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Chapter 1.  Introduction 

1.1 Overview 

Economic constraints on the design of bridges usually necessitate the use of as few 
girders as possible across the bridge width. The girders are typically uniformly spaced 
transversely with the deck extending past the fascia girders, thereby resulting in an overhang. 
Almost every concrete or steel girder bridge incorporates overhangs. A typical overhang on a 
prestressed concrete girder is shown in Figure 1.1. The width of overhangs is usually 
proportioned such that the same girder sections can be used for the interior and fascia girders. 
Although many transportation departments throughout the United States provide guidelines on 
overhang geometry, those guidelines are generally based upon rules of thumb and lack 
justification based upon research.  
 

 
Figure 1.1: Overhang in Typical Concrete Girder Bridge  

Overhang construction often produces torsional loads on the girder system that are not 
usually considered in the design of the bridge. Very limited bracing is provided for prestressed 
concrete girder systems during construction, and these bracing systems are based upon typical 
details that do not consider the specific loading for a given application. In many situations, the 
bracing detail that is actually used does not match the standard bracing detail on the plans, which 
results in a relatively flexible system.  

Although steel girder systems do provide significant bracing to prevent lateral torsional 
buckling, they are not typically designed for the torque load as a result of overhang construction. 
The major overhang loads during construction include the concrete on the overhang and the 
bridge deck finishing screed. The concrete in the overhang has a relatively large eccentricity with 
respect to the fascia girder compared to the construction load coming from the interior portion of 
the girder, thereby leading to a net torque on the fascia girder. The bridge deck finishing screed 
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wheels are typically positioned near the edge of the overhang, which produces another 
significant eccentric load.  

The torsional loading from the overhang has led to problems in both concrete and steel 
girder bridges during construction. The main issue with concrete girder bridges is that the 
overhang load can generate excessive torsional rotation in the fascia girder. This excessive 
rotation can cause potential problems of construction safety and maintenance. Specifically, 
overturning failures of the fascia girder in a concrete bridge can occur during construction. The 
potential maintenance issues can also occur if the girder rotations lead to shifts in the deck steel 
reinforcement that might compromise the concrete cover. The reduced concrete cover can lead to 
long-term corrosion in the deck steel as well as premature deck cracking. For steel girder 
bridges, the torque from the overhang can lead to both global and local stability issues. Most 
global stability issues with the overhangs occur in bridge widening projects. The widening is 
often isolated from the original construction to permit vertical deflections during deck casting. 
However, the widening often consists of a two- or three-girder system with a large length-to-
width ratio. From a lateral-torsional buckling perspective, the girders are susceptible to a system 
buckling mode that is relatively insensitive to the spacing between intermediate cross-frames. 
The low resistance to lateral torsional buckling, coupled with the torque from the overhang 
brackets, has led to systems that may have been dangerously close to failure. In addition to the 
global stability issues, a number of potential problems are related to the local stability of the 
girder webs. In many instances the overhang brackets exert large concentrated forces on the 
webs of the steel girders. The forces from the overhang bracket can distort the web, thereby 
leading to local instabilities or large web imperfections that get locked into the girders once the 
deck cures.  

The Texas Department of Transportation (TxDOT) funded a research investigation 
entitled “Impact of Overhang Construction on Girder Design” (TxDOT Project 0-5706) to 
improve the understanding of the impact of overhang construction on the behavior of concrete 
and steel girder bridges. In this report, the overhang geometry that creates critical conditions is 
identified, and design methodologies and recommendations for overhang construction are 
formulated.  

The remainder of this chapter provides a discussion of scope of the research as well as 
providing a brief outline of the remainder of this report.  

1.2 Scope 

The results presented in this report were part of TxDOT Research Study 0-5706, “Impact 
of Overhang Construction on Girder Design.” The research project included field monitoring, 
laboratory testing, and parametric finite element analyses. Three bridges were monitored as part 
of the field testing during construction. The bridges include a concrete I-beam bridge, a straight 
steel I-girder bridge with skew supports, and a curved steel I-girder bridge. Results from the field 
tests are presented and discussed by Fasl (2008). The field test data is used in this report for 
validation of finite element analytical (FEA) models. In addition to the field tests, laboratory 
tests on key elements of the concrete girder systems were necessary for validation of the FEA 
models. The validated FEA models were used to conduct parametric investigations to improve 
the understanding of the general behavior of concrete and steel girder systems. Although the 
computational models provide accurate means of evaluating the behavior and safety of overhang 
construction in bridges, extensive three-dimensional FEA modeling is not practical for general 
bridge design. As a result, simple design solutions that can be used to evaluate girder safety are 
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necessary. Therefore, closed-form solutions for lateral rotation of the concrete girder under 
unbalanced overhang loads are derived and used to develop a design methodology for overhang 
construction. Hand solutions for proportioning the geometry for steel girder systems are also 
formulated.  

1.3 Organization 

This report consists of nine chapters. Following this introductory chapter, Chapter 2 
provides background information on the impact of overhang construction on girder design. The 
fundamentals of overturning for a concrete girder and the theory of global buckling of a steel 
twin-girder system are introduced. The chapter also provides a summary of a review of the 
literature on overhang tests, FEA modeling, and overhang design guidelines along with case 
studies of bridges that experienced problems during construction. In Chapter 3, laboratory tests 
on the structural behavior of key elements of prestressed concrete girders are described, and 
results are provided and discussed. In Chapter 4, the finite element models for the concrete and 
steel bridges that were monitored in the field are discussed. Results from the field data are used 
to validate the models. Results from the parametric finite analyses are presented in Chapter 5. 
The FEA results are used to identify critical overhang geometry for a wide range of concrete 
girder system parameters, and also to investigate the effects of the girder system parameters on 
the rotational response of the fascia girder. A rigid-body model for concrete girder systems, 
suitable for design, is developed in Chapter 6. The accuracy of the model is validated with FEA 
solutions. In addition, a design methodology is developed for determining the required bracing 
for a concrete girder system, and design examples are provided. Chapter 7 provides a summary 
of an FEA investigation on the global lateral torsional behavior of a twin-girder system under 
torsion due to eccentric loads, such as the unbalanced loading that may result from overhang 
construction. Results from both eigenvalue buckling analyses and large-displacement analyses 
are used to develop a design methodology to proportion the girder geometry to minimize 
torsional effects on steel girder systems used in bridge widenings. A summary of the study on the 
effects of overhang construction on the local stability of girder webs is provided in Chapter 8. 
Finally, a summary of the important findings and recommendations from the study is provided in 
Chapter 9.  
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Chapter 2.  Background 

2.1 Overhang Construction 

2.1.1 Definition of Overhang 

Although the definition for an overhang may be slightly different for designers, an 
overhang in this research project is defined as the portion of the concrete deck that extends from 
the centerline of the fascia girder to the edge of the deck. This definition applies to both concrete 
girder systems and steel girder systems. In accordance with TxDOT LRFD Bridge Design 
Manual (2008), the maximum width of the overhang in Texas bridges measured from the edge of 
the slab to the face of the beam top flange (or steel beam flange quarter point) is the lesser of 
3.92 ft. (3 ft. 11 in.) or 1.3 times the depth of the girder. The typical overhang width in Texas 
bridges is approximately 3 ft. (Figure 2.1). 
 

 
Figure 2.1: Bridge Deck Overhang 

2.1.2 Overhang Bracket  

A formwork system such as the one shown in Figure 2.2 is used for supporting and 
shaping the fresh concrete on the overhang. A variety of shapes and sizes of overhang brackets 
are available for use on both steel and concrete beams in various sizes by overhang bracket 
manufactures. The height of overhang brackets can be adjusted for mounting the brackets to steel 
beams, precast concrete beams and concrete box beams with the appropriate hanger devices. For 
example, Dayton Superior Overhang Brackets accommodate a vertical leg adjustment range of 
40 to 70 in. Although regular overhang brackets permit overhang widths of up to 4 ft, Meadow 
Burke’s heavy-duty overhang brackets can be custom made for an overhang width of up to 14 ft.  

Embedded hangers are inserted in the top flange of the concrete girder as shown in Figure 
2.3(a). Figure 2.3(b) shows the overhang brackets that support plywood formwork in the 
overhang of the girder system. The overhang brackets are attached to the fascia girder through 
the embedded hanger by using a ½-in. coil rod threaded through the hanger and the overhang 
bracket. The overhang formwork system consists of plywood sheathing and timber joists 
supported on bridge overhang brackets as shown in Figure 2.3(b).  



 

 6

 
Figure 2.2: Overhang Brackets 

The overhang formwork system also provides space for rails for the bridge deck finishing 
screed as well as a safety railing and a work platform for construction workers. The finishing 
screed that spans the width of the bridge is a truss system that has a paving carriage. The 
finishing screed moves along the screed rail, striking off the surface of the fresh concrete at the 
specified grade. The work platform is a pathway where construction workers can move around 
during deck placement. 

 

 
Figure 2.3: Overhang Formwork and Overhang Bracket 

2.1.3 Construction Loads 

Several types of construction loads are applied to the fascia girder through overhang 
brackets. Figure 2.4 shows a bridge during concrete deck placement. Typical construction loads 
include fresh concrete, the bridge deck finishing screed, and overhang formwork, as well as the 
construction personnel. These loads produce torsional moment on the fascia girder. The center of 
gravity of the fresh concrete on the overhang has an eccentricity with respect to the center of the 
fascia girder, thereby resulting in torsional moment on the edge girder. Because the screed rail is 
usually located at the edge of the deck, the finishing screed becomes another source of the 
torsional moment. An additional source of torsional load is construction personnel that walk on 
the edge of the overhang to avoid freshly placed concrete. Although the load from the overhang 
formwork is often small compared to weight of precast panels that span between adjacent 
girders, the overhang formwork can also produce torsional moment on the fascia girder.  
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Figure 2.4: Bridge Deck Finishing Screed in Operation 

2.1.4 Balanced and Unbalanced Loads 

Eccentric construction loads can be torsionally balanced or unbalanced. A torsionally 
balanced condition can be understood in the context of the single-girder level and the girder-
system level.  

In the single-girder level, if the sum of the torsional moments about the center of gravity 
of a particular girder is zero, the loads are torsionally balanced with respect to the girder and the 
girder is free from torsional moment. In the girder-system level, if the sum of the torsional 
moments about the shear center of the entire girder system is zero, the loads are torsionally 
balanced with respect to the girder system and the girder system is free from torsional moment.  

Because most bridges have overhangs on both exterior girders, the overhang construction 
loads on the bridge cross section are often symmetric, which makes the loads torsionally 
balanced at the girder system level. However, for a bridge widening, the overhang is not 
symmetric, and the girder system is usually torsionally unbalanced, producing torsion on the 
girder system. Figure 2.5 shows how a typical steel twin I-girder system, often used for bridge 
widening, may be subjected to unbalanced loads. The unbalanced load results because some of 
the fresh concrete load on the interior overhang is transferred to the existing structure, while on 
the exterior overhang the entire fresh concrete load is applied to the twin-girder system. 
Therefore, the loads are torsionally unbalanced for the twin-girder system.  
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Figure 2.5: Steel Twin I-Girder System Subject to Unbalanced Loads 

2.2 Bracing for Concrete Girder Systems 
The bracing conditions for prestressed concrete girder systems have changed significantly 

over the past three decades. In the past, twist was restrained using either concrete or steel 
diaphragms spaced along the girder length as shown in Figures 2.6(a) and 2.6(b). Such bridges 
were most likely constructed in the 1970s, using removable forms for both the overhang and the 
interior bridge deck. A cast-in-place concrete diaphragm was used at the middle of the simply 
supported girders, while a smaller concrete diaphragm was used at the support above the 
abutment. In addition to restraining girder twist, the concrete diaphragms also provided lateral 
bracing against wind loads during construction. 
  

exterior overhang  interior overhang  

exterior girder  
interior girder  

overhang bracket 

wet concrete 

existing structure 

interior overhang load exterior overhang load 

(a) System Cross-Section 

(b) Unblanced Loads 

Shear center
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(a) Concrete Diaphragm 
 

(c) Top Bracing Bar 

 
(b) Steel Diaphragm (d) Timber Blocking 

Figure 2.6: Bracing for Concrete Girder System 

Cast-in-place diaphragms were expensive and took a large amount of time to form and 
cast. As a result, simpler types of diaphragms were commonly used. While precast concrete 
diaphragms were sometimes used, many applications utilized steel channel diaphragms such as 
those shown in Figure 2.6(b). The diaphragms were bolted to an angle that was bolted to the 
webs of the concrete girders. 

