download/manual.jsp 
• Click on Windows 7, XP Offline. 
• When the file download dialog box appears, click Save to download the file to the user’s 

local system.  
*Tip: Save the file to a known location on the user’s computer, for example, to the user’s 
desktop. 

• Close all applications including the browser. 
• Double-click on the saved file to start the installation process. 

 
Figure A.0.2: Java License Agreement 

 
The installation process starts. The installer is presented an option to view the License 

Agreement. Click the Install button to accept the license terms and to continue with the 
installation. 
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During installation, the user may be asked to install additional programs. The installation 

of these programs is not mandatory. After ensuring that the desired programs are selected (if 
any), click the Next button to continue the installation. 

 

 
Figure A.0.3: Installing Java 

 
A few brief dialogs confirm the last steps of the installation process; click Close on the 

last dialog. Once the installation has finished, the user will need to close and re-open the 
browser. To test that Java is installed on the user’s computer, run this test applet: 
http://java.com/en/download/help/testvm.xml. The user may have to wait for a few moments 
before the test is finished. 

 
Figure A.0.4: Java Installation Completion Test 
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A.2.3. DOWNLOAD AND INSTALL JAVA SDK (OPTIONAL) 

• Go to the download page: 
http://www.oracle.com/technetwork/java/javase/downloads/index.html 

 
Figure A.0.5: Java Download Page 

• Select the ‘Download JDK’ option button.  



98 

 
Figure A.0.6: Java License Agreement & Download Page 

• Check the checkbox to Accept License Agreement.  
• Select the Windows option appropriate to the user’s system (option ‘Windows x86’ is 

recommended for most systems.) 
• When prompted to save the file, choose run and wait for the download to finish. 
• If prompted with a security warning after the download finishes, choose run. 

 
A.2.4 INSTALLING EQUIPMENT REPLACEMENT OPTIMIZATION SOFTWARE 

Copy the entire directory to a preferred directory such as C:\ERO. Remember this location. Make 
sure that the latest “optimizer.jar,” “sasmarcr.sas7bcat,” “TERM Benchmark Rules” files, and all 
the annual TERM data files are included in the directory. Note: the file “optimizer.jar” is found 
in the “\Optimizer\dist” folder and the other two files are in the “\TERM Data\Input” folder as 
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will be mentioned in section A.3.1.1.  If a shortcut is desired, see ‘Appendix A.C – FAQ’s, 
section A.C.1.  
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Chapter A.3 Program Handling 
 

To execute the software, go to the directory in which the software was installed as referenced in 
section A.2.4.  Open the “Optimizer” folder, then open the “dist” folder, and execute the file 
“Optimizer.jar” by double-clicking it.  This should display the Input Interface screen, similar to 
the one shown in Figure A.3.1. There are two tabs located at the top of this screen, an “Input” tab 
and an “Options” tab; the software will default to the Input Interface when opened but the user 
can use these tabs to navigate between the Options Interface, as will be discussed in section 
A.3.2, and the Input Interface, as will be discussed in section A.3.1. The buttons and fields found 
on the Input Interface are discussed in the following section.  
 
A.3.1 INPUT 

 
Figure A.0.7: Standard Interface – Input Screen 
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A.3.1.1 Input Directory 

The “Input Directory” field is used to specify where input files (i.e. Raw TERM Data files) for 
SAS processing will be stored (currently located in folder \TERM Data\Input). These files 
include the provided (1999 to 2009) annual historic data. For example TERM_1999_Data 
represents all the cost, mileage, and other information for all classcodes and equipment units for 
the year 1999, collected under the Texas Equipment Replacement Model (TERM). More annual 
information can be added, in the same format as the 2009 data, when collected for any future 
years. The definitions of the data elements can be found in Appendix A.A.  

The “Input Directory” field will automatically save the entry used for the last complete 
optimization run as the default entry to be used for all future runs, until this field is changed by 
the user. Also located in the input folder must be the TxDOT TERM Benchmark rules file, which 
is used as TxDOT’s current replacement strategy (TERM, 2004). For more detailed information 
relating to the benchmark rules for all classcodes, please refer to Appendix A.B.  

In addition, many source code files written in the SAS macro have been developed and 
used to undertake the tasks of TERM raw data reading, cleaning and analyzing, as well as cost 
estimation and forecasting (Fan et al, 2011a), as presented in the technical report, should already 
be compiled as a single sasmacro file entitled “sasmacr.sas7bcat” and should be found in this 
input folder. This file will be essential for the “Optimizer.jar” to run. 

Furthermore, at the beginning of each new fiscal year, the software will issue a message 
through a pop-up window to remind the user to add new TERM data for the past fiscal year. If 
the new data is not available yet, or the user wants to run optimization before the new data has 
been introduced, select “No” when asked to dump the new year’s data. In case of any missing 
TERM data for any of the past years, a similar pop-up window will display a message to inform 
the user of such missing data. To add additional data at the beginning of each new fiscal year, see 
Appendix A.C – FAQs, section A.C.5. 

A.3.1.2 Output Directory 

The “Output Directory” field is used to specify where SAS generated files will be stored 
(currently located in folder \TERM Data\Output). Several intermediate SAS files are also 
generated after each optimization run. The three most important of these files provide the 
historical vehicle usage/cost data for a specific classcode XXXXXX; they are, 
Term_cost_exp_cur_trend_XXXXXX, Term_cost_exp_eq_mileage_XXXXXX, and 
Term_usage_merge_all_yr_XXXXXX. These files show all of the historical data for the 
classcode specified. The first file, Term_cost_exp_cur_trend_XXXXXX, provides information 
about the annual average mileage and annual average O&M cost by individual equipment age for 
the “Cost Current Trend” option; and the second file, Term_cost_exp_eq_mileage_XXXXXX, 
shows the information about the annual average mileage and annual average O&M cost by 
individual equipment age for the “Cost Equal Mileage” option. The third file, 
Term_usage_merge_all_yr_XXXXXX, shows data that is used to show the annual average usage 
information by each fiscal year under the “Cost Current Trend” option. In addition several 
intermediate Excel tables are generated for the user’s review and they can be found in this folder, 
as will be described in section A.4.2. These files may be deleted or moved after review if so 
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desired. For further information on the intermediate SAS files see Appendix A.C – FAQs, 
section A.C.6.  

Like the “Input Directory”, the “Output Directory” field will also automatically save the 
entry used for the last complete optimization run as the default entry to be used for all future 
runs, until this field is changed by the user. 

A.3.1.3 Class Code 

Two options are available for this field: 

A.3.1.3.1. All.  If “All” is selected the software loops through all classcodes and gives 
optimized results individually for all classcodes (either at the all equipment unit level or 
at the aggregate classcode level only as will be mentioned in section A.3.1.4) that 
currently exist in the TERM data for the newest year. 

A.3.1.3.2. Individual.  If an individual classcode is selected (e.g., 001010) the software 
provides optimized results for that classcode only (either at the all equipment unit level, 
at the individual equipment unit level, or at the aggregate classcode level only as will be 
mentioned in section A.3.1.4).  

A.3.1.4 Equipment Selection 

If the “all” option is selected under the Class Code then there are two options available for the 
Equipment Selection option: all or ------- (No equipment unit selected). 

If an Individual Class Code is selected then there are three options available for the 
Equipment Selection option: all, individual, or ------- (No equipment unit selected).  

In summary, there are five options that can exist for the combined  
ClassCode/Equipment Selection: 
 

1) INDIVIDUAL/-------: The software will run for brand new equipment units (i.e. units 
newly bought and put into use at the beginning of the analysis) for the selected classcode.  
2) INDIVIDUAL/INDIVIDUAL: The software will run for the selected equipment unit 
for the selected classcode.  
3) INDIVIDUAL/ALL: The software will run for all existing (e.g. brand new or used) 
equipment units for the selected classcode. 
4) ALL/-------: The software will run for brand new equipment units for all classcodes. 
5) ALL/ALL:  The software will run for all existing (e.g. brand new or used) equipment 
units and for all classcodes.  
 

A.3.1.5 Budget 

The “Budget” field allows the user (i.e., the Fleet Manager) to specify the maximum amount of 
money that can be used for the replacement of all the equipment units to be recommended by the 
ERO Software for the current fiscal year. Enter the desired budget amount and press the “Set” 
button to specify the budget. The default budget is currently set as 10 million (1.0E+07) dollars.  
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The budget constraint can be run when both an individual class code and an individual 
equipment unit are selected, along with a specific amount entered into the budget constraint field 
(i.e. option 2 in section A.3.1.4), or it can be run with an overall budget amount for “all” 
equipment units when an individual classcode or all classcodes are selected (i.e. options 3 and 5 
respectively in section A.3.1.4). Note that the budget option does not apply to the scenarios 
where “-------” is selected for the “Equipment Selection” option (i.e. options 1 and 4 in section 
A.3.1.4).   

A.3.1.6 Cost Type 

Two different forecasts are made available when SAS is run: “Cost Current Trend” and “Cost 
Equal Mileage.” Use this to specify which forecast to use. 

A.3.1.6.1. Cost Current Trend.  This option takes all the information from current TERM 
data that are “error- and outlier- free” and assumes that the same trend will continue for 
all future years (Fan et al, 2011a). For example, the current TERM data shows that 
equipment utilization decreases as equipment gets older and therefore we assume this 
trend will continue. 

A.3.1.6.2. Cost Equal Mileage.  This option takes the average annual mileage across all 
equipment units within the same classcode for the most recent year and uses this value as 
the expected annual mileage for all equipment ages in that classcode. The annual O&M 
cost per mileage (or per hour) is calculated for each age for which there is available data 
and this value is multiplied by the average annual mileage (or hours) to determine the 
O&M cost for each age. Note that the age of the equipment does not influence the results 
under this approach and, under this assumption the most recent year’s utilization for the 
same classcode can change when new data is added at the beginning of each decision 
year. 

A.3.1.7 Benchmark Window 

The criteria currently used for replacement within TxDOT include 1) Equipment age, 2) Life 
usage expressed in miles (or hours), and 3) Life repair costs (adjusted for inflation) relative to 
original purchase cost (including net adjustment to capital value) (TERM, 2004).  Technically 
speaking, all dynamic programming approaches need to be solved via a rolling horizon for the 
ERO problem. With that said, the time window must be determined beforehand. If the time 
window is defined too large, then the cost/mileage forecasting quality will decrease. Conversely, 
if the rolling horizon time window is small, then the forecasting quality will be really good, but 
the truncating window effect on the optimization solution quality may become more pronounced. 
Therefore, a tradeoff between forecasting and optimization exists. In this regard, a 20-year 
window has been recommended by the PMC members as a consensus, which may impact the 
cost estimate results and cost comparison to some extent. 

A.3.1.7.1. Bench. Year (2/3).  If the “Bench. Year (2/3)” radial button is selected, then the 
benchmark window will be determined by the benchmark solution, which is the age of 
replacement decided when any 2 of the 3 above criterion are met (e.g. if the age of 
replacement is 8 years the benchmark will examine a fixed window of 8 years and 
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determine that the equipment unit should be replaced only on year 8 and the software will 
look no further into the future). If such benchmark window is determined to be “replace” 
at an age greater than 20, it will be truncated and reset to be replaced only once at the end 
of the 20-year window (e.g. if the age of replacement is determined to be 25 years then 
the benchmark will determine that the equipment unit should be replaced only on year 
20).   