In recent years, permanent diaphragms are rarely used on prestressed concrete bridges. 
As shown in Figure 2.6(c) and (d), temporary lateral bracing is usually provided during 
construction with the use of 4-in. square timbers combined with top bracing bars placed on top of 
the concrete panel. This change in construction practices can be seen in Figure 2.7, which shows 
a bridge widening at the Parmer Lane overpass at Texas Loop 1 in Austin, Texas in 2009. The 
bridge was widened by adding four girders to the existing structure. This construction illustrates 
the historical advancement in bracing for concrete girder systems that occurred over time within 
the same bridge. While plywood forms historically were used to form bridge decks, conventional 
forming techniques consist of stay-in-place (SIP) forms that remain on the finished bridge. The 
bridge widening in Figure 2.7 utilized two types of SIP forms including precast panels between 
the four added girders and metal deck forms connecting the widening to the existing bridge. The 
existing bridge, probably constructed more than 20 years earlier, has steel diaphragms 
permanently placed between beams while the widened portion of the bridge has timber bracing 
that is temporally placed during construction. 

Steel Bar

Timber 



 

 10

 
Figure 2.7: Advancement in Bracing for Concrete Girder System 

The timbers used to brace the prestressed concrete girders can transmit lateral wind loads 
between adjacent girders, because the timbers serve as compression members. However, they are 
limited in their ability to restrain girder twist during construction as they are not positively 
connected to the concrete girders. As a result, many of the timbers may become dislodged during 
deck construction, and become ineffective as shown in Figure 2.8. This loss of effectiveness is 
also investigated in this research project.  
 

 
Figure 2.8: Effect of Twist on Timber Blocking 

2.3 Fundamentals of Overturning for Concrete Girder 
The fundamentals of overturning of a two-dimensional rigid body with self-weight will 

be discussed to provide an understanding of the relationship between overturning moment and 
restoring moment. The discussion of a body with pure torque will be followed by the description 
of a body with eccentric load.  

Dislodged Timber Diagonals
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2.3.1 Body on Rigid Support under Pure Torque 

Figure 2.9 shows a body with a self-weight, ௕ܹ௠, that rests on a pin support at A and a 
roller support at B. The body is subjected to pure torque ܶ and self-weight of the body acting at 
the center of gravity of the body (CG). At the moment of overturning, the rotational equilibrium 
of the applied torque ܶ and the self-weight ௕ܹ௠ about Point ܣ gives the overturning moment 
capacity of the body.  

 

 
Figure 2.9: Body on Rigid Support Subjected to Pure Torque 

Equation (2.1) indicates that the overturning moment capacity ܶ is a function of the self-
weight and the moment arm of the self-weight, ܾ/2. Equation (2.1) also shows that the restoring 
moment increases with either larger self-weight or increased beam width. 

 
 ܶ = ௕ܹ௠ܾ2  (2.1) 

 

2.3.2 Body on Rigid Support under Eccentric Load 

Figure 2.10 shows a body with a self-weight ௕ܹ௠ that rests on a pin support at A and a 
roller support at B. The body is subjected to an eccentric load ܨ, and to the self-weight acting at 
the center of gravity of the body (CG).  
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Figure 2.10: Body on Rigid Support Subjected to Eccentric Load 

At the moment of overturning, rotational equilibrium of the eccentric load ܨ and the self-
weight ௕ܹ௠ about Point ܣ gives the overturning capacity of the body as shown in Equation 
(2.2). The overturning capacity ܨ of the body is a function of the eccentricity of the applied load 
as well as the self-weight and the width of the body, ܾ. 

 
ܨ  = ௕ܹ௠ܾ(2݁ − ܾ) (2.2) 

 
As with the body with pure torque, the self-weight of the body is the only source for 

restoring moment, and more self-weight or larger moment arm of the self-weight results in more 
restoring moment. 

A graph of Equation (2.2) is represented in nondimensional fashion in Figure 2.11. 
Several interesting facts can be observed from the graph. For a body with eccentric loads, 
increases in eccentricity of the applied load lead to dramatic decreases in the value of the load 
required to produce overturning. This means that even a relatively small load with a large 
eccentricity is capable of overturning the body. Another fact is that when the eccentricity of the 
applied load approaches ܾ/2, the overturning load becomes theoretically infinite, indicating that 
the body subjected to a load with an small eccentricity is not susceptible to instability. The last 
fact is obvious from intuition as there is no overturning if the eccentricity of the load is less than 
or equal to ܾ/2. 
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Figure 2.11: Effects of Eccentricity on Overturning Capacity 

2.4 Global Buckling of Steel Twin-Girder System 
Global buckling behavior has recently been studied (Yura et al. 2008). The terms “global 

bucking” and “system buckling” are used interchangeably. Systems composed of only a few 
girders are particularly susceptible to this type of buckling. Yura et al. (2008) developed the 
closed form solution for elastic global buckling of twin girder systems interconnected with cross 
frames. Details are provided in the Appendix A. Figure 2.12 shows the original configuration of 
the cross-section of a twin-girder system as well as the deformed configuration of the system 
during system buckling.  
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Figure 2.12: Cross-Sectional View of Twin-Girder System in System Buckling Mode 

The girder system consists of doubly symmetric I-girders with a spacing of S. The 
constant moments Mଵ and Mଶ are applied to the twin girders, respectively. For the deformed 
configuration of the cross-section in the figure, only the internal shear forces associated with the 
rotation of the entire cross-section about the shear center are depicted for clarity. The simplifying 
assumption that the two girders are continuously braced by internal cross-frames with infinite 
stiffness leads to the assumption that the cross-section of the girder system remains rigid during 
system buckling. Although the stiff internal cross-frames can restrain the relative displacement 
or rotation between the two girders, they cannot prevent the displacement and rotation of the 
entire cross-section of the girder system. During the system buckling, the entire cross-section 
experiences vertical and lateral displacements, and rotation about its shear center. The system 
buckling capacity of a twin-girder system with doubly symmetric I-sections can be expressed as 

 

 (Mଵ + Mଶ)ୡ୰ = 2πL ඨEI୷GJ + πଶEଶI୷൫I୷dଶ + I୶Sଶ൯4Lଶ (2.3) 

where, ܮ= span length, ܧ= modulus of elasticity, ܩ= shear modulus, ܫ௫= moment of inertia about 
strong axis, ܫ௬= moment of inertia about weak axis, ܬ= torsional constant, ݀= distance between 
flange centroids, and ܵ= girder spacing. The summation of the two external moments applied on 
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each girder of a twin-girder system is limited by the system buckling capacity of Equation (2.3) 
in order to prevent system-mode instability of the girder system. It should be also noted that 
Equation (2.3) is the upper limit on the system buckling capacity of a twin-girder system because 
the solution relies on an unconservative assumption that the two girders are continuously braced 
by rigid cross-frames. 

2.5 Literature Review 
A review of literature on overhang research in concrete and steel bridges as well as FEA 

modeling was conducted. A summary of research on bearing pads in regard to the support 
conditions of bridge girders is also included. This section presents a summary of the literature.  

2.5.1 Overhang-Related Laboratory Studies 

Most work on overhang construction has focused on concrete girder systems. The 
overhang brackets are installed on the fascia girder by the hangers connected to the top of the 
girder and embedded in the concrete deck. Tests on bracket hangers were conducted at North 
Carolina State University (Ariyasajjakorn, 2006) and the hanger types included standard 
falsework hangers manufactured by Dayton/Richmond and Meadow/Burke. The two hanger 
types that were tested did not reach the ultimate strength provided by the manufacturer.  

Tests on overhang forming systems were conducted at The University of Texas at Austin 
(Clifton, 2008). The Texas Department of Transportation (TxDOT) introduced a new series of 
prestressed girders called the Texas I-girders (Tx girders) that have relatively wide and thin top 
flanges, and the performance and behavior of the commercially available overhang forming 
system for the Tx girders were investigated. Based upon the test results, a new concept was 
developed to use a precast overhang as an alternate solution to create the finished bridge deck 
overhang.  

Another TxDOT-sponsored study on precast overhangs in concrete girders was 
conducted by Trejo et al. (2008). In that study, the precast overhang replaced the conventional 
overhang constructed by using an overhang forming system.  

2.5.2 Bearing Pad Studies 

The support condition of the girders has a significant impact on the torsional response of 
steel and concrete girder systems. As a result, previous investigations on bridge bearings played 
an important part in both experimental and computational studies on the torsional behavior of 
bridge girders. DuPont (1984) provided updated engineering data on neoprene bearings and 
specifically reported data on compressive stress-strain behavior in compression for loads up to 
2000 psi on bearings of shape factors up to 20, shear modulus vs. compressive load, and 
properties of steel- and fabric-reinforced bearings. The shape factor for bearing pads is defined 

by ܵ = ௅×ௐଶ௛ೝ೔(௅ାௐ), where ܮ, ܹ and ℎ௥௜ are the length and width of the bearing pad and the 

thickness of the elastomer layer, respectively.  
Arditzoglou, Yura, and Haines (1995) tested various sizes of bonded natural rubber pads 

in compression, tension, shear, and combined compression and shear. They obtained load-
deformation relationships and calculated mechanical properties of the compressive modulus, 
tensile modulus, and shear modulus of various rubber pads.  

The role of several factors on the elastomeric bearing performance was considered by 
Muscarella and Yura (1995). They analyzed the effect of elastomer hardness, shape factor, 
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reinforcing shim orientation, degree of taper and compressive stress level on the bearing 
performance and developed a simple design procedure. Their research included experiments on 
shear, compressive, and rotational stiffness; shear and compression fatigue loading; and tests to 
determine compressive stress limits.  

A simple and cost-effective test method for evaluating the shear modulus of full-size 
elastomeric bridge bearings was developed by Topkaya (1999), and was found to give good 
estimates of shear modulus for laminated bearings. 

Roeder (2000) developed a report on cotton-duck pads (CDP) consisting of thin layers of 
elastomer interlayed with layers of cotton-duck fabric. The main goal of that work was to 
evaluate the validity of existing tests that claim to represent the true behavior expected in bridge 
bearings. The report contained the compressive stress-strain curves of steel-reinforced 
elastomeric bearing pads with numerous shape factors.  

Under NCHRP Project 10-51, Yura et al. (2001) investigated the effectiveness of existing 
testing requirements for bridge bearings of AASHTO and state DOTs, and recommended 
specifications for the acceptance testing of elastomeric bearings. Full-scale bearings were tested 
in shear as part of the laboratory investigation, and the results from the tests illustrated the shear 
behavior of the bearing pad.  