A.3.1.7.2. 20-Year-Fixed.  If the “20-Year-Fixed” radial button is selected, the equipment 
will always be replaced at the end of the 20-year window. When the age of the first 
replacement is determined, each subsequent replacement will follow at the same age 
interval until the 20-year window is met (e.g. if the age of replacement is 8 years the 
benchmark will determine that a brand new equipment unit should be replaced on years 
8, 16, and 20). If the benchmark solution is determined to be “replace” at an age greater 
than 20, it will be truncated and reset to be replaced only once at the end of the 20-year 
window (e.g. if the age of replacement is determined to be 25 years then the benchmark 
will determine that the equipment unit should be replaced only on year 20).   

A.3.1.8 Editable Data 

A.3.1.8.1. Editable.  If the “Editable” radial button is selected, the software will use the 6 
files (currently located in the folder \TERM Data\Input\EditableData) that can be 
modified by the user (i.e. Fleet Manager) as the direct input to run optimization. This 
folder currently includes the following 5 editable Excel data files for each unique 6-digit 
classcode, “XXXXXX” (1. XXXXXX_Cost_Cur_Trend; 2. 
XXXXXX_Cost_Cur_Trend_SDP_2Level; 3. 
XXXXXX_Cost_Cur_Trend_SDP_3Level; 4. XXXXXX_Cost_Equal_Mileage; and 5. 
XXXXXX_Purchase_Cost).  

All the above cost files (excluding the purchase cost file: No. 5) contain forecasted 
information about the annual mileage, accumulative annual mileage, the annual operating 
and maintenance (O&M) cost, and the accumulative O&M cost of the selected equipment 
unit. In particular, if any equipment unit aged greater than 20 years is selected for an 
optimization run, then the software will use the mileage and operating and maintenance 
costs of a 20-year-old piece of the same equipment because there is no forecasted data 
beyond the 20-year window. 

Additionally, the first file, XXXXXX_Cost_Cur_Trend, refers to the Deterministic 
Dynamic Programming (DDP) approach and will be used as the input to the DDP 
optimization engine when the DDP and Cost Current Trend options are selected. 
Likewise, the second file, XXXXXX_Cost_Cur_Trend_SDP_2Level, refers to the 
Stochastic Dynamic Programming (SDP) approach using two vehicle utilization levels 
(i.e. High/Low mileage) and this file will be used as the input to the SDP optimization 
engine when the SDP 2-level option is selected. Similarly, the third file, 
XXXXXX_Cost_Cur_Trend_SDP_3Level, refers to the SDP approach using three 
vehicle utilization levels (i.e. High/Medium/Low mileage) and will be used as the input 
to the SDP optimization engine when the SDP 3-level option is selected. The fourth file, 
XXXXXX_Cost_Equal_Mileage, also refers to the DDP approach and will be used as the 
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input to the DDP optimization engine when the DDP and Cost Equal Mileage options are 
selected. Finally, the fifth file, XXXXXX_Purchase_Cost, provides the information about 
the forecasted purchase cost that will be used as input to both DDP and SDP optimization 
engines.  

The user can change the forecasted purchase cost, the annual O&M cost and the annual 
mileage data in the files, found in the “EditableData” folder, described above as desired 
in order to run the optimizer for any classcode XXXXXX and any selected equipment 
units that belong to this classcode.  

A sixth file, Raw_XXXXXX_Purchase_Cost_Cur, is also located in this folder, however 
it is not editable because this file is only used to provide historical purchase cost 
information.  

A.3.1.8.2. SAS.  If the “SAS” radial button is selected, SAS code will be called and used to 
undertake the tasks of raw data reading, cleaning and analyzing, as well as cost 
estimation and forecasting (as mentioned in section A.1.2), and to generate the necessary 
6 files as mentioned above on the fly, five of which are used as the input into the DP 
optimization engine. These files can be viewed for any classcode in the output folder 
(currently located in folder \TERM Data\Output) as mentioned in section A.3.1.2 and can 
be copied and pasted to the “EditableData” folder as mentioned in section A.3.1.8.1 if 
desired.  

A.3.1.9 Run 

If the “Run” button is selected the software will execute the optimization engine according to the 
user specifications. Before running the program, the user must specify where the SAS executable 
file is located by clicking “File” and selecting “Options” from the dropdown menu, as will be 
described in section A.3.3. To run the program, there are further options available and they can 
be found by selecting the “Options” tab as discussed in the following section.  
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A.3.2 OPTIONS 

 
Figure A.0.8: Standard Interface – Show Options 

To view the Options Interface click the “Options” Tab at the top of the screen next to the Input 
tab. Click the “Input” Tab to return to the Input Interface as desired. Clicking the “Options” Tab 
will bring up a screen similar to the one shown in Figure A.3.2, which allows the user to specify 
more parameters that the program will need to use. These buttons and fields are discussed in 
detail below.  
 
A.3.2.1 Cost Calculation 

The Cost Calculation specifies whether to use “Inflation Rate” or “Cost of Money” to run the 
optimization. Only one option may be selected at a time; if the “Inflation Rate” radial button is 
selected then the “Cost of Money” field is disabled, or if the “Cost of Money” radial button is 
selected then the “Inflation Rate” field is disabled.  
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A.3.2.3 Inflation Rate 

The inflation rate is typically defined as the percentage rate of change in price level over time. 
The default value is currently set at 3.2306775% and will not change over time; consequently 
users may wish to reset this field with a more accurate value based on the future economy or 
their particular needs.  

A.3.2.2.1. Set.  First enter a value (as a percentage) into the “Inflation Rate” field. By 
clicking the “Set” button the inflation rate is set to the value that was entered until the 
program is closed.  

A.3.2.2.2. Reset.  By clicking the “Reset” button the inflation rate is set back to a default 
value of 3.2306775%. This rate is calculated based on the Consumer Price Index (CPI) 
inflation rate (Bureau of Labor Statistics, 2009) as mentioned in the technical report.  

A.3.2.4 Cost of Money 

Cost of money is typically defined as the interest that could be earned if the amount invested in 
one area of business is instead invested in another. By selecting this option it is assumed that 
TxDOT wishes to evaluate whether it is more cost effective to invest in equipment replacement 
or to invest in areas other than equipment replacement and show the comparative benefits of 
such decisions. The addition of this option, which allows for the user to utilize an interest rate 
that equals the cost of money instead of the inflation rate, was due to a suggestion by TxDOT. 

A.3.2.3.1.Set.  First enter a value (as a percentage) into the “Cost of Money” field. By 
clicking the “Set” button the cost of money is set to the value that was entered until the 
program is closed.  

A.3.2.3.2. Reset.  By clicking the “Reset” button the cost of money is set to a default of 0.0.  

A.3.2.5 Run with clean data? 

The “Run with clean data” option specifies whether or not to clean the data before running the 
software. Running the engine without removing both the data errors and outliers would cause 
problems with the software and the results would not be beneficial to the user. However, this 
option exists in order for the user to see the uncleaned intermediate tables in the Output 
Directory, as mentioned in section A.3.1.2. 

A.3.2.4.1. Yes.  The optimization engine must be run with clean data, hence the “Yes” 
button will default to be inactive (i.e. unless the “No” option is selected the “Yes” option 
will always be selected). 

A.3.2.4.2. No.  By selecting the “No” button, the optimization engine will not be run but the 
SAS macro, without cleaning the data and removing the data outliers, is still called and 
users will be able to view and examine the intermediate files generated by SAS for 
informational purposes. A message will be displayed through a pop-up window 
informing the user to browse to the “Output Directory” to see the data.  
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A.3.2.6 Solving 

Both DDP and SDP approaches have been applied and implemented to solve the ERO problem 
based upon different assumptions. Specifically, the DDP approach assumes that the equipment 
utilization is predetermined, although it may still depend upon its equipment age. However, for 
the SDP approach, the uncertainty involved in equipment utilization at each year is taken into 
account. In other words, the utilization may not be pre-determined (i.e., fixed) but actually 
random and depends upon operating environment, because it is expected that different usage 
patterns may lead to different optimal solutions (Fan et al, 2011b and 2011c).  

A.3.2.5.1. Deterministic.  If the “Deterministic” radial button is selected, the optimization 
will use the DDP approach, while the SDP Level options will be grayed out and disabled.  

A.3.2.5.2. Stochastic.  If the “Stochastic” radial button is selected the optimization will use 
the SDP approach; the “Cost Equal Mileage” option, as mentioned in A.3.1.6, will be 
grayed out and become inactive. When this button is selected there will be two options 
available; SDP 2-Level and SDP 3-Level, as will be described in section A.3.2.6.  

A.3.2.7 SDP Level 

Once the “Stochastic” radial button is selected, the two SDP Level options become available. 

A.3.2.6.1. SDP 2-Level.  If the “SDP – 2Level” radial button is selected the file 
XXXXXX_Cost_Cur_Trend_SDP_2Level can be either obtained from the 
“EditableData” folder described in section A.3.1.8.1 or generated by the SAS macro on 
the fly as described in section A.3.1.8.2, with both referring to two vehicle utilization 
levels (i.e. High/Low mileage), and this will be used as the input to the DP optimization 
engine.  

A.3.2.6.2. SDP 3-Level.  If the “SDP – 3Level” radial button is selected the file 
XXXXXX_Cost_Cur_Trend_SDP_3Level can be either obtained from the 
“EditableData” folder described in section A.3.1.8.1 or generated by the SAS macro on 
the fly as described in section A.3.1.8.2, with both referring to three vehicle utilization 
levels (i.e. High/Medium/Low mileage), and this will be used as the input to the DP 
optimization engine.  

A.3.2.8 Engine 

The ERO will make a decision on whether to replace or retain at each stage (typically 
annually) and it can be solved using two typical dynamic programming approaches; these are 
the Bellman and Wagner formulations (Fan et al, 2011b). As of now, the Bellman method is 
slightly faster because the data preprocessing necessary for the Wagner formulation is not 
needed, but both methods provide the same results. 

A.3.2.7.1. Bellman.  If the “Bellman” radial button is selected, the Bellman approach will 
be used to run optimization. Detailed information about the Bellman approach can be 
found in the technical report.  
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A.3.2.7.2. Wagner.  If the “Wagner” radial button is selected, the Wagner approach will be 
used to run optimization. Detailed information about the Wagner approach can be found 
in the technical report.  

A.3.2.9 Delay 

The “Delay” field specifies how many years to delay the decision to replace based on the 
optimized solution. If a value of 0 is entered then the engine will ignore the first replacement. If a 
value greater than 0 is entered then the engine will delay the first replacement for the value 
number of years. If a negative value is entered, then the engine will replace the equipment by the 
absolute value number of years earlier than the optimized solution. The “Delay” option is only 
available when the “INDIVIDUAL/-------” or “INDIVIDUAL/INDIVIDUAL” options are 
selected, and the delay logic will not be available for the other three options (i.e., 
“INDIVIDUAL/ALL”, “ALL/-------”, and “ALL/ALL”) as mentioned in section A.3.1.4.  

Also, the value entered in the “Delay” field should not cause the age of the vehicle to be negative 
or to exceed 20 years. Otherwise an error message will be displayed.  

Additionally, the user can only enter the desired delay time and run the delay logic after a 
primary optimization run is complete. The GUI will display the results for the delay setting 
specified by the user one at a time, and the results can be exported, saved and viewed in the 
corresponding Excel file. In addition, the software will run an evaluation of cost increases 
corresponding to the specific delay time (either positive or negative delays, as long as they are 
feasible, as mentioned above) against the optimal replacement solutions. Furthermore, as 
suggested by the TxDOT PMC members, the software can automatically get such evaluation 
results for all feasible delay times (i.e., TxDOT current benchmark replacement year plus or 
minus 3) against the optimal replacement solution recommended by the dynamic programming 
approach after each optimization run, and then automatically save the results in the Output 
Directory, as described in section A.3.1.2. These results are further explained in section A.4.2.  