Stanton et al. (2006) studied on steel-reinforced elastomeric bearings. The ability of the 
bearings to accommodate the loads and rotations without excessive damage was evaluated by 
testing and analysis of the bearings. Their recommendations for the AASHTO LRFD Bridge 
Design Specifications (2004) included the removal of the absolute limit on compressive stress, 
and the elimination of the “no-uplift” provisions, which were causing difficulties for designers.  

2.5.3 Overhang Design Guidelines 

2.5.3.1 Departments of Transportation (DOT) 

Many State Departments of Transportation (DOTs) in the United States provide 
guidelines for the design of overhangs in concrete and steel bridges. These guidelines are 
generally based upon rules of thumb, rather than in-depth research on the behavior of girders 
subjected to overhang loads.  

Many DOTs specify separate overhang limits for concrete and steel bridges. For example, 
the South Carolina DOT requires that the overhang width limits for both prestressed concrete 
girders and steel girders are a function of the girder depth as shown in Table 2.1.  

Table 2.1: Slab Overhang Limits  

Beam Type Beam Depth (D) Maximum Overhang Limit 

Concrete Beam 
D < 54 in. 42 in. 
54 in. ≤ D ≤ 63 in. 48 in. 
63 in. < D 54 in. 

Steel Beam 
D < 36 in. D (Beam Depth) in. 
36 in. ≤ D ≤ 48 in. 42 in. 
48 in. < D 45 in. 
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The guidelines vary widely from state to state. The LRFD Bridge Design Manual (2008) from 
the Texas Department of Transportation (TxDOT) provides specific overhang width limits based 
on the depth and spacing of the girder in the following way.  

• Typical Overhang is 3.0 ft. measured from the center line of the beam to the 
edge of the slab. 

• Maximum overhang measured from edge of slab to face of beam top flange 
(or steel beam flange quarter point) is the lesser of 3.917 ft. or 1.3 times the 
depth of beam, which prevents excessive torsion on fascia beams during slab 
placement. At span ends, reduce the limit from 3.917 ft. to 3.083 ft. to 
account for reduced wheel load distribution.  

• Minimum overhang is 0.5 ft. measured from edge of slab to face of beam top 
flange to allow sufficient room for the slab drip bead.  

 
TxDOT is currently in the process of phasing out the conventional prestressed concrete I-

Beams, and replacing with new types of wide-flanged prestressed concrete I-Girders. Table 2.2 
shows the typical slab overhang dimensions of these new concrete I-Girders, which are measured 
from the girder centerline to the edge of slab.  

Table 2.2: Slab Overhang Dimensions of TxDOT Prestressed Concrete I-Girders 

Slab Overhang Dimensions, Slab Edge to CL Exterior Girder 

Girder Type 
Typical 

Overhang Width 
Minimum 

Overhang Width 

Maximum Overhang 
Width 

At Span 
Ends 

At 
Midspan 

Tx28 3 ft 2 ft 4 ft 4 ft 
Tx34 3 ft 2 ft 4 ft 4.67 ft 
Tx40, Tx46 and Tx54 3 ft 2 ft 4 ft 4.75 ft 
Tx62 an dTx70 3 ft 2.25 ft 4.25 ft 5 ft 

2.5.3.2 Other Guidelines 

The Steel Design Handbook (2006) from the National Steel Bridge Alliance (NSBA) 
states that the forces in the exterior and interior girders will be reasonably balanced when the 
deck overhang is around 30% to 32% of the girder spacing. The handbook warns that too large or 
small overhang widths will lead to large unbalanced torsional moment in the exterior girder.  

The American Institute of Steel Construction (AISC) developed a report to discuss the 
influence of the construction overhang loads on the fascia girders in steel bridges (Grubb, 1990). 
The report provided a method to determine the stresses in the top and bottom flanges of the steel 
I-girder due to the construction overhang load. The torque from the overhang load is modeled as 
a horizontal couple acting on the fascia girder and calculated from statics. The top and bottom 
flanges between two adjacent cross-frames in the same girder are isolated from the girder and are 
considered as a fixed-end single-span beam subjected to one component of the horizontal couple. 
The internal stresses and deflections in the flange are calculated from Euler beam theory.  
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The AASHTO LRFD Bridge Specification (2007) addresses construction overhang loads 
on the fascia girders in steel bridges. The specification states (C6.10.3.4): 

The applied torsional moments bend the exterior girder top flanges outward. The 
resulting flange lateral bending stresses tend to be largest at the brace points at one or 
both ends of the unbraced length. The lateral bending stress in the top flange is 
tensile at the brace points on the side of the flange opposite from the brackets. These 
lateral bending stresses should be considered in the design of the flanges. 

The horizontal components of the reactions on the cantilever-forming brackets are 
often transmitted directly onto the exterior girder web. The girder web may exhibit 
significant plate bending deformations due to these loads. The effect of these 
deformations on the vertical deflections at the outside edge of the deck should be 
considered. The effect of the reactions from the brackets on the cross-frame forces 
should also be considered.  

Excessive deformation of the web or top flange may lead to excessive deflection of 
the bracket supports causing the deck finish to be problematic.  

2.5.4 Computer Design Tool 

A cooperative research program (K-TRAN) was established among the Kansas DOT, the 
University of Kansas (KU), and Kansas State University to study steel bridge behavior. That 
research group created a computer design tool, Torsional Analysis for Exterior Girder (TAEG), 
to aid in evaluating and designing a contractor’s falsework system. TAEG evaluates stresses and 
deflections of the girder flanges; forces in the brackets, diaphragms, and cross frames; and the 
effects of tension tie rods and timber compression struts on temporary supports. A key 
assumption in TAEG is the use of rigid lateral torsional supports at the ends of the bridge. The 
program also assumes that the geometry of the brackets will be as specified by the engineer. In 
addition, the program does not consider global or local stability of the girder with regards to the 
overhang. 

2.5.5 FEA modeling 

2.5.5.1 Bearing Pads 

FEA studies on bearing pads using commercial software have used solid elements and 
line elements approaches. Solid element models, which define the bearing pads using solid 
elements, are general and consider the bearing as a non-homogeneous continuum. The steel 
laminates are modeled as an elastoplastic material and the rubber layers as a nonlinear elastic 
incompressible material. The term incompressible material indicates that the material deforms 
without changing in volume. The line element approach represents the bearing pads by a series 
of line elements. This approach models the bearing as a combination of horizontal (parallel to 
width of the supported beam) and vertical (parallel to depth of the supported beam) springs to 
simulate the lateral restraining effect and the vertical deflection. Even though both models can 
represent the structural behavior of the bearing pads successfully to a certain degree, the line-
element model is preferable as it is more practical for the modeling of the entire bridge.  

Two other reports, one by Yura et al. (2001) and the other by Yazdani et al. (2000), 
proved important to understanding bearing pad behavior. Yura et al. (2001) conducted 
experimental research in four main areas: shear modulus, aging, creep, and effects of low 
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temperature. They also undertook theoretical studies on the effect of misaligned steel laminates 
on the stresses and deformation within the elastomeric bearing by using the solid-element 
modeling approach.  

Yazdani et al. (2000) used the solid-element model approach to validate the AASHTO 
bearing stiffness specifications and incorporated the line-element approach to represent a 
computational model with line-elements for elastomeric bearing pads into the FEA model for a 
bridge. They modeled bearing pads using Link10 truss elements in ANSYS, which address 
“compression-only” and “tension-only” behavior and represent the “lift-off” phenomenon of 
girders from bearing pads effectively and easily. 

2.5.5.2 Concrete Beams 

Another focus of the FEA literature review was the modeling of structural members. Both 
Abendroth et al. (1991) and Johnson (2006) found that prestressed beams can be represented by 
solid elements. Johnson used the ANSYS 3D reinforced concrete element SOLID65 to model a 
concrete beam.  

2.5.5.3 Plate Girders, Stiffening Elements, and End Diaphragms 

Plate girders, stiffening elements, and end diaphragms are frequently modeled using shell 
elements. Shell elements can undergo both out-of-plane bending and in-plane membrane 
deformations. Each node has six degrees of freedom: three translations and three rotations. Stress 
results are available at the four corner nodes while displacements are given for all eight nodes. 
The shell element allows for offsettting of the locations of nodes within the element, which 
facilitates the representation of thickness changes for flanges and webs. Although end 
diaphragms can be modeled by shell elements, they can also be represented by line elements 
(truss elements and beam elements). Wang (2002) used truss elements to model cross frames and 
lateral struts spanning between adjacent girders. Truss elements have two nodes with three 
translational degrees of freedom per node. Truss elements cannot model bending or torsional 
deformations. 

2.6 Case Studies 
Some Texas bridges have recently experienced problems as a result of overhang 

construction. These bridges were part of the motivation for this TxDOT-sponsored research 
investigation, which included a steel twin-girder bridge and two concrete girder bridges. The 
steel twin-girder bridge was a widening project in Houston, Texas that had a problem with the 
system-mode deformations during construction. The two concrete girder bridges were 
constructed in Hutto, Texas and had excessive rotations in the fascia girders during construction.  

Global stability can be a major concern in bridge widening projects in which a few 
girders are added to an existing bridge. The widening may sometimes be isolated from the 
existing bridge so that the added girder system is free to displace vertically during casting of the 
concrete slab. Isolating the widening from the existing bridge avoids large brace forces that are 
likely to develop if intermediate cross frames were used between the existing bridge and the 
widening. The geometry of the addition often has a relatively large span-to-width ratio. Although 
intermediate cross-frames are employed along the girder length, systems with a large span-to-
width ratio are susceptible to the “system-buckling mode” discussed in Section 2.4, which is 
relatively insensitive to the spacing or size of the intermediate cross-frames (Yura et al. 2008).  
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Figure 2.13 shows the steel twin-girder system used in the bridge-widening project that 
experienced problems with system buckling during construction of the concrete bridge deck. In 
this case, the system buckling mode was also affected by the combined unbalanced overhang 
load. The twin girders had a 166-ft simple span with a 5.1 ft. spacing between the two girders. 
Two end diaphragms and eleven intermediate cross-frames were used between the two girders. 
The cross-frames consisted of L4×4×3/8 angles with an area of 2.86 in2. An 8-in. reinforced 
concrete deck with a 2-in. concrete haunch was cast on top of the girders. The concrete deck of 
the twin-girder bridge, which was not connected to the existing bridge deck was 11.13 ft wide. 
Because the overhang brackets were utilized only for the exterior girder of the twin-girder 
bridge, the fresh concrete deck load resulted in an unbalanced load that created a torque for the 
girder system and amplified the system buckling mode. Although eleven intermediate cross-
frames were used, the girder system suffered a significant twist (clockwise along the girder 
length in Figure 2.13(a)). The twist of the girders is indicated in Figure 2.13(b) by the 10-in. 
offset of the bottom flange measured from a plumb line from the top flange.  

 

 
Figure 2.13: Twin-Girder Widening with Excessive Girder Rotation 

The two concrete bridges with excessive rotations in the fascia girders were located at the 
west side of the intersection of State Highways 79 and 130. The bridges used prestressed 
concrete girders spaced 6.9 ft on-center with a span of approximately 65 ft. The girders 
AASHTO Type B beams that are 34 in. deep with top and bottom flange widths of 12 and 18 in., 
respectively. The overhang width from the center of the fascia girder to the edge of the deck was 
3 ft. The bearing pad for Type B beams was 8 by 16 in. with a thickness of 2.5 in. Beam bracing 
was installed in accordance with the TxDOT MEBR (C) Standards, Minimum Erection & 
Bracing Requirements.  

According to the field investigation of the bridges in November 2006 as shown in Figure 
2.14, both bridges experienced significant rotations in the fascia girders that were locked into the 
bridge. The rotations in the fascia girders were about the same along the girder length, and 
ranged from approximately 2 to 3 degrees. Figure 2.15 shows the typical example of the lift-off 
of the fascia girder from the elastomeric bearing pad from the bridges due to that rotation.  
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Figure 2.14: Rotation Measurement at Hutto Bridges 

 
Figure 2.15: Lift-off of Fascia Girder from Bearing Pad 
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Chapter 3.  Experimental Program 

3.1 Overview 
As outlined in Chapter 1, this research investigation included field monitoring, 

computational studies, and experimental testing. While the field studies from concrete bridges 
provided valuable data for the FEA models for the concrete bridges, uncertainties in the 
modeling of key elements in concrete girder systems necessitated laboratory tests. Three 
different types of laboratory tests were conducted at the Phil M. Ferguson Structural Engineering 
Laboratory at The University of Texas at Austin: R-bar tests, beam overturning tests, and a test 
of girder and deck panel system. In this chapter, the experimental programs and test results are 
discussed in detail. 

3.2 R-bar Testing 

3.2.1 Introduction 

An R-bar is embedded into a prestressed concrete girder to connect the concrete deck and 
a prestressed concrete girder, thereby allowing the deck and the girder to act compositely after 
the concrete cures. During construction, the R-bar connects the top bracing bar and a prestressed 
concrete girder. However, the strength and lateral stiffness of typical R-bar connection were not 
known, nor was the structural behavior of an R-bar completely understood. The structural 
behavior of an R-bar was investigated by conducting load tests on R-bars. The test focused on 
the structural behavior of an R-bar subjected to lateral load from the bracing bar. The test 
provided measurements of both the lateral stiffness and capacity of the connection between the 
R-bar and bracing bar.  

Figure 3.1 shows the dimensions of the cross section of the Tx I-Girder 46 and the 
configuration of the R-bar used in the test. The specified yield strength of the #4 R-bar is 
typically 60 ksi. As shown in Figure 3.1, the R-bar is embedded into the beam, and the top 
portion of the R-bar extends from the top surface of the beam. The average distance from the top 
surface of the girder to the top of the R-bars used in the test was 5.5 in.  
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Figure 3.1: Dimensions of Tx46 and R-bar 

3.2.2 Test Setup 

The test setup for the R-bar experiments was fabricated and installed on the Texas I-
Girder 46, which is 46 in. deep as shown in Figure 3.2. The test setup consisted of a steel frame 
composed of steel plates. Bolts on the side of the frame were tensioned to clamp the frame to the 
top flange of the concrete girder. A piece of #5 reinforcing bar was used to simulate the bracing 
bar and was welded at the top of the #4 R-bar to match the typical connection configuration used 
in practice.  
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Figure 3.2: Test Setup for R-bar Testing 

Load was applied with a hydraulic center-hole actuator that was anchored with a chuck 
for a reinforcing bar.  
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3.2.3 Instrumentation 

Figure 3.3 shows a load cell and a linear transducer (string potentiometer) used in the 
test. The Interface load cell had a capacity of 25 kips, and was used to measure the force that 
developed in the top bracing bar that was attached to the R-bar. The load cell was placed 
between the hydraulic center-hole actuator and the chuck as shown in Figure 3.3. The string 
potentiometer from AMETEK was used to measure the lateral deformation of the R-bar. The 
string potentiometer was fixed to a wood support that was attached to the girder using clamps. A 
clamp was also used to connect the steel wire from the string potentiometer to the top of the R-
bar. Based upon the measurement of the applied force and the lateral deformation, the stiffness 
characteristics of the R-bar were evaluated.  

 

 
Figure 3.3: Load Cell and Linear Motion Transducer in Place 

3.2.4 Test Results 

Identical tests were conducted on two R-bars. Figure 3.4 shows the relationship of the 
applied load and lateral deformation of the two R-bars. The R-bars exhibited linear-elastic 
behavior until the elastic limit of the material was reached. After that, the material behavior 
became nonlinear and the yield plateau was observed. Both R-bars exhibited good ductility with 
maximum lateral deformations ranging from 1.4 to 1.5 inches. From the graph, the average 
lateral stiffness and capacity of the R-bars for the two tests were 15.5 kips/in. and 2.2 kips, 
respectively. If Young’s modulus of 29,000 ksi and the design yield stress of 60 ksi are used for 
a typical top bracing bar of a length of 7.3 ft that is attached to a R-bar, the axial stiffness and 
capacity of a top #5 bracing bar are 102.2 kips/in. and 18.6 kips, respectively. Because the top 
bracing bar and the R-bar are connected in a series, it can be concluded that the stiffness and 
capacity of the top bracing are generally governed by the R-bar. Figure 3.5 shows the 
deformations that occurred during the testing of the R-bars. No visible crack in the concrete or 
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pullout of a R-bar was observed in either of the two R-bars tested. Therefore, in treating the R-
bar as a flexural element extending from the concrete girder, it is reasonable to assume a fixed 
condition at the concrete interface for the R-bar at the bracing load levels that are typically 
encountered in practice.  

 

 
Figure 3.4: Lateral Force and Lateral Deformation of R-bar 

 
Figure 3.5: Permanent Deformation of R-bar after Removal of Load 
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3.3 Beam Overturning Test 

3.3.1 Introduction 

The field investigation on the Hutto concrete bridge showed that most of the beam 
rotation about the longitudinal axis was due to rigid-body rotation on the elastomeric bearing 
pads. Many previous studies on elastomeric bearing pads have focused on the shear and sliding 
performance of the bearings. Data on the rotational performance of the bearings were not 
available. There are several factors with nonlinear performance in the rotational behavior of the 
beams on the elastomeric pads. The nonlinearities include material nonlinearity in the bearing 
pads, contact nonlinearity between a beam and a bearing pad, and geometric nonlinearities in the 
torsional load. In order to clarify complexity from these nonlinearities, it was essential to conduct 
an experimental investigation on a beam that is subjected to overturning force. The beam 
overturning test was aimed at improving the understanding of the overturning mechanism of a 
beam that rotates about its longitudinal axis while resting on bearing pads. The data from the 
beam overturning test provided valuable validation data for the analytic model and FEA models 
for elastomeric bearing pads. 

To conduct the beam overturning test, a prestressed concrete beam was supported on 
elastomeric bearing pads at each end and an eccentric overturning force applied at midspan was 
used to simulate load from the overhang. Two shapes of bearing pads were considered in the 
tests because the TxDOT bearing standards currently include rectangular shapes and circular 
shapes.  

3.3.2 Specimen 

ATxDOT Type C beam was used in the tests as depicted in Figure 3.6. The span length 
of the beam was 55.5 ft. and the design beam weight was 29.2 kips. Figure 3.7 shows the 
dimensions of the rectangular and circular elastomeric bearing pads that were tested. The 
rectangular bearing pad of C1 type was 7 in. long, 16 in. wide, and 2.86 in. thick.  

 



 

 29

 
Figure 3.6: Dimensions of Beam Tested 

 
Figure 3.7: Dimensions of Elastomeric Bearing Pads Tested 

The diameter and thickness of the circular bearing pad were 15 in. and 2.86 in., 
respectively. Both types of bearing pads were reinforced with seven steel shims that were 0.105 
in. thick. For design purposes, the shear modulus of elastomeric bearing pads is generally the 
most important property for the bearing pad. The common method to estimate the shear modulus 
of elastomeric bearing pads is to measure the hardness of the bearing pad, because the hardness 
of the bearing pad is loosely related to its shear modulus and it is easy and quick to measure 
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using a durometer. Figure 3.8 shows the measurement of the hardness of the bearing pads, and 
the hardness of the pads was slightly below 50. The shear modulus for the hardnesses from 45 to 
55 ranges from approximately 0.077 to 0.11 ksi (Muscarella and Yura, 1995). The shear modulus 
of bearing pads can affect the rotational stiffness of the bearing pad and also the ultimate 
overturning load that a beam can sustain.  
 

 
Figure 3.8: Measurement of Hardness of Bearing Pad 

3.3.3 Test Setup 

The steel frame shown in Figure 3.9 was used to apply an eccentric force to overturn the 
beam. The steel frame was constructed by using back-to-back channels with a 4.25-in. gap 
between them. Figure 3.10 shows the steel frame installed on the beam.  
 

 
Figure 3.9: Elevation View of Beam Tested 
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Figure 3.10: Moment Connection at Midspan (Section A-A) 

The steel rods were pretensioned to ensure that the steel frame transferred the eccentric 
overturning force to the beam. A hydraulic actuator was used to apply a vertical force to the top 
of the steel frame at a distance of 36.25 in. from the centroid. The center-hole actuator was 
anchored to the reaction floor through the steel rod.  

Figure 3.11 shows the safety measures taken in order to prevent the tested beam from 
completely tipping over to the rigid floor during the test. Safety chains were connected between 
the column and the top of the beam at each support. Concrete blocks were also placed close to 
the bottom flange of the beam at support.  
 

 
Figure 3.11: Safety Measures to Prevent Beam from Tipping Over 
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3.3.4 Instrumentation 

Figure 3.12 shows locations of a load cell and string potentiometers in place. A 50-kip 
load cell (Strainsense Enterprises, Inc.) measured the vertical force applied to the steel frame. 
The load cell was placed between the hydraulic actuator and the steel plate. A 1" x 1" piece of 
lumber with a length of 66 in. was used at each support to amplify the torsional deformations for 
data monitoring purposes. The AMETEK string potentiometers were used to monitor the 
readings of vertical movement of both ends of the 1" x 1" piece of lumber. Girder twist was 
calculated based upon the differences in the vertical displacements of the string potentiometers 
and their horizontal spacing. 

 

 
Figure 3.12: Locations of Load Cell and String Potentiometers  

3.3.5 Overturning Test Results 

Figure 3.13 shows the overturning test results for the rectangular and circular elastomeric 
bearing pads. The applied vertical load is graphed versus the rigid body twist that was measured 
at the supports. The curve for the rectangular bearing pad was relatively linear for small load 
levels. For further increase in load, the reduction in stiffness can be seen as the slope of the curve 
decreased. The maximum overturning force was 4.93 kips corresponding to a beam rotation of 
2.2 degrees, which represents the tipping load for the beam. The beam did not actually tip over at 
this point because its displacement was controlled by the stroke of the hydraulic actuator. If the 
applied force had been gravity load, the beam would have tipped over at the maximum measured 
resistance of 4.93 kips. The beam rotation of 2.2 degrees at the tipping load is similar to the 
beam rotation measured at the Hutto concrete bridge. While similar trends in behavior were 
observed for the test results for the circular elastomeric bearing pad, there were slight 
differences. Although the initial stiffness of the circular bearing was slightly larger than that of 
the rectangular bearing, the stiffness of the circular bearing dropped more quickly with 
increasing rotation. The tipping force of 4.02 kips at a rotation of 1.22 degrees was also smaller 
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for the circular bearing. The theoretical overturning force for a beam on a rigid support of the 
same width (16 in.) as the rectangular bearing pad is calculated as 8.27 kips. Therefore, the 
overturning capacity of the beam on rectangular bearing pads was 60% of that on a rigid support. 
The 40% reduction in the overturning force is caused by the compressibility of the bearing that 
results in a smaller moment arm for the restoring force provided by the self-weight of the beam. 
Figure 3.14 shows the rectangular and circular bearing pads. 