A.3.3 SAS INSTALLATION LOCATION OPTION 

To access the “SAS Installation Location Options” window so the user can specify the SAS 
executable file location, as mentioned in section A.3.1.9, click the File drop-down menu, located 
at the top of the screen, as can be seen in Figures A.3.1 and A.3.2 and click “Options.” A screen 
similar to Figure A.3.3 should be displayed.  
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Figure A.0.9: Options Screen 

Browse to where the SAS executable is found, select, and click “Open” (Note that the default 
location is C:\Program Files\SAS\SASFoundation\9.2\sas.exe, which is also the default location 
at the time the SAS software was installed). Click “Save” and then close the window. 

 
Figure A.0.10: Open sas.exe 

A.3.4 OPTIMIZATION RUNS 

To conduct an optimization run, the user should follow the subsequent procedures: 

• First, follow the steps described in section A.3.3 to select the SAS executable file. 
• Next, use the “Input” tab to select the Input and Output directories. 
• Enter the desired Budget amount. 
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• Choose the appropriate Cost Type, Benchmark Window and Editable data selections 
to fit the desired user specifications. 

• Choose the combination of Class Code and Equipment Selection desired, as described 
in sections A.3.1.3 and A.3.1.4. 

• Click the “Options” tab. 
• Select the appropriate Cost Calculation, Inflation Rate or Cost of Money, as described 

in sections A.3.2.1 through A.3.2.3. 
• Enter the desired value into either the Inflation Rate field or the Cost of Money field. 
• Choose which optimization engine to run: Bellman or Wagner. 
• Choose which dynamic programming approach to use: Stochastic or Deterministic. 
• If Stochastic is chosen, choose either SDP 2-Level or SDP 3-level. 
• Finally, click and navigate back to the “Input” tab again, then click the Run button. 
• Only after the optimization run is complete, the user can enter any feasible delay 

time, as desired, and run the delay logic, as mentioned in section A.3.2.8. 
 
Figure A.3.5 shows an example of the ERO with a default budget and Inflation Rate 

selected, as well as Cost Current Trend, 20-Year-Fixed Benchmark Window, SAS Data option, 
all ClassCodes, no Equipment Selection, no Delay, the SDP 2-Level approach and Bellman 
approach selected. 

 

 
Figure A.0.11: Cropped ERO Input and Options Screens 

A SAS dialog box, similar to Figure A.3.6, will appear indicating that SAS is running. 
After SAS has finished running the results will be displayed through the Graphic User Interface 
(GUI) and can be exported, saved and viewed as Excel files as will be mentioned in section 
A.4.1. The presentation of the results will be further discussed in detail in Chapter A.4.   
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Figure A.0.12: SAS Dialog Box 
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Chapter A.4: Results Presentation 
 

As mentioned in Chapter A.1, the developed ERO solution methodology in this project is very 
general and can be used to make optimal keep/replacement decisions for both brand-new and 
used vehicles, both with and without annual budget considerations. In other words, the developed 
solution methodology can be used to: 1) Provide a general guide for the equipment 
keep/replacement decisions (i.e., how many years to keep) for a particular classcode containing 
brand-new equipment, without considering any budget constraints (as will be discussed in 
section A.4.1); 2) Select the equipment units for annual replacement from a solution space that is 
composed of all the candidate equipment units that are eligible for replacement based on the 
annual budget and other constraints, if any (as will be discussed in section A.4.2). 

A.4.1 DP OPTIMIZATION RESULTS WITHOUT BUDGET CONSIDERATION 

A.4.1.1 DP GUI Results 

Once optimization has been run, the results will be displayed through the GUI, as shown in 
Figure A.4.1. The second and fourth columns refer to the (K)eep or (R)eplace decision at the 
beginning of that year as shown in the same row. The decision to replace is further indicated by 
cells colored red. At the bottom of the table a “Total” row will be calculated, showing the totals 
for both the optimized solution and the benchmark solution. The last row will be the “Cost 
savings” row which calculates an estimate of how much money will be saved over the displayed 
time window using the optimized solution. 
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Figure A.0.13: DDP Results in GUI 

A.4.1.2 Exporting DP Results 

The GUI table shown in Figure A.4.1 can be exported to a CSV file, which can be opened in 
Excel, by selecting the “File” drop down menu then “Export As CSV” and save it to any location 
desired. This location does not become default after the first save; the user is required to perform 
this step after each run to save and export the excel results. After saving, double click the CSV 
file created to display the results in Excel. In the event that Excel does not open automatically, 
open Excel first and then load the CSV file.  
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Figure A.0.14: Save As CSV 

When opened in Excel, the results will look similar to Figures A.4.3 (for DDP results) 
and A.4.4 (for SDP results). Note that the first column is the number of years into the future, 
starting from the beginning of the current fiscal year (i.e. the decision year). The second column 
refers to the optimized (K)eep or (R)eplace decision at the beginning of the year shown in the 
same row. The third column represents the cost associated with the optimized decision, as shown 
in that row. The fourth column has the same meaning as the second column but corresponds to 
the cost related to the TxDOT benchmark rules. The last (fifth) column shows the cost 
information associated with the fourth column of the benchmark decision. If the decision is to 
Keep for a particular year then the associated cost refers to the annual operating and maintenance 
cost (adjusted for inflation). However if the decision is to Replace for a particular year then the 
associated cost represents the purchase cost of a new equipment unit at the beginning of the year; 
plus the annual operating and maintenance cost; minus the salvage value of the old equipment 
unit at the end of the year (all adjusted for inflation). In the example, Figure A.4.3, the DDP 
approach saves a total estimated cost of $81,285.50 over the 20-year window when compared 
against the current benchmark rules used by TxDOT. 
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Figure A.0.15: DDP Results in Excel 

Similarly, Figure A.4.4 follows the same format as Figure A.4.3. However, it represents 
the results for the SDP approach. The cost associated with the decision to either Keep or Replace 
is calculated in the same manner as that in the DDP approach. In the example, Figure A.4.4, the 
SDP approach saves a total estimated cost of $81,971.75 over the 20-year window when 
compared against the current benchmark rules used by TxDOT. In these two examples the cost to 
replace the equipment unit belonging to this classcode (540020) on the 20th year is slightly 
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different between the optimized DDP/SDP decision and the Benchmark decision. This is because 
in both cases the optimal decision is to keep the equipment unit for all 20 years and replace on 
year 20, and the benchmark decision was to replace at years 17 and 20. Therefore, when the 
equipment unit is replaced on year 20, the optimal decision requires the salvage of a 20-year-old 
piece of equipment instead of the 3-year-old piece of equipment decided by the benchmark 
solution. As can be seen, the newer equipment unit has a higher salvage value, which reduces the 
overall cost of replacement on the 20th year.  

 
Figure A.0.16: SDP Results in Excel 
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A.4.2 OPTIMIZATION RESULTS WITH BUDGET CONSIDERATION 

As the software runs, user delay files are automatically created and stored in the Output 
Directory (currently located in folder \TERM Data\Output), as described in section A.3.1.2. 
These files are “user_delays.csv; user_delay_increase.csv”; “Delay.csv”; and 
“Replacement_Final_Recomendation.csv”. As mentioned in section A.3.2.8, after each 
optimization run, the software will automatically evaluate delay results for all feasible delay 
times (i.e., TxDOT current benchmark replacement year plus or minus 3 and less than 20 years) 
against the optimal replacement solution recommended by the DP approach and save the results 
as these first three files in the Output Directory.  

Note that, even though the term “Delay” is found in the titles of these output files, they 
are generated every time the DP optimization is run whether or not any Delay time is specified. 
Also, the first and second files, “user_delays.csv” and “user_delay_increase.csv”, respectively, 
are outputs of the first round DP optimization and are used only for informational purposes for 
the user to review the increase in cost, compared to the optimized decision, as the delay changes. 
The third file, “Delay.csv”, is the output of first round dynamic programming (DP) optimization 
and it will be used as the input into the second round knapsack programming optimization. The 
fourth file, “Replacement_Final_Recomendation.csv”, which is the output of the second round 
knapsack programming optimization, contains the optimal equipment replacement results 
intended to maximize the benefits for the user given the specified annual budget for the decision 
year. It is emphasized that the “Delay.csv” file provides the input to the second round of 
knapsack programming which produces the “Replacement_Final_Recomendation.csv” file 
containing the final output of the ERO Optimization with budget constraints considered.  

The following sections describe the layout of these four files. The settings used to create 
the examples below were: default budget and default Inflation Rate selected, Cost Current Trend, 
20-Year-Fixed Benchmark Window, SAS Data option, ClassCode “001010”, all Equipment 
Selection, no Delay, and the SDP 2-Level approach and the Bellman approach selected.  

A.4.2.1 User_Delays.csv 

This file is generated to show the user (i.e., Fleet Manager) the impact of the delay on the 
increase in cost as compared to the optimized replacement age. It shows the classcode and 
equipment unit combinations that were run, as well as a description of that specific unit, its 
current equipment age, and the corresponding Optimized Replacement Solution and TxDOT 
Replacement Solution (i.e. Benchmark Solution). Additionally, an Age/Delay/Cost Increase table 
is provided for each ClassCode/Equipment Selection combination that was run. This table 
provides information about how much the cost increases compared to the optimized decision as 
the delay changes. This allows the user to determine the estimated total increase in cost of 
delaying the replacement of that particular piece of equipment. The Age column pertains to the 
age of the actual replacement unit; the Delay column represents the number of years differing 
between the actual replacement and the optimization recommendation for the Age shown in that 
row; and the Cost Increase column reflects the additional cost incurred compared to the total cost 
of the optimized decision for the Age shown in that row. For example, in Figure A.4.6, if 
Equipment Unit “001010 - 06130H” is replaced 10 years earlier than the optimized replacement 
(i.e. Delay = -10) then that decision will cause a total cost increase of $725.08 and its age at the 
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time of replacement will be 10 as compared to the optimized replacement age of 20. Also, if 
replacement of Classcode “001010” Equipment Unit “06130J” is delayed by two years (i.e. 
Delay = 2) then that decision will cause a total cost increase of $783.28 and its age at the time of 
replacement will be 7, as compared to the optimized replacement age of 5.  

 
Figure A.0.17: User_Delays.csv 
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A.4.2.2 User_Delay_Increase.csv 

This file is very similar to the “User_Delay.csv” file in that it shows the classcode and equipment 
unit combinations that were run, as well as a description of that unit, its current equipment age, 
and the corresponding Optimized Replacement Solution and TxDOT Replacement Solution (i.e. 
Benchmark Solution). Again, an Age/Delay/Cost Increase table is provided for each 
ClassCode/Equipment Selection combination that was run. The first row of each table shows the 
additional increase in cost if the replacement occurs at the current age compared to the optimized 
decision. For the rest of the table, the delay is increased by another year and the cost increase is 
displayed compared to the previous year’s cost, as opposed to a comparison with the optimized 
decision. This allows the user to review the cost increase resulting from the delay of an 
additional year. For example, in Figure A.4.7, if Equipment Unit “001010 – 06130H” is replaced 
10 years earlier than the optimized decision (i.e. Delay = -10), then that decision will cause an 
additional cost increase of $137.16 compared to the decision of replacement 11 years earlier (i.e. 
Delay = -11). As mentioned above, the total cost increase of replacing 10 years early is equal to 
$725.08.  This value is equal to the cost increase of Delay = -13 plus Delay = -12 plus Delay = -
11 plus Delay = - 10, as found in Figure A.4.6, or $249.59 + $131.69 + $206.64 + $137.16 = 
$725.08. 
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Figure A.0.18: User_Delay_Increase.csv 

A.4.2.3 Delay.csv 

As mentioned earlier, this file is used as the direct input into the second round of knapsack 
programming optimization and each column is explained below.  