 

 
Figure 3.13: Overturning Load and Rigid Body Rotation of Beam 

 
Figure 3.14: Rectangular and Circular Bearing Pad 
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3.4 Test on Girder and Deck Panel System 

3.4.1 Introduction 

The TxDOT standard drawing shows that a top bracing bar should be connected to an R-
bar at a distance of 1.5 in. up from the top surface of a concrete beam as shown in Figure 3.15. 
However, because 4 in. thick prestressed concrete panel are typically used with concrete girders, 
actual field applications do not match the TxDOT standard detail. Instead the bracing bars are 
usually placed over the top of the prestressed panels and then bent down and connected to the R-
bar as shown in Figure 3.16. The pictures shown in Figure 3.16 were the ones of the bridge that 
was monitored in the field studies on SH 130 as discussed in Fasl (2008). Instead of connecting 
to the R-bar at 1.5 in. from the bottom, in practice the bracing bars are often welded near the top 
of the R-bar. There are a number of uncertainties in the behavior of the actual geometry that is 
frequently used in practice. This necessitated laboratory testing on the full system. To study this 
behavior, tests on the full deck system were conducted using three different bracing bar details as 
shown in Figure 3.17. The detail shown in Figure 3.17(a) matches the TxDOT standard drawing 
with the (unbent) bracing bar connection to the R-bar at 1.5 in. from the bottom.  

 

 
Figure 3.15: TxDOT Standard Drawing for Girder Bracing 
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Figure 3.16: Top Bracing Connection Details in Practice  

The detail shown in Figure 3.17(b) is consistent with the actual geometries witnessed in 
practice, in which the bracing bar passes over the top of the concrete panel and is bent to connect 
to the top of the R-bar. In addition, the detail shown in Figure 3.17(c) was also tested to 
determine if the stiffness was improved by extending the bracing bar, thereby allowing two 
connection points to the R-bar. In addition to welding the bracing bar near the top of the R-bar in 
Figure 3.17(c), extending the bar also allows it to be connected to the R-bar approximately 1.5 
inches from the top of the beam. Another difference between the two details shown in Figure 
3.17(b) and Figure 3.17(c) is the “kink” of the bracing bar with the larger angle required in 
Figure 3.17(c). The average kink angle that was measured in the Airport concrete bridge was 
approximately 14 degrees. The respective kink angles of the bracing bars shown in Figure 
3.17(b) and Figure 3.17(c) are approximately 30 degrees and 50 degrees.  

In addition to investigating the effect of the bracing bar detail, another major reason for 
the tests was to improve the understanding of interaction between the various components of the 
girder and deck panel system. The deck panels used for the forming system are supported on a 
flexible bearing strip as shown in Figure 3.18. The various components of the system can have 
significant effects on the interaction between the deck panel, the bracing bar, the R-bar, and the 
compressible insulation. This lack of understanding of this interaction leads to uncertainty about 
top bracing behavior.  

The goal of the test on the girder and deck panel system is to investigate the effects of 
different connection configurations on the structural behavior of top bracing. The three different 
connection configurations used in the test were shown in Figure 3.17(a), (b), and (c) and are 
referred to as Horizontal (Standard), Inclined Top, and Inclined Bottom, respectively. As noted 
above, the connection shown in Figure 3.17(a) matches the TxDOT standard. The connection 
configuration of the Inclined Top is a realistic representation of the actual connection 
configurations that are widely found in practice. The connection configuration of the Inclined 
Bottom is a variation of the Inclined Top and was expected to be stiffer and stronger than the 
Inclined Top.  
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(a) Horizontal (Standard) 
 

 

(b) Inclined Top 
 

 

(c) Inclined Bottom 

Figure 3.17: Connection Configurations for Top Bracing 

3.4.2 Specimen 

The girder and deck panel system consisted of a concrete beam, a styrofoam support strip 
(insulation), a concrete panel, and a top bracing bar attached to an R-bar as shown in Figure 3.18. 
The beam was an AASHTO Type C beam with #4 R-bars. The styrofoam support strip was 1.5-
in. wide, 2-in. thick, and 48-in. long. A #5 piece of reinforcing steel was used for the top bracing 
bar. For the connection configurations of the Inclined Top and the Inclined Bottom, the 
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styrofoam was placed between top of the beam and the concrete panel. A top bracing bar was 
placed on top of the concrete panel, bent around the edge of the panel, and welded to the top of 
the R-bar. For the Standard connection configuration, a straight top bracing bar was horizontally 
connected to an R-bar at a distance of 1.5 in. from the top surface of the beam without a 
styrofoam and a concrete panel as shown in Figure 3.17(a). 
 

 
Figure 3.18: Top Bracing Bar, Concrete Deck Panel and Styrofoam in Place 

3.4.3 Test Setup 

Figure 3.19 shows a schematic of the test setup used to study the behavior of the girder 
and deck panel system. A picture of the actual test setup is shown in Figure 3.20. An hydraulic 
actuator reacted laterally near the top of the beam to simulate the torsional load that would result 
from the overhang load. The hydraulic actuator was attached to a steel buttress that was fixed to 
the rigid floor, and a hemispherical head was mounted on the front of the actuator. The 
hemispherical head transferred lateral force to the beam and accommodated rotation of the beam 
during the test. The beam was forced to tip about its lower edge by using a pin support consisting 
of a steel angle on the bottom edge of the concrete beam that reacted against the steel plates 
anchored in the rigid floor as shown in Figure 3.20. The steel angle in this setting behaved as a 
pin for the beam. The beam was restrained from twisting by the combination of the deck panel 
and the bracing bar. The bracing bar was connected to the R-bar, and was anchored on the other 
end by a buttress connected to the rigid floor.  

3.4.4 Instrumentation 

A StrainSert load cell with a 50-kip capacity was used to measure the lateral force that 
was applied to the beam. The load cell was placed between the hydraulic actuator and the 
hemispherical head as shown in Figure 3.21(a). A 24-kip capacity Interface load cell was used to 
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monitor the force in the bracing bar as indicated in Figure 3.21(b). The load cell was positioned 
at the buttress that anchored the bracing bar. As shown in Figure 3.21(c), strain gauges were 
installed in the inclined portion of the top bracing bar, and the small steel bracket was attached to 
the top of the R-bar to measure the lateral deformation of the R-bar. Twist in the beam was 
monitored using an inclinometer from Rieker Instrument as shown in as shown in Figure 3.21(d). 
String potentiometers from AMETEK were also used to measure the lateral movement of the 
beam. The readings of lateral movement of the beam were utilized to calculate rotation of the 
beam and these rotation values were compared to the rotation readings from the inclinometer for 
verification purposes.  
 

 
Figure 3.19: Schematic of Test Setup 
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Figure 3.20: Test Setup for Girder and Deck Panel System 

(a) Load Cell for Ram (b) Load Cell for Top Bar 

(c) Strain Gauges (d) String Potentiometers and Inclinometer 

Figure 3.21: Instrumentation for Girder and Deck Panel System 
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3.4.5 Test Results 

A graph of force in the top bracing bar versus girder twist is shown in Figure 3.22 for the 
three different bracing bar details that were tested. For the connection configurations of the 
Inclined Top and the Inclined Bottom, the curves decreased in stiffness with rotation of the beam 
and exhibited a plateau after a beam rotation of approximately 1 degree. For larger rotations 
there was an increase in the slope of the curves that represents stiffening in the connections. The 
connection to the top of the R-bar in the Inclined Bottom detail ruptured at a rotation of 
approximately 2.25 degrees, as indicated by the sharp drop in the curve. Both details failed by 
rupture of the R-bar. The Inclined Bottom bar had a higher yield plateau and a higher ultimate 
strength than the Inclined Top detail. It was observed that these two connection configurations 
possess good ductility as shown in Figure 3.22. In comparison, for the Standard detail, the curve 
was significantly stiffer than the Inclined details. The Standard detail also failed by rupture of the 
R-bar. Pictures of the ruptured R-bars are shown in Figure 3.23. The Standard detail did not 
possess much ductility when compared to the Inclined details. However, the large deformations 
in the R-bars would most likely not provide significant warning of the impending failure as the 
construction workers on the bridge would likely be unaware of the deformations while placing 
concrete. 
 

 
Figure 3.22: Force in Top Bars and Beam Rotation 

The behavior of the R-bars with lateral loading was discussed in Section 3.2 and graphed 
in Figure 3.4. According to the results of the R-bar testing from Figure 3.4, the maximum force 
the R-bar developed with a straight top bar connected to top of it was about 2 kips. This 
maximum force was smaller than the values measured in the overall system graphed in Figure 
3.22 due to the added stiffening the deck panels provide to the overall system. However, while 
this indicates that interaction between the components in the girder and deck system does exist, 
beneficial effects of such interaction may be conservatively ignored as the beneficial effects may 
not be realized because the stiffness of the system may prove to control the behavior.  
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(a) Horizontal (Standard) 
 

 

(b) Inclined Top 
 

 

(a) Inclined Bottom 

Figure 3.23: Failures of Top Bracing 

 

3.5 Summary of Laboratory Testing 
In this chapter, details of the experimental program as well as a summary of the 

experimental results were presented. The experimental programs included R-bar testing, the 
beam overturning test, and the test on the girder and panel deck system. In Section 3.2, the 
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structural behavior of an R-bar subjected to lateral force was investigated. The lateral stiffness 
and capacity of an R-bar were found to be small compared to those of a top bracing bar. This 
indicates that the lateral stiffness and capacity of top bracing were governed by an R-bar. In 
Section 3.3, the beam overturning test provided a better understanding of the overturning 
mechanism. The maximum rotation a Type C beam could sustain was less than 2.5 degrees. In 
Section 3.4, the effects of three different connection configurations on the structural behavior of 
top bracing were studied and uncertainty about interaction between all the components in a 
girder and deck system was clarified. While the Standard connection configuration possessed 
more stiffness and capacity for small rotation, the other two connection configurations behaved 
flexibly and possessed good ductility. The results from the laboratory testing provided valuable 
validation data for the finite element model that is discussed in the next chapter.  
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Chapter 4.  Finite Element Model 

4.1 Introduction 
Field data or the testing of selective specimens provided valuable data that was used to 

validate the accuracy of finite element analytical (FEA) models so that extensive parametric 
testing could be conducted to improve the understanding of the basic behavior. Although 
physical testing was used to improve the understanding of structural behavior, computational 
models also played an important role in understanding general behavior. These models allowed 
extensive studies of the structural system that would otherwise need to be gained by much more 
detailed testing programs, which is not generally feasible.  

The three-dimensional program ANSYS (2009) was used for the finite element analysis. 
This chapter provides an overview of the finite element models along with comparisons of the 
FEA results with data from the field and laboratory tests.  

Data from the laboratory tests as well as field data from Airport concrete bridge and the 
Lubbock steel bridge were used to validate the FEA models. In addition, measurements from the 
Hutto concrete bridge that had excessive rotation in the fascia girder were also used to 
investigate the cause of the excessive rotation in the fascia girder as well as provide a better 
understanding of the behavior of the girder system with slab placement bracing during 
construction.  

This chapter is divided into seven sections. Following this introductory section, the 
following two sections provide an overview of the finite element models as well as the modeling 
techniques for key elements in the bridge system. The subsequent three sections provide 
comparisons between the FEA models and results from the field studies that were used to 
validate the model. The final section of the chapter provides a summary of the chapter.  