CLASSCODE – lists the classcode(s) which have been run and are being described in each row. 
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EQUIPMENT_CODE – gives the code of the specific equipment unit being described in each 
row.  

EQUIPMENT_AGE – gives the current age of the specific equipment unit in each row. 
DELAYED_REPLACEMENT_AGE – represents the actual replacement age after delay. 
INCREASE_IN_COST – denotes the additional cost incurred for this particular 

DELAYED_REPLACEMENT_AGE (i.e. the actual replacement age) as compared to the 
total cost of the optimized decision. 

COST_SAVINGS – shows the cost saved by this particular 
DELAYED_REPLACEMENT_AGE (i.e. the actual replacement age) as compared to the 
total cost of the benchmark decision. 

CLASSCODE_PURCHASE_COST – gives the current forecasted purchase cost for a brand-new 
equipment unit belonging to the classcode being described in each row.  

OLD_OPT_FLAG – Gives a lettered code for each equipment unit in each row as defined below: 
MM – Too old, greater than or equal to 3 years plus the optimized age of replacement.  
MMM – Too old, greater than or equal to 20 years. 
OO – Represents a candidate for immediate replacement of equipment units at the current year.  
M or O – Denotes a candidate for replacement of equipment units but not at the current year. 
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Figure A.0.19: Delay.csv 

A.4.2.4 Replacement_Final_Recomendation.csv 

This file is arranged similarly to the file “Delay.csv” described in section A.4.2.3. However, it 
should be noted that this file is provided as the final optimized replacement solution 
recommended by the ERO software (which employs both DP optimization techniques in the first 
round and the Knapsack programming optimization in the second round) with the intention of 
maximizing the benefit for TxDOT, subject to the specified annual budget constraint. 
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Also, the sum of the Increase in Cost compared to the optimized decision, the Cost Savings 
versus the benchmark decision, and the total estimate of the ClassCode Purchase Costs are 
provided at the bottom of each column respectively. 

 
Figure A.0.20: Replacement_Final_Recomendation.csv 
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Appendix A.A: Definitions of Input Data Elements 

For the convenience of the descriptions, the following notations are used. For example, if the file 
named X contains elements Y and Z, then it is described as: 

File_Name_X; 
 Element_Y 
 Element_Z 
 
 DISCRIPTION OF ELEMENT.  
 
All notions will follow. 
 
 
Add_Replacement_Code; 

Add_Replacement_Code 
Add_Replacement_Code_Desp 

 
THIS ELEMENT SPECIFIES WHETHER THE NEW ITEM IS TO REPLACE A UNIT 
BEING RETIRED OR IF THE NEW UNIT IS AN ADDITION TO THE EXISTING 
FLEET. CODE VALUES ARE: 
A = ADDED EQUIPMENT 
R = REPLACING OLD EQUIPMENT 

 
 
Equip_Status; 

Equip_Status 
Equip_Status_Desp  

 
THIS ELEMENT SPECIFIES THE CURRENT STATUS OF THE SPECIFIC 
EQUIPMENT ITEM.  THE STATUS ITEM IS ACTIVE, RETIRED, TRADED, ETC. 
CODE VALUES ARE: 
P = PURCHASE ORDER PROCESSED 
Q = REQUISITIONED 
R = RECEIVED 
S = SURPLUS 
V = VOUCHER PROCESSED 
W = WAITING DISPOSITION 
X = RETIRED EQUIPMENT, PAYMENT PENDING 
Y = PENDING REPLACEMENT 
Z = RETIRED (SEE RETIREMENT-CODE) 

 
Use_Unit_Code; 

Use_Unit_Code  
Use_Unit_Code_Desp 
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THIS ELEMENT INDICATES THE MANNER OF TABULATING USAGE; IN 
MILES OR HOURS. CODE VALUES ARE: 

          01 = MILE 
          02 = HOUR 
 
 
Class_Code; 

CLASS_CODE 
CLASS_CODE_DESC  

 
THIS ELEMENT IS USED AS AN INDICATOR CODE TO DEFINE THE CLASS TO 
WHICH THE EQUIPMENT ITEM BELONGS. CODE VALUES CAN BE FOUND IN 
APPENDIX B. 

 
 
Retirement_Code; 
 Retirement_Code 

Retirement_Code_Desc  
 

THIS ELEMENT SPECIFIES HOW AN ITEM OF RETIRED EQUIPMENT WAS 
RETIRED. CODE VALUES ARE: 

       1 = TRADE-IN 
       2 = SOLD 
       3 = CONDEMNED AND DISMANTLED 
       4 = STOLEN 
       5 = GIVEN NEW EQUIPMENT NUMBER 
       6 = CHANGED TO MINOR 
       7 = SOLD-AUCTION 
       8 = INTER-AGENCY TRANSFER 
       9 = NEGOTIATED SALE 
 
 
Body_Style; 

 Body_Style  
Body_Style_Desc  

 
THIS ELEMENT SPECIFIES THE STYLE TYPE OF THE BODY OF THE 
EQUIPMENT ITEM. CODE VALUES ARE: 
00 = DEL ERRONEOUS ENTRY 
01 = PICKUP 
02 = BOLT ON COMPARTMENTS 
03 = UTILITY SERVICE 
10 = DUMP, PICKUP 
11 = DUMP, STAKE 
12 = DUMP, PLATFORM  
13 = DUMP, EJECTION 
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16 = VAN 
17 = PANEL 
20 = PLATFORM 
21 = STAKE 
25 = REFUSE COLLECTION 
26 = OILFIELD 
27 = TANK 
40 = TILT BED, LEVEL DECK  
41 = TILT BED, BVR TAIL 
42 = FIXED BED, LVL DECK 
43 = FIXED BED, BVR TAIL 
50 = GOOSENECK, FXD,LVL D 
51 = GOOSENECK, FXD,DRP D 
52 = GOOSENECK, FLD,LVL D 
53 = GOOSENECK, FLD,DRP D 
54 = DUMP, TRAILER 
60 = POLE 
61 = FLOAT 
62 = STAKE FLOAT 
63 = PANEL FLOAT 
64 = SIGN TRANSPORT 
65 = DUMP BODY 

 
 
Fuel_Type; 

Fuel_Type  
Fuel_Type_Desc  

 
THIS ELEMENT IDENTIFIES THE SPECIFIC TYPE OF FUEL USED TO POWER 
THE MAIN ENGINE OF THE EQUIPMENT ITEM. CODE VALUES ARE: 
B = BIO-DIESEL 
C = CNG        
D = DIESEL     
E = ELECTRIC   
F = FLEX FUEL  
G = GASOLINE   
H = HYBRID     
K = KEROSENE   
L = LPG        
M = METHANOL   
N = DED CNG    
P = DED LPG    
W = WAIVERED   
Y = HYDROGEN   
0 = DEL ERROR 
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Steering_Type; 

Steering_Type  
Steering_Type_Desc  

 
     THIS ELEMENT SPECIFIES THE TYPE OF STEERING AVAILABLE ON THE 
     EQUIPMENT ITEM.   
 CODE VALUES ARE: 

C = CLUTCH      
H = HYDROSTATIC 
M = MANUAL      
P = POWER       
0 = DEL ERROR   

 
 
Brake_Type; 

Brake_Type  
Brake_Type_Desc   

 
     THIS ELEMENT SPECIFIES THE TYPE OF BRAKES CURRENTLY INSTALLED 
     UPON THE EQUIPMENT ITEM. CODE VALUES ARE: 

A = STRAIGHT AIR 
D = DYNAMIC, HYD 
E = ELECTRIC     
H = HYDRAULIC    
M = MECHANICAL   
P = POWER ASSIST 
S = SURGE, HYD   
0 = DEL ERROR    

 
 
Trans_Type; 
 Trans_Type  

Trans_Type_Desc  
 

THIS ELEMENT SPECIFIES THE TYPE OF TRANSMISSION.  CODE VALUES 
ARE: 
A = AUTOMATIC   
H = HYDROSTATIC 
M = MANUAL      
O = OTHER       
P = POWER SHIFT 
0 = DEL ERROR   

 
 
Equip_Capa; 
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 Equip_Capa  
Equip_Capa_Desc  

 
THIS ELEMENT INDICATES THE MEASUREMENT TYPE (CUBIC YARDS, FEET, 
TONS, ETC) USED TO DEFINE THE EQUIPMENT CAPACITY. CODE VLUES 
ARE: 
00 = DEL ERROR    
01 = POUNDS       
02 = CUBIC YARDS  
03 = GALLONS      
04 = FEET         
05 = TONS         
06 = INCHES       
07 = CUBIC FT/MIN 
08 = FEET/MINUTE  
09 = CUBIC FEET   
10 = DOORS        
11 = HORSEPOWER   
12 = GALLONS/MIN  
13 = CARS-FERRY   

 
 
Make_Code; 
 Make_Code  

Make_Code_Desc 
 

THIS ELEMENT IS USED TO IDENTIFY THE SPECIFIC 'MAKE' OF THE 
EQUIPMENT ITEM.  CODE VALUES ARE: 
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Figure A.21 Make Code Values. 

1 AISIN 126 CUB CADET 246 DUPLEX 391 HOLDEN
2 ADDCO 127 CALDWELL 247 DUR-A-LIFT 392 HYUNDAI
3 ACKER 128 CTS (CONSTRUCTION TRLR SPEC 248 DYNAPAC 393 HEIL
4 ACTON 129 CAPITOL 249 DYNAFLECT 394 HYDRA
5 AIRPLACO 130 CARTER 250 DYNATEST 395 HENKE
6 ALLISON 131 CARAVELLE 251 ECONOPAK 396 HI-VU
7 ADAMS 133 CARVER 252 EDCO 397 HERBICIDE
8 ARGO 134 CASE 253 ECOLOTEC 398 HERCULES
9 ALERT ARROW 135 CASELL 254 EATON 399 HESSTON