4.2 Elements for FEA models 
As summarized in Table 4.1, several different types of elements were used to model the 

concrete and steel girders in the study. In this section, a brief overview of those elements is 
provided. Modeling techniques are discussed later.  

Table 4.1: ANSYS Element Types for FEA modeling 

Element Type Structural Component Note 
Solid65 Prestressed Concrete Beam 3-D reinforced concrete solid 
Solid45 Connection Plate for Bearing Pad 3-D structural solid 

Link8 
Top Bracing Bar 
Strut 
Cross Frame 

3-D truss element 

Link10 
Timber Blocking 
Vertical Reaction of Bearing Pad 

Tension or compression only line 
element 

Beam189 R-bar 3-D quadratic finite strain beam 
Combin14 Shear Force of Bearing Pad 3-D line element 

Shell63 
Connection Plate for R-bar 
Stiffeners for Girder 

Elastic shell 

Shell99 Plates for Girder Elastic shell 
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The Solid65 element was used to model the prestressed concrete beams. The element is 
defined by eight nodes, each with three translational degrees of freedom. The element can be 
used for 3-D modeling of solids with reinforcing bars. The reinforcing bar is created in the 
element simply by defining the volume ratio of reinforcing bars to total element. Up to three 
different volume ratios can be defined in any of the three element axes to accommodate concrete 
reinforcing bars placed perpendicularly to each other inside the concrete. The reinforcing-bar 
capability was utilized to represent the prestressing strands that run along the girder length. The 
modulus of elasticity, Poisson’s ratio, and unit density that were used for the concrete were 5500 
ksi, 0.2, and 0.15 kcf, respectively.  

The Link8 element was used in both the concrete and steel girder models. The Link8 is a 
truss element that is defined by two nodes, each with three translational degrees of freedom. In 
the concrete girder systems, the Link8 element was used to model the top bracing bar that is 
connected to the R-bar of adjacent girders. In the steel girder systems, the truss element was used 
to model the struts and cross-frame bracing members. The modulus of elasticity that was used for 
steel was 29,000 ksi.  

Another truss element type that was used was the Link10 element, which is also a 3-D 
line element defined by two nodes, each with three translational degrees of freedom. The element 
has the unique feature of a bilinear stiffness matrix, and can be used for applications with 
uniaxial tension-only or compression-only behavior. This feature is very useful as a contact 
element for axially loaded structural members. The Link10 element was used to model timber 
blocking used as temporary bracing for prestressed concrete girders during construction. Several 
Link10 elements were also used as a system to model the vertical reactions from the elastomeric 
bearing pad, where the contact element capabilities were able to predict lift of the bearing. The 
horizontal component of the reactions at the elastomeric bearing pads were modeled using the 
Combin14 spring element, which has longitudinal or torsional capability in 1-D, 2-D, or 3-D 
applications. The longitudinal spring option is a uniaxial tension-compression element with up to 
three translational degrees of freedom at each node.  

The portion of the R-bars that extends from the top of concrete beams was modeled using 
the three-dimensional beam element, Beam189. The beam element is defined by three nodes and 
has six or seven degrees of freedom at each node. The degrees of freedom include three 
translations in the x, y and z directions and rotations about the x, y and z directions. The seventh 
degree of freedom can be activated to capture warping stiffness. The element is suitable for 
analyzing slender to moderately stubby/thick beam structures and is based on Timoshenko beam 
theory.  

The mesh density that was used for the concrete beams and the bearing pads differed 
because the bearing pad required a much more dense mesh. The mesh density transition was 
provided using the Solid45 element. The element is defined by eight nodes and each node has 
three translational degrees of freedom. 

A transitioning element was also necessary at the interface between the R-bar and the 
concrete beam in the model. The Beam89 element has the rotational degree of freedom that is 
necessary to transfer the moment from the R-bar into the beam; however, the Solid65 element 
that was used to model the concrete does not have the rotational degree of freedom. Therefore, 
the Shell63 was used to provide the moment connection between the element type of Solid65 for 
the concrete beam and the element type of Beam189 for the R-bar. The element Shell63 has six 
degrees of freedom at each node that includes three translations in the nodal x, y and z directions 
and three rotations about the nodal x, y and z-axes. 
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Finally, the three-dimensional shell element, Shell99, was used to model the plate 
element in the steel girder models. The shell element of Shell99 has a feature of offsetting the 
nodes along the layer depth of the element. This node offsetting feature is useful for aligning the 
top and bottom flanges in the girder whose thickness changes along the length of the girder. 

While this subsection provided a brief overview of the basic elements that were used in 
the various models, the following section explains some of the modeling techniques that were 
used in the concrete and steel girder systems.  

4.3 Key modeling techniques 

4.3.1 Moment Connections  

As discussed briefly in the previous section, the beam element (Beam189) that was used 
to model the R-bar required a rotational DOF at the interface between the R-bar and the concrete 
beam. Although the Beam189 element has this rotational DOF, the Solid65 element does not 
possess the rotational DOF. Therefore, the Shell63 element was used as an interface between 
Beam189 for the R-bar and the Solid65 for the concrete beam. The Beam189 elements for the R-
bar are embedded into the solid elements for the concrete beam and shares nodes with the solid 
element as shown in Figure 4.1(a). The Shell63 elements were created by using the same nodes 
that the Beam189 and the solid elements share inside the concrete beam. In Figure 4.1(b), the 
rectangular area in light gray represents the elements of the Shell63 that ensure moment transfer 
from the Beam189 to the solid element. 

 

 
Figure 4.1: Moment Connection 

4.3.2 Bearing Pad 

4.3.2.1 Bearing Pad Model 

Elastomeric bearing pads are difficult to model due to the variable stiffness in the vertical 
and lateral directions as well as the variable nature of the interface with the beams that rest on the 

(a) Beam189 elements for R-bar imbedded     
in solid elements for concrete beam (b) Shell63 elements for moment connection 

Beam189 elements 

Shell63 elements
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pads. The pads do not have a positive connection with the beams that they support but instead are 
dependent on the direct contact between the beams and the pads from gravity load. Depending on 
the compression in the pad from the gravity load and the in-plane or out-of-plane rotation of the 
beam, the beam can lift off of the pad. Therefore, the model of the bearing pad must include the 
ability to have variable stiffness in the different translational directions and also capture the 
potential lift-off of the beam from contact with the pad. The resulting system consisted of a 
series of spring elements to represent a bearing pad. The model included a combination of 
horizontal (parallel to the bottom surface of the concrete beam) and vertical (perpendicular to the 
bottom surface of the concrete beam) springs to simulate the lateral restraining effect and the 
vertical deflection of the pad. The Link10 element for the vertical springs becomes active in 
compression and inactive in tension. Upon the lift-off of the beam, the bearing pad loses some of 
the contact with the beam, and the portion of the bearing pad that lost contact with the beam is 
free from compression force. While active elements represent the portion in compression of the 
bearing, inactive elements represent the portion of the bearing pad that lost contact. The front 
view and side view of the vertical line elements for the bearing pad are depicted in Figure 4.2(a) 
and (b), respectively. 
 

 
Figure 4.2: Modeling of Bearing Pad 

For the horizontal line elements for the bearing pad, one end of the line element was 
horizontally attached to the bottom center of the concrete beam and the other end was fixed. 
Although this discrete model for the bearing pad considers the material properties of the bearing 
pad as linear, the model can simulate the behavior of the pad successfully because construction 
loads are small compared to service loads, and the bearing pads behave linearly for small loads 
based on the bearing pad test results. The linear discrete model for the bearing pad 
conservatively ignores the strain-stiffening effects of the bearing pads for higher load levels.  

(a) Front View (b) Side View 

Spring Elements for 
Bearing 

Solid65 Element for 
Mesh Transition 
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4.3.2.2 Validation of Bearing Pad Model 

The validation of the bearing pad model is discussed in this sub-section. The validation is 
performed by comparing the data from the beam overturning test and the results from a FEA 
beam model with the bearing pad model. 

The beam overturning test, discussed in detail in Chapter 3, enabled a better 
understanding of the nonlinear behavior of a beam on elastomeric bearing pads, and also 
provided the validation data for the analytic model and FEA models for elastomeric bearing 
pads.  

Figure 4.3 shows a FEA beam model that was developed for the AASHTO type C beam 
with a span length of 55.5 ft and a design beam weight of 29.2 kips. Its modulus of elasticity, 
Poisson’s ratio, and unit weight were 5500 ksi, 0.2, and 0.15 kcf, respectively. A load with an 
eccentricity of 36.25 in. was applied at midspan of the beam. The self-weight of the beam was 
applied in the form of gravity load and the eccentric load was applied gradually at a horizontal 
distance of 36.25 in. from the centroidal axis of the girder, using truss elements. The beam was 
supported at each end on rectangular bearing pads measuring 7-in. long, 16-in. wide, and 2.86-in. 
thick. The vertical stiffness and lateral stiffness for the bearing pads were 513.8 k/in and 4.06 
k/in., respectively. The procedure to determine both vertical stiffness and lateral stiffness for a 
bearing pad is given in Appendix B. The bearing model described in the last section was 
incorporated into the FEA beam model. For the boundary conditions for the bearing model, the 
degree of freedom in the vertical direction of the bottom node of the Link10 element was fixed, 
and the other two degrees of freedom were coupled with the corresponding degrees of freedom 
of the top node of the same element. These boundary conditions allow the Link10 element to 
maintain the initial vertical direction throughout rotation of the beam, thereby preventing the 
Link10 element from applying the horizontal reactions to the beam. The horizontal component of 
the reactions at the elastomeric bearing pads was provided by the horizontal spring elements for 
the bearing pad. For the horizontal spring elements, one end of the element was horizontally 
attached to the bottom center of the concrete beam and the other end was fixed. The horizontal 
spring elements were placed both parallel and perpendicular to the beam length. A geometrically 
nonlinear analysis was conducted for the beam model using the Newton-Raphson method in the 
finite element analysis. 

Figure 4.4 shows a comparison of the FEA results and the test data for rectangular 
bearing pads. As shown in the figure, the FEA model captured well the nonlinear behavior in 
rotational stiffness of the bearing pad that was observed from the testing data. In addition, the 
curve for the FEA results approached zero rotational-stiffness with rotation of the beam, which is 
consistent with the testing data. Although the maximum overturning force that the FEA model 
predicted was slightly larger than that from the testing data, relatively good agreement between 
the FEA results and the test data was achieved.  
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Figure 4.3: FEA Beam Model with Bearing Pad Model 

 

 
Figure 4.4: Comparison of FEA Results and Test Data for Rectangular Bearing Pads 

4.3.2.3 Verification of Mesh Fineness 

Before finite element models for full bridge girder systems were developed, the mesh 
fineness was verified. Preliminary studies of the characteristics of rotational behavior of bearing 
pads showed that the width of the bearing pad plays an important role in the rotational behavior 
of the bearing pad. Thus, a set of bearing pad models was arranged with the Link10 element 
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spacing in the bearing width-direction equal to 0.5, 1, 2, and 4 in., and the element spacing in the 
bearing length-direction fixed to 1 in.  

Nonlinear large-displacement analyses were performed on all four models, and the results 
for different element spacings were compared to identify the relation between mesh fineness and 
solution.  