10 AEROIL 136 CASE-INTERNATIONAL 255 EAGER BEAVER 400 HOFFMAN
11 ALL MARK 139 CATERPILLAR 256 EASI-SIGN 401 HORMAN
12 ADVANCE 142 CIRCLE D 257 EJECTO 402 HIGHLIFT
13 ALEMITE 143 CESA 258 ELANCHET 403 HI-RANGER
14 ALENCO ALBRITTEN ENG. CO. 144 C.E.I. INC. 259 ELDER 404 HI-WAY
15 ALLIS-CHALMERS 145 CESSNA 260 ELEPHANT-VAC 405 HI-WAY SAFETY SUPPLY
16 AMC (AMERICAN MOTORS CORP) 146 CECO 261 EAGLE 406 HONDA
17 AMIDA 147 CEDARAPIDS 262 ELGIN 407 HOBBS
18 AMTEX 148 CEMEN TECH INC. 263 EAGLE BODY 408 HOUCK
19 ALTEX 149 CHAMPION 264 ELLIOTT 409 HOLAN
20 AMERICAN CRANE 150 CHARGER 265 ENGLER (SMC/TERRAIN KING) 410 HOUGH
21 ALTEC 151 CHALLENGER 266 EASTERN TECHNOLOGIES LTD 411 HY TRAK
22 AEROLIFT 152 CPS 269 ESCOTT 412 HOWARD
23 AMERICAN SIGNAL 153 CORE CUT 270 ESSICK 413 HOPTO
24 AMERICAN HOIST & DERRICK CO 154 CHAUSSE 271 E.R. BUSKE MFG CO INC 414 HOWLAND
25 ANTHONEY 155 CRYSTEEL 272 EVACO SUPERLINE 415 HP SYSTEMS
26 ALAMO 156 CIMLINE 273 ETNYRE 416 HYDRO MATIK
27 ACE WELDING & TRAILER CO. 157 C. H. & E. MFG CO 274 EQUIPMENT TECHNOLOGY 417 HUBER
28 ARAN 158 CHIPARVESTOR 275 EXCEL 418 HUTCHEN
29 ARMLIFT 159 CLARK MICHIGAN 276 E-Z GO 419 HUGHES-KEENAN
30 APOLLO SYSTEM II 160 CHEVROLET 277 FAILING 420 HUSKY
31 ARMY SURPLUS 161 CHIEF 278 FABCO 421 HYDRA LIFT
32 ARROSTAR 162 CHILDERS MFG. CO. INC. 280 FAIR SNOCRETE 422 HYDRO-BROOM
33 ARROW 163 CHICAGO-PNEUMATIC 296 FLEX-O-LITE 423 HYSTER
34 ASPLUNDH 164 CHRYSLER 297 FEDERAL CONSTRUCTION PRODUCTS 424 HYDROBLASTER
35 ARROW MASTER 165 CHIPMORE 298 FEIGELSON 425 HYDROMATIC
36 ASTRON CORP 166 CLARK 299 F & F 426 ICUBOTA
37 ARROW PLUS 167 CIMCEAL 300 FERGUSON 427 IMMSA
38 ATHENS 168 CIBOLO 301 FINN 428 IMCO
39 AMERICAN BODY 169 CLEAVER-BROOKS 302 FLEXIBLE 429 IHC INTNL HARVESTER
40 ATLAS 170 CLIPPER 303 FLAHERTY 430 INTERNATIONAL  (NAVISTAR)
41 ATOKA 171 CLEMENT 304 FLINK 431 INTERNATIONAL TRAFFIC SYSTEMS
42 ASPEN AERIALS 172 CMC CONSTRUCTI ON MCY COR 305 FLEX-LIFT 435 INGERSOLL RAND
43 AUSTIN-WESTERN 173 CTI CONSTRUCTI ON TECH. 306 FIATALLIS 439 INGRAM
44 AMERI-TRAIL 174 CMI 307 FLEET 443 INSLEY
45 ACCURATE 175 CLEVELAND 308 FLYNN 444 INTERSTATE
46 AQUA-DYNE 176 CORBETT BROS. STEEL CO. 309 FMC 445 ISUZU
47 AUTOCAR 177 CONTINENTAL 310 FORD 446 ITL
48 AUTO CRANE 178 CME (CENTRAL MINE EQUIP) 311 FONTAINE 447 IVECO
49 AMERICAN EQUIPMENT & TRAILER 179 CORSICANA 312 FIAT-IVECO 450 J & I
50 AVIATION 180 CRAFCO 313 FLAG 451 J & L
51 BADGER 181 COMMERICAL BODY CORP. 314 FREIGHTLINER 455 JACOBSEN
52 BAKER 182 CONSOLIDATED DIESEL ELECTRIC 317 FT WORTH STR ST 458 JACUZZI
53 ASPHALT ZIPPER INC. 183 CRC (CRUTCHER-ROLF-CUMMIN) 318 FT. WORTH TRUCK 461 JAEGER
54 ALLIANZ MADVAC 184 CROWN 319 FOSTER 462 JATCO
57 BALDERSON 185 CORMOR 320 FWT 463 JAHN
58 BEECHCRAFT 186 COKER ENTERPRISES 321 FUNK 464 J C B
59 BANDIT INDUSTRIES 187 CLUB CAR 322 FRUEHAUF 465 JLG
60 BARRIER SYSTEMS 188 CLIFTON METAL PRODUCTS, INC. 323 FULLER 466 JONES TRAILER CO.
61 BARTELL 189 CRYSTEEL 324 F W D 467 JEEP
62 BARKO 190 CUSHMAN 325 GMC 468 JOHNSTON
63 BARNES 191 CONDOR 326 GALION-DRESSER 472 JOY
64 BAUGHMAN 192 CMS 327 GANDY 473 K & K SYSTEMS INC.
65 BEDELL 193 CUMMINS 330 GARDNER-DENVER 474 KHI
66 BEAN(JOHN 194 C-W 331 GARWOOD 475 K.C. WELDING
67 BEMIS 195 DAKOTA TRAIL-EZE 332 GENIE 476 KALYN
68 BELSHE 196 DALE PHILLIPS 333 GEARCO 477 KARRI-GO
69 BERKLEY 197 DALLAS TANK 334 GEMCO 478 KAST
70 BEARCAT 198 DAEWOO 335 GEHL 479 KAWASAKI
71 BARBER-GREENE 199 DAMCO 336 GEFFS 480 K D MANITOU
72 BERRY 200 DANA 337 GENERAL 481 KDC
73 BEST 201 DANDL 338 GEOMEDIA RESEARCH & DEVLP. 482 KERESTINE
74 BASIC HEAVY HAULER 202 DANCO 341 GILSON 483 KELLEY CRESWELL
75 BINKS 207 DATSON 345 GLEDHILL 484 K. J. LAW ENGINEERS
76 BIRMINGHAM 208 DAVEY 351 GOOD ROADS 485 KEYSTONE
77 BENDI 209 DAVIS 352 GOOSENECK 486 KOENIG
78 BLACKWELL 211 JOHN DEERE 353 GOMACO 487 KING
79 BLANCHET 212 DEALERS TRUCK EQUIPMENT 354 GORBETT BROS. 488 KINGHAM
81 BLAW-KNOX 213 DEXTER 357 GORMAN RUPP 489 KLEIN
82 BIG TEX 214 DEALERS 360 GRACE 490 KNAPHEIDE
83 BITELLI-AMERICA 216 DETROIT DIESEL 361 GRIMMER-SCHMIDT 491 KIEFER
86 BMC 217 DEVERE 362 GRACO 492 KOBELCO
87 BMCO 218 DEUTZ 363 GRADALL 493 KOR-IT
88 BOSCH 219 DEVILBISS 364 GRASSHOPPER 494 KOEHRING
89 BOBCAT 220 DIETZ 365 GREAT PLAINS 495 KOHLHASS
90 BORG WARNER 222 DIAMOND T 368 GRAVELY 496 KUT-KWICK
91 BOLENS 223 DITCH WITCH 369 GROVE 497 KWIK MIX
92 BOMAG 224 DISPENSING TECHNOLOGY CORP 370 GRIFFIN 498 KURB-KUTTER
93 BRIGGS & STRATTON 225 DODGE 371 GULF 499 KUHN
94 BOWIE 226 DISPLAY SOLUTIONS 372 G & W 500 KOLBERG
95 BRILLION 227 DOOSAN 380 HATZ 501 KOMATSU
96 BROS MFG CO 234 DORSEY 381 HUSQVARNA 503 KOHLER
97 BROCE MFG CO 235 DOWNS-CLARK 382 HAMM 504 KUBOTA

100 BRODERSON 236 DOWNING 383 HAMCO HADDOX 505 LANDPRIDE
101 BRUSH BANDIT 237 DRESSON 384 HARLO 506 LANE-WELLS
102 BUCKEYE 238 DRESSTA (DRESSER 385 HAMILTON 508 LARSON/TERRAIN KING
117 BURCH 239 DURAMAX 386 HASSELL 510 LAYTON
118 BUSH-WHACKER 240 DROTT 387 HARSH 511 LECO
119 BUTLER 243 DUTEC 388 HAULETTE 512 LEAR-SIEGLER
120 BUSH HOG 244 DUNCAN 389 HATZ 513 LECTRO-LIFT
121 DEALER TRUCK EQUIP 245 DURALE 390 HAYES 514 LELAND
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Figure A.22 Make Code Values - Cont. 

515 LEE-BOY 641 OMC 761 SAUER 868 TRANSPORT TRAILER
516 LEROI 642 OILFIELD 762 SAMSUNG 869 TRANSAXLE
517 LEE 643 OMAHA 763 TAKE 3 870 TRANTEX
518 LINELAZER 644 ONAN 765 SEAMAN 871 TSI   (TRANSPORT SYSTEMS, INC
519 LIFT KING 645 OLIVER 769 SERVIS 872 TRAFFIC CONTROL DEVICE
520 LIFT-A-LOFT 646 OVER-LOWE 770 STAHL 873 TUFF
521 LINEAR DYNAMICS (PRISMO) 647 OMNI 771 SILENT HOIST 874 TRAIL KING
522 LINE MASTER 648 OPTO VISION 772 SIGNAL 875 TRENCH-LINER
523 LIBERTY 649 OWENS 775 SKYTEL 876 TRIUMPH
524 LIFT-ALL 650 OWN 776 SHOOK 877 TROJAN
525 LIMA 651 PACK-IT 777 SHUTTLELIFT 878 TYMCO
526 LIFTMOORE 652 PACIFIC PUMP CO 778 SHOP BUILT 879 TYE
527 LIME MASTER 653 P & H 779 SHOP BUILT (GSD 880 THOMPSON (TPM
528 LISTER 654 PANHANDLE STEEL 780 SIMPLICITY 881 UNDETERMINED MAKE
529 LINK-BELT (FMC) 655 PAXTON-MITCHELL 781 SKY-DART 882 UEC MFG CO
530 LITTER GITTER 656 PACEMATE 782 SKYVAN 883 UNI-HOIST
531 LITTLEFORD 657 PARTEK 783 SLAUTTERBACK 884 UNIMASCO
532 LOMBARDINI 658 PERFECTION 784 SLOPE MASTER 885 UNION CITY BODY CO.,INC.
533 LINAX 659 PATTERSON 785 SKYJACKER 886 VME
534 LITTLE GIANT 660 PEERLESS 786 SLOPEMOWER 887 VOLVO BM
535 LIEBHERR 661 PERKINS 787 SIMCO 888 TAYLOR-DUNN
536 LINDE 662 PERFECT 789 SLUSHER MCCLEAN 889 TELEDYNE
537 LOADCRAFT 663 PARISH 790 SMC-MOWAL 890 VERMEER
538 LORAIN 664 PETTIBONE-MERCURY 791 SMITH 891 VAN WAMEL
539 LONGYEAR 665 PETTER 792 SNOWBIRD 892 TRAILBOSS
540 LOAD KING 666 PETTIBONE-MULLIGEN 793 STAMM 893 UPRIGHT
541 LONG 667 PAVE-MARK 794 SUPERIOR BROOM 894 VALK
542 LUBBOCK 668 PETTIBONE-WOOD 795 SUKUP 895 VEPED
543 LTI - LAKE TECHNOLOGIES INC. 669 PHELAN (TRAILERS 796 STEINER 896 UTILITY
544 LINCOLN 670 PEUGEOT 797 SPILLARS 897 VERSALIFT
545 LINAMAR 671 PARKHURST 798 SNOGO 898 VIBRANT
546 LUFKIN 672 PACE 799 SNOWCO 899 VINA NATIONAL
547 LOAD-TRAIL 673 PIERCE 800 SOUTHWEST 900 VIBRO-PLUS
554 MAC'S CUSTOM FIBERGLASS 674 PIERCE-BEAR 801 SOLRTRON INTERNATIONAL 901 VINA-FLASH
555 MACK 675 PIPE HUNTER 802 SOLAR TECHNOLOGY 902 VICKERS
556 MADDISON 676 PIONEER 803 SUPER PRECISION DESIGN INC 903 VIKING
557 MARK RITE 677 PIPER 804 SPENCER MACHINE SHOP 904 WABCO
558 MARK IV 678 PARKER 805 SPENCER MARSH 905 WALDON
559 MARLOW 680 PITMAN 806 SPENCER-SAFFORD 906 WALDON VERSA
560 MARLISS 682 PRECISION DESIGN 807 SPICER 907 WALD
561 MANCHESTER/WESSEL 683 PONTIAC 808 STEPP 908 WALES
565 MARCO 684 PLYMOUTH 809 S & R 909 WALKIE
566 MAZDA 685 PRO-PATCH 810 STAHL 910 WANCO
567 MASTER CRAFT 687 PORTA-PATCHER 811 STAFFA 911 WAKELAND
570 MATHEWS, CORP. 688 POWERSHUTTLE 812 SUNRAY 912 WAAW
571 MEI  MARCATO ENT 689 POWER CURBERS INC 813 STANDARD STEEL WORKS 913 TRAILNOR
572 MAYCO 690 POWER PLUS, INC. 814 STAR TANK & TRAILER 914 WARNER
573 MAULDIN 691 POWERS 815 STERLING 915 WALTCO
574 MASSEY-FERGUSON 692 POWER BOSS 816 STELCO 916 VER-MAC
575 MCCABE-POWERS 693 PRECISION SOLAR CONTROLS INC. 817 STEPHENS-CANFIELD 917 VOELLER
576 MERITOR 694 POWER QUEST 818 SUNDANCE 918 WAUKESHA
577 MERCEDES 696 PRIME-MOVER 819 STONE 919 WAUSAU
578 MESSAGE DIRECTOR 697 PRISMO     (LINEAR DYNAMICS 820 STOCKLAND 920 VIBROMAX
581 M-C MATHEWS CO. 698 PUCKETT BROS MFG. CO. 821 STREETERAMET 921 TCI-PMF
582 MEYER 699 PYLES 822 SUPREME 922 TEREX
583 METAL FABRICATING CO. 700 PRODUCTION DIGGERS INC 823 SULLAIR 923 WAYNE
584 MELROE 702 QUICKWAY 824 SULLIVAN 924 TOP HAT
585 MICHIGAN 703 ROADMASTER 825 SUNSTRAND 925 WEDGE
589 MIDLAND 704 QUINCY 826 SUNSHINE 926 VACTOR
591 MIDWEST 705 RADIAN 827 SUZUKI 927 WELLS CARGO
594 MB 706 RAYMON 828 SWENSON 928 WENDLAND
596 MILLER 707 RAWSON-KOENIG 829 SWEEPSTER 929 VOGELE
599 MITSUBISHI 708 RANGER 830 SWIZ 931 WESTERN
600 MINN-MOLINE 709 RAYGO 831 TCD (TRAFFIC CONTROL DEVICES 935 WHEELER
601 MOORE VENTURES 710 REFRACT-ALL 832 TAIT 936 WHEEL HORSE
602 MITTS & MERRILL 711 RANSOMES 833 TAMPO 937 WHEELED ROLLER
603 MORBARK 712 REINCO 834 TCM 943 WHITE - GMC
604 ATHEY-MOBIL 713 REXROTH 835 TECUMESH 946 W. H. MFG. CO.
605 MOBILIFT 714 RANCH KING 836 TARGET 949 WILLIAMS
606 MODERN WELDING 715 REACH ALL 837 TARCO HIGHLANDER 952 WILLYS (JEEP
607 MONO 716 RAINHART 838 TELELECT 956 WILSHIRE
608 MOOG 717 REPUBLIC 839 TAYLOR(GW 959 WINK-O-MATIC SIGNAL CO.
609 MOHAWK 718 REX 840 TECO 962 WIRTGEN
610 MOWALL 719 RHINO 841 TENNANT 963 WISCONSIN
611 MODERN, INC. 720 READING 842 TEALE 964 WISE
612 MOTT 721 RENCO 843 TERRAIN KING 965 WOODCHUCK
613 MORRISON 722 RENAULT 844 TEXOMA 966 WOODS
614 MO-TRIM 723 ROBIN 845 TDCJ-TX DEPT OF CRIM JUSTICE 971 WORK AREA PROTECTION CORP
615 MONROE-PATTERSON 724 ROCKWELL 846 TESCO 972 WORTHINGTON
616 MONROE 725 RETESA 847 THRUN 980 WYLIE
617 MOSSPOINT MARINE 726 RHEA'S 848 THS 981 W W TRAILER
618 MORGAN 728 ROLCOR 849 TIMCO 986 YALE
619 MULLER 732 ROME 850 TEXAS TRANSPORT 987 YAZOO
620 MTI 735 ROPER 851 TIMKEM 989 YANMAR
621 MURPHY 739 ROSCO 852 TIME 990 YUKON
622 MUNCIE 740 ROTARYAIRE 853 TMT 991 ZAHNKADFABRIK-PASSAU
623 MQ POWER 741 RPM TECH 854 TOYOSHA 992 ZF
627 NABORS 748 ROYAL 855 TORO 993 ZIMMERMAN
628 NOBLE 749 ROSS 856 TOWERS 999 UNKNOWN
629 NATIONAL SIGNAL INC. 750 ROYAL MATHIESSEN 857 TPE
630 NATIONAL 751 ROYAL INDUSTRIES 858 TOWNMOTOR
631 NEW PROCESS 752 RUSSELL 859 TOW MOTOR
632 NEW HOLLAND 753 ROTECH 860 TRACTOMOTIVE
633 NORTHFLD HUSKY 754 RUGBY 861 TOYO
634 NORTHWEST SHOVEL CO 755 SCHWARZE SUPERVAC 862 TOYOTA
635 NISSAN 756 SAMPSON 863 TRADEWINDS, IND.
636 NEW VENTURE 757 SALISBURY 864 TRAILMOBILE-LAP
637 NUTTALL 758 SAFETY SHEAR 865 TRAILER INDUSTRIES, INC.
638 NUMAR 759 SCHIELD-BANTAM 866 TRANSPORT
640 OKAMURA 760 SCHRAMM 867 TRAIL-EZE
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Dist_Div; 
 Dist_Div 

Dist_Div_Desc  
 

THIS ELEMENT IDENTIFIES THE DISTRICT WHICH OWNS THE EQUIPMENT.  
CODE VALUES ARE: 
01 = PARIS                
02 = FORT WORTH           
03 = WICHITA FALLS        
04 = AMARILLO             
05 = LUBBOCK              
06 = ODESSA               
07 = SAN ANGELO           
08 = ABILENE              
09 = WACO                 
10 = TYLER                
11 = LUFKIN               
12 = HOUSTON              
13 = YOAKUM               
14 = AUSTIN               
15 = SAN ANTONIO          
16 = CORPUS CHRISTI       
17 = BRYAN                
18 = DALLAS               
19 = ATLANTA              
20 = BEAUMONT             
21 = PHARR                
22 = LAREDO               
23 = BROWNWOOD            
24 = EL PASO              
25 = CHILDRESS            
29 = CAMP HUBBARD         
44 = GENERAL SERVICES DIV 

 
 
Inflation_Table_YR; 
 YEAR DATA_INFL_RATE INFLATION_RATE 
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Figure A.23 Consumer Price Index Inflation Rate Data. 

 

  

YEAR DATA_INFL_RATE CAL_INFL_RATE YEAR DATA_INFL_RATE CAL_INFL_RATE
1913 21.85 21.85000 1962 7.16 4.52661
1914 21.63 21.15918 1963 7.07 4.38349
1915 21.42 20.49020 1964 6.98 4.24490
1916 19.85 19.84237 1965 6.87 4.11069
1917 16.9 19.21503 1966 6.68 3.98073
1918 14.33 18.60751 1967 6.48 3.85487
1919 12.5 18.01921 1968 6.22 3.73299
1920 10.82 17.44950 1969 5.89 3.61497
1921 12.09 16.89781 1970 5.58 3.50068
1922 12.88 16.36356 1971 5.34 3.39000
1923 12.65 15.84620 1972 5.18 3.28282
1924 12.65 15.34520 1973 4.87 3.17903
1925 12.36 14.86004 1974 4.39 3.07852
1926 12.22 14.39022 1975 4.02 2.98119
1927 12.43 13.93525 1976 3.8 2.88693
1928 12.65 13.49467 1977 3.57 2.79566
1929 12.65 13.06801 1978 3.32 2.70727
1930 12.95 12.65485 1979 2.98 2.62167
1931 14.23 12.25475 1980 2.63 2.53879
1932 15.79 11.86729 1981 2.38 2.45852
1933 16.64 11.49209 1982 2.24 2.38079
1934 16.14 11.12875 1983 2.17 2.30552
1935 15.79 10.77690 1984 2.08 2.23262
1936 15.56 10.43617 1985 2.01 2.16204
1937 15.02 10.10622 1986 1.97 2.09368
1938 15.34 9.78669 1987 1.9 2.02748
1939 15.56 9.47727 1988 1.83 1.96338
1940 15.45 9.17763 1989 1.74 1.90131
1941 14.72 8.88747 1990 1.66 1.84119
1942 13.27 8.60648 1991 1.59 1.78298
1943 12.5 8.33437 1992 1.54 1.72661
1944 12.29 8.07087 1993 1.5 1.67202
1945 12.02 7.81570 1994 1.46 1.61916
1946 11.09 7.56859 1995 1.42 1.56797
1947 9.7 7.32930 1996 1.38 1.51839
1948 8.98 7.09757 1997 1.35 1.47039
1949 9.09 6.87317 1998 1.33 1.42390
1950 8.98 6.65587 1999 1.3 1.37888
1951 8.32 6.44543 2000 1.26 1.33528
1952 8.16 6.24165 2001 1.22 1.29307
1953 8.1 6.04431 2002 1.2 1.25218
1954 8.04 5.85321 2003 1.18 1.21259
1955 8.07 5.66815 2004 1.15 1.17426
1956 7.95 5.48894 2005 1.11 1.13713
1957 7.7 5.31540 2006 1.07 1.10118
1958 7.49 5.14735 2007 1.04 1.06636
1959 7.43 4.98461 2008 1 1.03265
1960 7.31 4.82701 2009 1 1.00000
1961 7.24 4.67440
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Appendix A.B: TxDOT TERM – Classcode Descriptions and Benchmark Rules 

Table A.B.1: TxDOT Equipment Replacement Model Data 
 

 
 

       
        
        
        
        
        

Shading/Bold Indicates Revisions       
 TxDOT EQUIPMENT REPLACEMENT MODEL (TERM) AS OF 10/08/2008  
        