Figure 4.5 shows the results for the 4 different element spacings. While the curves with 
element spacings of 2 and 4 inches exhibited relatively poor agreement, the curves with element 
spacings of 0.5 and 1 in. showed good agreement with each other. Although the results indicated 
that the element spacings up to 1 inch were capable of achieving good accuracy, to be 
conservative the element spacings in both the width and length directions were chosen as 0.5 
inch for the bearing pad models.  
 

 
Figure 4.5: Mesh Fineness Verification for Bearing Pad Models 

4.3.3 Simulation of Overhang Load 

Figure 4.6 shows the overhang brackets in place. To simplify FE models, construction 
overhang load was applied using the statically equivalent configuration of the load as depicted in 
Figure 4.7. The equivalent overhang load system consists of a vertical load and a horizontal-
force couple. The vertical load of the equivalent overhang load system is the same in magnitude 
as the original construction overhang load, and is positioned at the edge of the fascia girder. The 
horizontal-force couple is determined by multiplying the original construction overhang load 
with the distance of the load resultant from the edge of the top flange of the girder. Each 
component of the horizontal-force couple was calculated by dividing the force couple by the 
dimension of ܾ as shown in Figure 4.7.  
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Figure 4.6: Overhang Brackets in Place 

 
Figure 4.7: Simulation of Overhang Load 

4.4 FEA model for Airport concrete bridge 

4.4.1 Description of FEA model 

As a field investigation, a prestressed concrete girder bridge that was constructed at the 
interchange between State Highways 71 and 130 was chosen for instrumentation and was 
monitored during construction. As shown in Figure 4.8, the concrete bridge with a span length of 
120 ft and a width of 50 ft consisted of seven prestressed concrete girders spaced 7.25 feet on-
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center. The girders were American Association of State Highway and Transportation Officials 
(AASHTO) Type IV beams that are 54 in. deep with respective top and bottom flange widths of 
20 and 26 in. The overhang width from the center of the fascia girder to the edge of the deck was 
3 ft, which is within the range of typical overhang widths for concrete girder bridges. 

For interior portions of the concrete slab in the bridge, the 8-inch concrete deck consisted 
of 4-inch thick precast concrete deck panels and a 4-inch thick cast-in-place portion of the deck 
that was supported by the concrete panel. This construction method is widely used throughout 
the state of Texas. The weight of both precast concrete deck panel and fresh concrete between 
the girders reacts on the edge of the top flange of the girder.  

 

 
Figure 4.8: Field Measurement Span of the Airport Concrete Bridge 

The overhangs are typically supported by plywood formwork as shown in Figure 4.6. The 
overhang bracket is usually connected to the top flange of the fascia girder with a tension tie that 
was welded to an insert at the top of the girder, and the bottom of the bracket reacts on the 
bottom flange of the girder. The construction load that acts on the plywood formwork in the 
overhang is transferred to the fascia girder through the overhang brackets, and creates the 
overturning moment for the fascia girder. 

To counterbalance the overturning moment for the fascia girder, the top bracing bar was 
used together with timber blocking placed between the girders. The size of the top bracing bar is 
often a #5 bar that is welded to the top of the R-bar (usually a #4). The young’s modulus and the 
specified yield strength of the bars were assumed to be 29,000 ksi and 60 ksi, respectively. 
Figure 4.9 shows the connections between the top bracing bar and the R-bar. The precast 
concrete panel raises the elevation of the top bracing bar higher than the top of the R-bar, which 
therefore requires the bar to be bent at the edge of the panel which leads to a kink angle in the 
top bar. The measurements of the kink angle in the Airport concrete bridge ranged from 0 to 31.8 
degrees with an average of 13.5 degrees. This kink angle was conservatively ignored in the FEA 
modeling. 
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(a) Connection in Interior Girder (b) Connection in Exterior Girder 

Figure 4.9: Top Bracing Connection 

Temporary bracing in the form of 4-by-4 in. timbers was used on the bridge during 
construction. Two diagonals were connected at the middle to form an “X.” Five Xs were used in 
the exterior bays while three Xs were used on the interior bays. Young’s modulus and the area of 
the timber blocking were considered as 700 ksi and 12.25 in.2, respectively. Although Young’s 
modulus for the timbers varies depending on the type of wood, the 700 ksi value used was a 
conservative value taken from National Design Specification for Wood Construction (American 
Wood Council, 2005). 

The elastomeric bearing pads that were used with the AASHTO Type IV girders were 9 
by 22 inch with a thickness of 2.5 inch. The pad contained five steel shims of 0.105 inch thick 
with six elastomeric layers. The thicknesses of the elastomeric layers were 0.25 for the interior 
spaces and 0.375 inches for the exterior layers. As described in the previous section, the pad was 
modeled by using a series of linear springs.  

Figure 4.10 shows the three-dimensional finite element model for the Airport Concrete 
Bridge. The FEA model was developed by using the ANSYS elements described in the previous 
section. Although the TxDOT Bridge Design Manual (2008) requires a minimum of five top 
bracing bars for the AASHTO Type IV girder with a span of 120 ft., the actual number of top 
bracing bars used in the Airport concrete bridge was nine as shown in Figure 4.10. 
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(c) Isometric View of FEA Model 

(a) Top View of FEA Model 
 

 

 

(b) Cross-Section View of FEA Model  

Figure 4.10: FEA model for the Airport Concrete Bridge 

In addition to the required bracing of the top bracing bars and the timber blocking, 
additional sources of restraint that were found in 

 the Airport concrete bridge included the plywood forming systems both at the thickened 
ends of the bridge and at a few interior locations of the fascia girder as shown in Figure 4.11. 
The forming system at the ends of the beams likely provided additional restraint to the girder 
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system. In particular, this forming system at the thickened ends of the bridge probably provided 
some restraint to the rigid-body rotation of the fascia girder at support. However, because these 
sources of restraint are not generally reliable or designed for bracing, the additional restraint was 
conservatively neglected in the FEA modeling.  

Although the rotation of the fascia girder was expected to be small, a geometrically 
nonlinear analysis was conducted for the Airport concrete bridge by using the Newton-Raphson 
method in the finite element analysis. A linear analysis was also conducted and confirmed that 
the analysis results from both analysis options were similar to each other.  
 

(a) Formwork for Thickened Ends (b) Formwork for Drainage 

Figure 4.11: Formworks for Thickened Ends and Drainage 

4.4.2 Validation of FEA model for Airport Bridge 

The FEA modeling techniques that were used for modeling of the Airport Concrete 
Girder Bridge were validated by comparing FEA results and field data. Fasl (2008) included the 
vertical deflections of the girders, the rotations about the longitudinal axis of the girder and the 
axial forces in the top bracing bars. In particular, the field data used for comparisons with the 
FEA results were the deformations that occurred during placement of the concrete deck. Vertical 
deformations were taken using a laser distance meter with a precision of ± 0.0625 in. The girder 
deformation was obtained by comparing the measured distance from the ground to the bottom of 
the girder before and after the concrete placement, at the location shown in Figure 4.12. 
Rotations were recorded with a Crossbow Technology tilt sensor that has a resolution of 0.03 
degrees. FEA results and the field measurements summarized in Tables 4.2 and 4.3. Reasonable 
agreement was achieved between the FEA model and the field measurements.  

Table 4.3 shows that, as expected, the rotations in the fascia girder were larger than those 
in the first interior girder, as the fascia girder has overturning moment applied from the 
overhang. Field measurements of rotation in the fascia girder and the first interior girder were 
small, and rotations in the first interior girders were actually in the range of the resolution of the 
tilt sensors that were used for measuring the rotations in the girders. This is consistent with the 
FEA results. The FEA results also showed that the rotations in the first interior girder were very 
close to zero.  

In addition to girder deformations, strain gages were used to monitor the strains in the top 
bracing bars at a number of locations along the length of the bridge. The resulting forces that 
were calculated from these stresses were less than 1 kip, which was consistent with the 
prediction the FEA model.  
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Figure 4.12: Measurement Locations on West Side of the Airport Concrete Bridge 

Table 4.2: Comparison of FEA Results and Field Data of Deflections of Girders in the 
Airport Concrete Bridge 

Fascia Girder 

Locations G1-2 G1-3 G1-4 

Measurements (in.) 0.813 1.438 1.438 

FEA (in.) 0.712 1.469 1.512 

% Difference 14.1 2.1 4.9 

First Interior Girder 

Locations G2-2 G2-3 G2-4 

Measurements (in.) 0.563 1.167 1.250 

FEA (in.) 0.606 1.253 1.290 

% Difference 7.2 6.9 3.1 

Table 4.3: Comparison of FEA Results and Field Data of Rotations of Girders in the 
Airport Concrete Bridge 

Fascia Girder 

Locations G1-1 G1-2 G1-3 G1-4 

Measurements (deg.) 0.05 0.1 0.1 0.11 

FEA (deg.) 0.089 0.099 0.107 0.106 

First Interior Girder 

Locations G2-1 G2-2 G2-3 G2-4 

Measurements (deg.) 0.040 0.03 0.03 0.03 

FEA(deg.) 0.005 0.007 0.008 0.007 

Fascia Girder 

First Interior Girder 

Span Length (120 ft) 

North 

G1-1

64ʹ1ʺ

49ʹ11ʺ

18ʹ3ʺ 

Bent 23Bent 22 

G1-2 G1-3G1-4

G2-1G2-2 G2-3G2-4
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4.5 FEA model for Hutto Concrete bridge 

4.5.1 Description of FEA Model for Hutto Concrete Bridge 

While the Airport Concrete Bridge addressed in the previous section had small rotations, 
the Hutto Bridge exemplified a bridge that had large rotations. Confidence in the FEA model 
would result if good agreement could be achieved between the FEA model and measured girder 
deformations from the bridge. 

The finite element model of the bridge was developed using plans from the bridge plus 
additional information provided by TxDOT engineers familiar with the bridge construction. 

The concrete bridge, located on the west side of the intersection of State Highways 79 
and 130, has a span of 64.6 ft and a width of 60.5 ft. It consisted of 9 AASHTO Type B girders 
34-in. deep with a top and bottom flange widths of 16 and 18 in., respectively. The overhang 
width from the center of the fascia girder to the edge of the deck was 3 ft. The bearing pads for 
the Type B beams were 8 by 16 in. with a thickness of 2.5 inch. 

TxDOT reported that the Hutto Concrete Bridge experienced excessive rotation in the 
fascia girder during construction. Field investigation by the research team found that the 
completed bridge had a locked-in rotation of the fascia girder ranging from 2.3 to 2.8 degrees.  
 

 
Figure 4.13: Hutto Concrete Bridge 

In the course of FEA modeling, one difficulty associated with the Hutto concrete bridge 
was that the actual bracing conditions for the bridge were unknown, and knowledge of the exact 
construction loading information was also insufficient. However, the researchers were able to 
obtain additional information from TxDOT engineers. In accordance with their 
recommendations, the minimum required amount of bracing for deck concrete placement as 
specified by the TxDOT standard drawing was used in the FEA modeling and the worst load 
scenario was assumed for the construction loading. The total construction load included fresh 
concrete load, construction equipment weight of 6.417 kips per fascia girder, concrete forming 
system weight of 0.045 k/f per fascia girder. Although the construction equipment was not on the 
finished bridge, because the concrete can begin to set up and gain stiffness within a few hours, 
part of this load can contribute to the deformations that would be locked into the bridge. Figure 
4.14 shows the FEA model of the Hutto concrete bridge with minimum required bracing. 
According to TxDOT personnel, the standard bracing drawing MEBR (C)-1 (the old version of 
the current standard bracing drawing) was probably used for the Hutto concrete bridge. The 
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minimum bracing required for Type B beams with a span length of 64.6 ft consisted of 3 top 
bracing bars and 3 pairs of diagonal timber blockings as shown in the Figure 4.14.  
 