  USAGE AGE REPAIR  

CLASS CLASS CODE  TERM AT TERM AT TERM  
CODE DESCRIPTION STANDARD DISPOSAL AGE DISPOSAL REPAIR  

001010 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, TO 29', INC TRUCK 7,000 HRS 8,000 7 YRS 8 YRS 75%  
001020 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 30-39', INC TRUCK 7,000 HRS 8,000 7 YRS 8 YRS 75%  
001030 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 40-59', INC TRUCK 7,000 HRS 8,000 7 YRS 8 YRS 75%  
001040 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, 60' +, INC TRUCK 9,000 HRS 10,000 10 YRS 11 YRS 50%  
001050 AERIAL PERSONNEL DEVICE, TRUCK MOUNTED, MILEAGE 110,000 MI 120,000 7 YRS 8 YRS 100%  
011010 ASPHALT DISTRIBUTOR, TRUCK MOUNTED, (INCLUDES TRUCK) 5,000 HRS 5,500 12 YRS 13 YRS 75%  
012010 ASPHALT MAINTENANCE UNIT, 600  GAL, TRAILER MOUNTED 3,500 HRS 4,000 10 YRS 11 YRS 75%  
012020 ASPHALT MAINTENANCE UNIT, 1000 GAL, TRAILER MOUNTED 3,000 HRS 3,500 12 YRS 13 YRS 75%   
012030 ASPHALT MAINTENANCE UNIT, TRUCK MOUNTED 5,000 HRS 5,500 12 YRS 13 YRS 75%  
012040 ASPHALT MAINTENANCE UNIT, DUMPBODY CONTAINED 4,500 HRS 5,000 13 YRS 14 YRS 75%  
014000 ASPHALT MELTING KETTLE (HTR), TRAILER MOUNTED 1,800 HRS 2,000 10 YRS 11 YRS 75%  
019000 ASPHALT RECLAIMER/STABILIZER, CLASS I, SP, < 94.5 CUT WIDTH 3,000 HRS 3,300 10 YRS 11 YRS 50%  
020020 AUTOMOBILES, SEDAN, 100 THRU 112.9 IN. WHEELBASE 90,000 MI 100,000 8 YRS 9 YRS 75%   
020030 AUTOMOBILES, SEDAN, 113 IN. WHEELBASE AND GREATER 90,000 MI 100,000 8 YRS 9 YRS 75%   
025010 AUTOMOBILES, STATION WAGONS, UP TO 112.9 IN. WHEELBASE 90,000 MI 100,000 8 YRS 9 YRS 75%   
044000 EARTH BORING MACHINE, TRUCK MOUNTED (INCLUDES TRUCK) 5,000 HRS 5,500 14 YRS 15 YRS 75%  
052010 CRANE, CARRIER MOUNTED, CABLE OR TELESCOPING 6,000 HRS 6,300 16 YRS 17 YRS 75%  
052020 CRANE, CRAWLER TYPE, CABLE CONTROL 10,000 HRS 11,000 14 YRS 15 YRS 50%  
054000 CRANE, TELESCOPING BOOM, TRUCK MOUNTED (INCLUDES TRUCK) 7,000 HRS 8,000 12 YRS 13 YRS 50%  
056000 CRANE, YARD/INDUSTRIAL, SELF PROPELLED 5,000 HRS 5,500 12 YRS 13 YRS 50%  

The TxDOT Equipment Replacement Model (TERM) uses historical data to identify candidates for replacement one year in advance of delivery.  The 
purpose of early identification is to allow the districts time to identify the units for replacement; budget for replacement; allow GSD (Fleet Management and 
Purchasers) time to develop the specification; advertise and award the purchase; allow the vendor time to build the unit; and get it delivered to the district.  
This process may take up to one year.  Therefore, keeping the units until the time of delivery, rather than early identification, will in fact hold the units in 
operation for up to a year under very expensive repair and operating costs.  In reality, this would void any benefit of replacement analysis.   
 
For comparative purposes, the class listing shows that point in life when it is identified by TERM, and where the unit would probably be when retired. 
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064000 DYNAMIC DEFLECTION SYSTEM, TRAILER MOUNTED 90,000 MI 100,000 10 YRS 11 YRS 100%  
070010 EXCAVATOR, HINGED OR TELESCOPING BOOM, CRAWLER TYPE 7,000 HRS 8,000 10 YRS 11 YRS 50%  
070020 EXCAVATOR, HINGED BOOM, PNEUMATIC TIRED CARRIER 7,000 HRS 8,000 10 YRS 11 YRS 50%  
075010 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS I 6,000 HRS 6,500 9 YRS 10 YRS 75%   
075020 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS II 6,000 HRS 6,500 9 YRS 10 YRS 75%   
075030 EXCAVATOR, TELESCOPING BOOM, CARRIER MOUNTED, CLASS III 8,400 HRS 9,000 12 YRS 13 YRS 75%  
080000 FORKLIFT, ELECTRIC 5,000 HRS 5,500 12 YRS 13 YRS 50%  
085010 FORKLIFT, ENGINE DRIVEN, UP TO 3,999 LB CAPACITY 9,000 HRS 10,000 12 YRS 13 YRS 75%  
085020 FORKLIFT, ENGINE DRIVEN, 4,000 LB AND OVER CAPACITY 9,000 HRS 10,000 12 YRS 13 YRS 75%  
090010 GRADER, MOTOR, CLASS I, UP TO 109 H.P. 5,000 HRS 5,500 12 YRS 13 YRS 50%  
090020 GRADER, MOTOR, CLASS II, 110-134 H.P. 6,000 HRS 6,500 13 YRS 14 YRS 75%  
090030 GRADER, MOTOR, CLASS III, 135-149 H.P. 6,000 HRS 6,500 13YRS 14 YRS 75%  
090040 GRADER, MOTOR, CLASS IV, 150  H.P. AND GREATER 6,000 HRS 6,500 12 YRS 13 YRS 100%  
110010 LOADER, CRAWLER, UP TO 1.9 CU.YD. CAPACITY 3,000 HRS 3,500 13 YRS 14 YRS 50%   
110020 LOADER, CRAWLER, 2 CU. YD. CAPACITY AND GREATER 3,000 HRS 3,500 13 YRS 14 YRS 50%   
115000 LOADER, PNEUMATIC TIRED, SKID STEER  2,000 HRS 2,500 9 YRS 10 YRS 50%   
115010 LOADER, PNEUMATIC TIRED, UP TO 1 1/2 CY 5,000 HRS 6,000 13 YRS 14 YRS 75%  
115020 LOADER, PNEUMATIC TIRED, 1 1/2 CY 5,200 HRS 5,500 13 YRS 14 YRS 100%  
115030 LOADER, PNEUMATIC TIRED, 2 CY 5,500 HRS 6,000 13 YRS 14 YRS 75%  
115040 LOADER, PNEUMATIC TIRED, 2 1/2 AND 3 CY  6,500 HRS 7,000 13 YRS 14 YRS 100%  
132040 MOWER, TRAIL TYPE, ROTARY, 9 FT AND GREATER 3,000 HRS 3,500 8 YRS 9 YRS 100%  
136010 MOWER, SLOPE, SIDE BOOM, TRACTOR MOUNTED, INC TRACTOR 2,000 HRS 2,200 13 YRS 14 YRS 100%  
140040 PAINT STRIPE MACHINE, 2 COLOR, MULTI-LINE, TRUCK MOUNTED 10,000 HRS 11,000 10 YRS 11 YRS 100%  
154000 PAVEMENT PROFILING MACHINE, SELF PROPELLED 6,000 HRS 7,000 10 YRS 11 YRS 100%   
156010 PAVER, BITUMINOUS, SELF PROPELLED 5,000 HRS 5,500 11 YRS 12 YRS 50%  
162020 PULVERIZER-MIXER, EARTH, SELF PROPELLED 3,000 HRS 3,500 9 YRS 10 YRS 50%  
170010 ROLLER, FLATWHEEL, SELF PROPELLED 4-6 TON W/PNMTC TRS 3,000 HRS 3,500 16 YRS 17 YRS 75%  
170020 ROLLER, FLATWHEEL, SELF PROPELLED 5-8 TON 4,000 HRS 4,500 16 YRS 17 YRS 75%   
170030 ROLLER, FLATWHEEL, SELF PROPELLED 8-14 TON 4,000 HRS 4,500 16 YRS 17 YRS 75%   
174010 ROLLER, PNEUMATIC TIRED, SELF PROPELLED 3,000 HRS 3,500 14 YRS 15 YRS 100%   
176010 ROLLER, TAMPING, SELF PROPELLED 3,000 HRS 3,200 15 YRS 16 YRS 50%  
178010 ROLLER, VIBRATING, SELF PROPELLED 2,000 HRS 2,200 15 YRS 16 YRS 50%  
178020 ROLLER, VIBRATING, SELF PROPELLED W/PNEUMATIC TIRES 2,500 HRS 2,800 12 YRS 13 YRS 50%  
186000 SIGN, ELECTRONIC CHANGEABLE, TRAILER MOUNTED 6,000 HRS 6,500 12 YRS 13 YRS 100%  
186010 SIGN, ELECTRONIC CHANGEABLE, TRAILER MOUNTED, SOLAR PWRED 6,000 HRS 6,500 12 YRS 13 YRS 100%  
192010 SPRAYER, HERBICIDE/INSECTICIDE, TRUCK MOUNTED (INC TRK) 6,300 HRS 6,700 9 YRS 10 YRS 100%  
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194010 SPREADER, AGGREGATE, SELF POWERED 5,000 HRS 5,200 15 YRS 16 YRS 100%  
202010 SWEEPER, ROAD, SELF PROPELLED 3,000 HRS 3,200 10 YRS 11 YRS 100%  
204020 SWEEPER, STREET, TRUCK MOUNTED 5,000 HRS 5,500 8 YRS 9 YRS 75%  

204030 
SWEEPER, STREET, TRUCK MOUNTED, REGENERATIVE AIR, UP TO 5.9 
CY 5,000 HRS 5,500 8 YRS 9 YRS 75%   

204040 SWEEPER, STREET, TRUCK MOUNTED, REGENERATIVE AIR, 6 CY & UP 5,000 HRS 5,500 8 YRS 9 YRS 75%  
214000 TANK, WATER, TRUCK MOUNTED, INCLUDES TRUCK, MILEAGE 140,000 MI 150,000 12 YRS 13 YRS 100%  
214010 TANK, WATER, TRUCK MOUNTED, INCLUDES TRUCK, HOURLY 4,000 HRS 4,500 12 YRS 13 YRS 100%  
220010 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) TO 100 HP 4,000 HRS 4,500 12 YRS 13 YRS 75%   
220020 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) 100-129 HP 6,000 HRS 6,500 12 YRS 13 YRS 75%  
220030 TRACTOR, CRAWLER TYPE (W/OR W/O DOZER) 130-179 HP 6,000 HRS 6,500 12 YRS 13 YRS 100%  
230010 TRACTOR, PNEUMATIC TIRED, TO 49 HP (TRACTOR ONLY) 3,000 HRS 3,300 14 YRS 15 YRS 100%  
230020 TRACTOR, PNEUMATIC TIRED, 50-64 HP (TRACTOR ONLY) 3,000 HRS 3,300 14 YRS 15 YRS 100%  
230030 TRACTOR, PNEUMATIC TIRED, 65 HP & GREATER (TRACTOR ONLY) 3,000 HRS 3,500 14 YRS 15 YRS 100%  
240020 TRACTOR, PNEUMATIC TIRED, W/LOADER & BACKHOE, TO 60 HP 3,500 HRS 3,700 14 YRS 15 YRS 75%  
240030 TRACTOR, PNEUMATIC TIRED, W/LOADER AND BACKHOE, 60 HP & UP 6,000 HRS 7,000 14 YRS 15 YRS 75%   
260010 TRAILER, EQUIPMENT, TILT BED/UTILITY, TO 24,000 LB CAPACITY 3,000 HRS 3,200 15 YRS 16 YRS 200%   
260020 TRAILER, EQUIPMENT, TILT BED/UTILITY, 24,000 LB CAP & GREATER 4,000 HRS 4,500 15 YRS 16 YRS 200%   
260030 TRAILER, EQUIPMENT, GOOSENECK 9,000 HRS 10,000 15 YRS 16 YRS 200%   
280010 TRAILER, TRANSPORT, PLATFORM 4,000 HRS 4,500 12 YRS 13 YRS 100%  
280020 TRAILER, TRANSPORT, SIGN 4,000 HRS 4,400 14 YRS 15 YRS 100%  
400010 TRUCK, 4-WD UTILITY AND CARRYALL 110,000 MI 130,000 9 YRS 10 YRS 100%   
400020 TRUCK, 4-WD PICKUP, ALL STYLES 110,000 MI 130,000 9 YRS 10 YRS 100%   
400030 TRUCK, 2-WD UTILITY VEHICLE, 3961-5000 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
410010 TRUCK, CARRYALL, UP TO 6950 LB GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
410020 TRUCK, CARRYALL, 7000 LB GVWR AND GREATER 110,000 MI 130,000 9 YRS 10 YRS 100%   
420010 TRUCK, CARGO OR WINDOW VAN, MINI, UP TO 6200 LB GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
420020 TRUCK, CARGO OR WINDOW VAN, FULL-SIZE, 6200 LB GVWR & UP 110,000 MI 130,000 9 YRS 10 YRS 100%   
430010 TRUCK, LIGHT DUTY, PICKUP, UP TO 4600 LB GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
430020 TRUCK, LIGHT DUTY, PICKUP, 4600 - 6199 LB GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
430030 TRUCK, LIGHT DUTY, OTHER BODY STYLES, 4600-6199 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
430040 TRUCK, HEAVY DUTY COMPACT, 4320-5600 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
430050 TRUCK, EXTENDED CAB COMPACT, 4245-5034 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
430070 TRUCK, EXTENDED CAB 1/2 TON, 6000-6799 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
440010 TRUCK, LIGHT DUTY, PICKUP, 6200-7999 LB GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
440020 TRUCK, LIGHT DUTY, OTHER BODY STYLES, 6200-7999 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
440030 TRUCK, EXTENDED CAB 3/4 TON, 6800-9000 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
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450010 TRUCK, LIGHT DUTY, 8000-8599 GVWR, PICKUP BODY 110,000 MI 130,000 9 YRS 10 YRS 100%   
450020 TRUCK, LIGHT DUTY, 8000-8599 GVWR, OTHER BODY STYLES 110,000 MI 130,000 9 YRS 10 YRS 100%   
460010 TRUCK, LIGHT DUTY, 8600-14999 GVWR, PICKUP BODY 110,000 MI 130,000 9 YRS 10 YRS 100%   
460020 TRUCK, LIGHT DUTY, 8600-14999 GVWR, OTHER BODY STYLES 110,000 MI 130,000 9 YRS 10 YRS 100%   
470020 TRUCK, LIGHT DUTY, CR CAB, 7901-8599 GVWR, OTHER BODY STYLES 110,000 MI 130,000 9 YRS 10 YRS 100%   

470030 
TRUCK, LIGHT DUTY, CR CAB, 8600-14999 GVWR, OTHER BODY 
STYLES 110,000 MI 130,000 9 YRS 10 YRS 100%   

480010 TRUCK, PLTFM, PLTFM DUMP, STAKE, 8600-14999 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
490010 TRUCK, LIGHT/MEDIUM, 14,500 TO 18,999 GVWR 110,000 MI 130,000 9 YRS 10 YRS 100%   
500010 TRUCK, ALL BODY STYLES, 15,000-18,900 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
510010 TRUCK, ALL BODY STYLES, 19,000-20,900 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
520010 TRUCK, ALL BODY STYLES EXC CONV DUMP, 21000-25400 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
520020 TRUCK, CONVENTIONAL DUMP, 21000-25400 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
520030 TRUCK, EJECTION TYPE MATERIAL BODY, 21000-25400 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
530010 TRUCK, ALL BODY STYLES, EXC CONV DUMP/WRKR 25500-28900 130,000 MI 140,000 10 YRS 11 YRS 100%   
530020 TRUCK, CONVENTIONAL DUMP, 25500-28900 GVWR 130,000 MI 140,000 10 YRS 11 YRS 100%   
530030 TRUCK, EJECTION TYPE MATERIAL BODY, 25500-38900 120,000 MI 130,000 10 YRS 11 YRS 100%   
540010 TRUCK, DUMP, SINGLE REAR AXLE,29000-42900 GVWR 140,000 MI 150,000 16 YRS 17 YRS 100%   
540020 TRUCK, DUMP, TANDEM REAR AXLE, 43000 GVWR AND GREATER 180,000 MI 200,000 16 YRS 17 YRS 100%   
550010 TRUCK, ALL STYLES EXC DUMP, SINGLE REAR AXLE 29000-38900 140,000 MI 150,000 16 YRS 17 YRS 100%   
550020 TRUCK, ALL STYLES EXC DUMP, TANDEM REAR AXLE 39000 + 140,000 MI 150,000 16 YRS 17 YRS 100%   
600010 TRUCK TRACTOR, SINGLE REAR AXLE, UP TO 60000 GCWR 140,000 MI 150,000 16 YRS 17 YRS 100%   
600020 TRUCK TRACTOR, SINGLE REAR AXLE, 60000 GCWR & GREATER 140,000 MI 150,000 16 YRS 17 YRS 100%   
600030 TRUCK TRACTOR, TANDEM REAR AXLE, ALL GCWR 200,000 MI 250,000 16 YRS 17 YRS 100%   

        

 ORIGINALLY, TERM LOOKED AT:  *CURRENTLY, TERM LOOKS AT:  
        

 70 CLASS CODES OF THE 310 IN EOS-----------------------------22.58%  
115 CLASS CODES OF THE 195 APPLICABLE IN EOS-----
58.97%  

        

 12,584 UNITS OF EQUIPMENT OF 17,357--------------------------72.51%  
14,159 UNITS OF EQUIPMENT OF 17,007--------------------
83.25%  

        

 $251,709,530.54 OF THE ORIGINAL PURCHASE COST---------82.28%  
$573,446,644.36 OF THE ORIGINAL PURCHASE COST---
84.09%  

        

   
*BASED ON TERM AND R33B REPORTS, EXCLUDING 
CLASS    

   CODES CONVERTED TO MES IN 2008   
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Appendix A.C: FAQs 

A.C.1 - HOW TO CREATE A DESKTOP SHORTCUT? 

To create a shortcut icon on the desktop, open the “dist” folder first, and then right-click the 
executable file “Optimizer.jar” and select the “Copy” option. Next, right-click anywhere on the 
desktop and select the “Paste shortcut” option. Now, there should be an icon entitled “Shortcut to 
Optimizer” on the desktop that allows the user to double click and execute the ERO software.  

A.C.2 - CAN I COPY AND PASTE THE OPTIMIZER ANYWHERE AND EXECUTE 
THE FILE? 

Not if the Optimizer is copied alone. However, if it is moved along with the “\lib” folder to the 
same location, or the Optimizer is pasted as a shortcut only, it will function properly. During the 
development of the GUI, a special file (i.e. miglayout executable) was used for the development 
convenience of the GUI and placed in the “\lib” folder. As a result, the “Optimizer.jar” should 
remain in the same folder as the “\lib” folder (i.e. the “Optimizer\dist” folder). If the Optimizer is 
copied to another location the “\lib” folder must also be copied to the same location (e.g. If the 
Optimizer is copied to the desktop, the “\lib” folder should also be copied to the desktop in order 
for the file to properly execute).  

 A.C.3 - IS JAVA SDK INSTALLATION REQUIRED? 

No. The installation of Java SDK is not required to execute the ERO software. Java SDK is only 
required for the development of the ERO software.  

A.C.4 - WHAT DOES THE MESSAGE “ERROR LOADING EQUIPMENT FILE 
FALSE” MEAN? 

The newest version of Java Runtime Environment is not installed. Refer to section A.2.2 for 
information regarding the installation of Java Runtime Environment.   

A.C.5 - HOW DO I ADD NEW DATA FOR EACH YEAR? 

At the beginning of each fiscal year, the new TERM data from the past year should be input into 
the system in such a way that the software recognizes and can use the data (i.e. the 2009 TERM 
data format). The new TERM data must be input into the folder “\TERM Data\Input” (i.e., the 
Input Directory as discussed in section A.3.1.1) in the format “TERM_XXXX_Data” where the 
year is represented by XXXX (e.g. at September 1, 2011 - the beginning of the 2012 fiscal year, 
the 2011 data should be added in the form of “TERM_2011_Data”). Again, the user will be 
reminded to do so through a message displayed in a pop-up window right after the “Run” button 
is clicked. Again, the format of this input file should remain the same as the most recent TERM 
data (such as 2008 and 2009) provided by TxDOT during the development of this ERO solution 
software.  
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A.C.6 - WHAT IS KNAPSACK PROGRAMMING? 

The knapsack problem is a problem in combinatorial optimization: Given a set of items, each 
with a weight and a value, determine the number of each item to include in a collection so that 
the total weight is less than or equal to a given limit and the total value is as large as possible. It 
derives its name from the problem faced by someone who is constrained by a fixed-size 
knapsack and must fill it with only the most useful items. In the ERO context, the size of the 
knapsack is determined by the annual budget and the set of items is the list of candidate 
equipment units for replacement. The cost of replacement is modeled as the weight of the items 
and the value of the items is represented as the cost savings of each replacement compared to the 
benchmark solution. The program maximizes the benefit of replacement compared to the 
benchmark decision and chooses the most optimal solution (i.e., an optimal list of equipment 
units for replacement) that fits the annual budget for the decision year.  
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ABSTRACT: In this paper, we first conduct a comprehensive literature review of the state-of-
the art and state-of-the practice of the equipment replacement optimization (ERO) problem. A 
comprehensive dynamic programming (DP) based optimization solution methodology is then 
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proposed and implemented to solving the ERO problem. The developed ERO software consists 
of three main components: 1) A SAS Macro based Data Cleaner and Analyzer, which undertakes 
the tasks of raw data reading, cleaning and analyzing, as well as cost estimation & forecasting; 2) 
A DP-based optimization engine that minimizes the total cost over a defined horizon; and 3) A 
Java based Graphical User Interface (GUI) that takes parameters selected by and inputs from 
users and coordinates the Optimization Engine and SAS Macro Data Cleaner and Analyzer. The 
first component (i.e., the SAS macro based Data Cleaner and Analyzer), is presented in detail. 
Preliminary numerical results of the SAS data analysis, estimation and forecasting of several 
costs are also discussed. Then in a following paper, the DP-based optimization engine and ERO 
software development (including the Java GUI) are presented in detail and comprehensive ERO 
numerical results are given. 
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ABSTRACT: The main purpose of this paper is to present a deterministic dynamic 
programming (DDP)-based optimization model formulation and propose both the Bellman and 
Wagner approaches to solving the equipment replacement optimization (ERO) problem. The 
developed solution methodology is very general and can be used to make optimal 
keep/replacement decisions for both brand-new and used vehicles both with and without annual 
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budget considerations. A simple numerical example is given to illustrate and step-through the 
Bellman DDP solution process and demonstrate how the DDP is used to solve the ERO problem 
via backward recursion. The developed DDP-based ERO software is tested and validated using 
the current Texas Department of Transportation (TxDOT) vehicle fleet data. Comprehensive 
numerical results, such as the software computational time and solution quality, are described 
and substantial cost-savings have been estimated by using this ERO software. Finally, future 
research directions are also suggested. 
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ABSTRACT: In this paper, a stochastic dynamic programming (SDP) based optimization model 
is formulated for the equipment replacement optimization (ERO) problem that can explicitly 
account for the uncertainty in vehicle utilization. The Bellman’s approach is developed and 
implemented to solving the ERO SDP problem. Particular attention is paid to the SDP state-
space growth and special scenario reduction techniques are developed to resolve the “curse of 
dimensionality” issue that is inherent to the dynamic programming method to ensure that the 
computer memory and solution computational time required will not increase exponentially with 
the increase in time horizon. SDP software computer implementation techniques and 
functionalities are discussed. Comprehensive numerical results are described and future research 
directions are also suggested. 
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