(a) Top View of FEA Model 
 

(b) Cross-Section View of FEA Model 

Figure 4.14: FEA Model of Hutto Concrete Bridge 

4.5.2 Discussion of Analysis Results 

The Hutto Bridge provided valuable information about potential problems in the current 
bracing requirement and construction protocol due to the problems that happened during 
construction. The comparison of the FEA solution and the field measurements provides the 
opportunity to validate the modeling techniques. Comparisons of the FEA solution and the field 
measurements are made in this sub-section and probable reasons for excessive rotation of the 
fascia girder are provided. 

4.5.2.1 Rotation of Fascia Girder of Hutto Concrete Bridge 

Figure 4.15 shows a graph of the rotation of the fascia girder at the support and also at 
midspan obtained from the FEA solution during the application of the full construction load. The 
predicted rotations of the girder from the FEA solution at the full construction load were 2.12 
and 2.34 degrees at the end and mid-span of the girder, respectively. These values are in 
reasonable agreement with the corresponding measured values of 2.3 degrees and 2.80 degrees. 
Girder twist was dominated by rigid-body rotation, similar to what was observed in the field. In 
looking at the curve of the twist as the construction load was applied to the FEA model, the 
fascia girder behaves approximately linearly for up to about 30% of the construction load, and 
starts losing rotational stiffness with further increase in construction load. The sources of 
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stability from overturning include the girder self-weight, the construction load on the interior 
side of the girder, and the bracing bar connected to the R-bar. As the construction load 
approaches its full magnitude, the overturning moment approaches the maximum possible 
restoring moment in magnitude, which is very close to instability. In the case of the Hutto 
Bridge, the problem was further complicated because the girder lifted off the bearing, shifting the 
point about which the girder twists and increases the eccentricity of the overturning forces while 
decreasing the eccentricity of the restoring forces. This leads to a reduction in the rotational 
stiffness of the girder system. Because the girders were dominated by rigid-body rotation, the 
field measurements and the FEA solutions also verified that treating the girders as torsionally 
rigid is a reasonable assumption. This assumption will be used in Chapter 6 when an analytical 
model is developed to provide a hand solution to predict girder twist.  

 

 
Figure 4.15: Lateral Rotation of Fascia Girders with Construction Load 

4.5.2.2 Forces in Top Bracing Bars 

Figure 4.16 shows the distribution of the forces in top bracing bars across the girder 
system for the full construction load level from the FEA solution. The bay number is represented 
along the x-axis while the force in the top bar is graphed on the y-axis. The top bracing bar used 
to restrain the lateral rotation of the girder was a #5 bar with an area of 0.31 in2, a specified yield 
strength of 60 ksi, and an axial capacity of 18.6 kips. 

The axial capacity of the bar is the maximum design value that the #5 bar can provide 
with proper connection at ends of the bar. However, the predicted forces in the top bracing bars 
at the full construction load level were smaller than 1.5 kips, which is less than 10% of the axial 
capacity of the top bracing bar. The small force in the bar relative to the capacity is likely due to 
the flexible R-bar connection that dominates the stiffness of the bracing bar and R-bar system. In 
addition, according to the FEA results, the diagonal timber blocking had zero compression force 
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at the full construction load level. This indicates that the diagonal timber blockings were 
probably dislodged during lateral rotation of the girder, there becoming ineffective.  
 

 

 
Figure 4.16: Force Distribution in Top Bracing across Hutto Concrete Bridge 
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4.6 FEA Model for Lubbock Steel Bridge 

4.6.1 Description of FEA model 

The steel plate girder bridge monitored during construction supports an overpass of 19th 
Street over US 82 Highway in Lubbock, Texas. Figure 4.17 shows the steel bridge under 
construction. The steel bridge is two-span continuous with an overall span length of 289.5 ft, a 
first span length of 150.5 ft, and an overall width of 41 feet. The bridge consists of six steel plate 
girders and has a skew of about 60 degrees. The doubly symmetric steel plate girders were 54-
inches deep with 18-inch wide flanges. The girders were spaced 8.2 ft. on center. The overhang 
width from the center of the fascia girder to the edge of the deck was 3 ft, which is within the 
typical range of overhang widths for steel plate girder bridges. 

Figure 4.18 shows the 3-D finite element model for the Lubbock steel bridge. Element 
types Shell99 and Shell63 were used to model the steel plates and stiffeners in the girder, 
respectively. The Shell99 element permits offsetting the nodes at the top surface, mid-surface 
and bottom surface of the element. This feature is useful for aligning the top and bottom flanges 
in the girder whose thickness changes along the length of the girder. Cross-frames, struts, and 
end diaphragms were modeled by using Link8 truss elements. 

At the overhangs, plywood forms were supported on overhang brackets. The overhang 
load applied to the plywood form was simulated using the equivalent overhang load system 
explained in the previous section. Between girders, the permanent metal deck form (PMDF) 
provided formwork for an 8.5-inch thick concrete deck. Although this permanent metal deck 
form contributes to restraining the lateral movements of the girders, it was ignored in the FEA 
model.  

 

 
Figure 4.17: Lubbock Steel Plate Girder Bridge under Construction 
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Figure 4.18: FEA Model of Lubbock Steel Bridge 

The steel bridges with concrete deck on top of girder systems were monitored during 
casting of the concrete bridge deck. The data recorded included girder deflections, girder 
rotations, strains in the girders and cross frames, and plate deformations on the fascia girder from 
the overhang brackets reacting on the web plates (Fasl, 2008).  

The girders were supported at the ends with Fabreeka bearing pads (Figure 4.19), which 
are relatively rigid and allow expansion and contraction by sliding. The rigid nature of the pads 
can be seen in the picture by the gap that resulted from a slightly uneven surface on the concrete 
abutment. For simplification, the bearing pads were represented by simple supports. Specifically, 
the girder was fixed at one end, and allowed to displace in the axial direction at the other end. 
The nodes at the flange-to-web intersection at supports were constrained with a pin or a roller.  
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Figure 4.19: Fabreeka Bearing Pad in Place 

Only concrete deck load during construction was applied at the top flanges of the girders, 
because the field measurements used in the comparisons with the FEA results were the ones that 
occurred during placement of the concrete deck. Girder self-weight was not included in the finite 
element analysis. A second-order analysis was conducted, including geometric nonlinearities 
using the Newton-Raphson method. 

4.6.2 Validation of FEA model 

Figure 4.20 shows the measurement locations for the vertical deflections in the girders in 
the Lubbock Bridge, and Table 4.4 summarizes the comparison of FEA results and field data of 
the vertical deflections in the girders. The vertical deflection in the girder is a difference in the 
vertical distance from the bottom of the girder to the ground before and after the deck pouring 
measured using a laser distance meter with a precision of ±0.0625 in. The percentage differences 
in deflection in Table 4.4 were less than 13% except for the location G1-4. The deflection 
difference at the location of G1-4 was 0.1 inch, which is small compared to the precision of the 
laser distance meter. Therefore, the accuracy of the laser distance meter most likely led to the 
relatively large error for the relatively small girder deflection. In general, the FEA results had 
good agreement with the field measurements.  
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Figure 4.20: Measurement Locations for Deflections in Girders 

Table 4.4: Comparison of FEA Results and Field Data of Deflections of Girders in the 
Lubbock Steel Bridge 

Location G6-1 G6-2 G6-3 G6-4 G5-4 G4-4 G3-4 G2-4 G1-4 
Measurements (in.) 1.5 2.56 3.06 2.93 2.56 2.19 1.81 1.16 0.38 
FEA (in.) 1.41 2.57 3.18 3.09 2.83 2.5 2.05 1.28 0.28 

% Difference -6.2 0.3 3.6 5.3 9.4 12.5 11.8 9.4 -35.7 

 
In addition to vertical deformations, girder twists were measured using Crossbow 

rotational transducers with a resolution of 0.03 degrees. The measurement locations are shown in 
Figure 4.21. Table 4.5 summarizes the comparison of FEA results and field data of the rotations.  

The rotation measurements of the girder were for the fresh concrete load only. The 
percentage differences between the measurements and the FEA solutions ranged from 0% to 
84.3%; the very large percentage difference was at a point with extremely small rotations where 
the resolution of the sensor significantly affected accuracy. Many of the percentage differences 
were less than 20%, and in many of these readings the sensor resolution also most likely had a 
significant impact on the accuracy.  
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Figure 4.21: Measurement Locations for Rotation of Girders 

Table 4.5: Comparison of FEA Results and Field Data of Rotations of Girders in the 
Lubbock Steel Bridge 

Locations TS-G6-1 TS-G6-2 TS-G6-3 TS-G6-4 TS-G5-1 TS-G5-2 TS-G5-3 TS-G5-4 

Measurements (deg.) 0.409 0.423 -0.156 -0.159 0.439 0.448 -0.088 -0.261 

FEA (deg.) 0.506 0.423 -0.134 -0.182 0.511 0.438 -0.119 -0.185 

% Difference 19.2 0 -16.3 12.6 14.2 -2.3 26.2 -40.9 

Locations TS-G4-1 TS-G4-2 TS-G4-3 TS-G4-4 TS-G3-1 TS-G3-2 TS-G3-3 TS-G3-4 

Measurements (deg.) 0.445 0.287 -0.074 -0.143 0.616 0.487 -0.014 -0.142 

FEA (deg.) 0.519 0.411 -0.114 -0.187 0.575 0.526 -0.088 -0.16 

% Difference 14.3 30.1 35.1 23.5 -7.1 7.5 84.3 11.5 

 
The locations where the girder stresses were measured are shown in Figure 4.22, and 

comparisons of the measurements and the FEA solutions during placement of the concrete bridge 
deck are given in Table 4.6. The stress measurements in the girder were for the fresh concrete 
load only. The average percentage difference was 9.5% with a maximum percentage difference 
of 26.2%.  

In summary, good agreement was achieved between the FEA results and the field data in 
terms of deflection, rotation, and stress.  
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Figure 4.22: Measurement Locations for Stresses in Girders 

Table 4.6: Comparison of FEA Results and Field Data for Stresses in Girders in the 
Lubbock Steel Bridge 

Locations G6-1-W1 G6-1-W2 G6-1-W3 G6-1-L G6-1-R G6-2-W1 G6-2-W2 

Measurements (ksi) -7.1 -2.2 2.7 7.7 10.5 -4.8 -1.8 

FEA (ksi) -7.3 -2.1 3 8.4 8.5 -5.1 -1.5 

% Difference 2.4 -5.4 10.6 8.8 -23.5 5 -23.7 

Locations G6-2-W3 G6-2-L G6-2-R G5-L G5-R G4-L G4-R 

Measurements (ksi) 1.5 4.8 5.1 6.5 6.2 6.4 6.2 

FEA (ksi) 2 6 5.6 7.3 6.8 7.2 6.7 

% Difference 26.2 19.6 9.6 10.9 8.1 10.2 6.7 

 

4.7 Closing Remarks 
Details of the elements and the key modeling techniques that were used in the finite 

element models were discussed in this chapter. Finite element models were developed for both 
concrete and steel bridges and the FEA results were compared to field data from three bridges. 
The field data provided valuable data for validating the accuracy of the FEA modeling 
techniques. The comparisons with the field data provided confidence in the modeling techniques 
for concrete and steel bridge systems so that parametric investigations could be carried out.  
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Chapter 5.  Parametric Study on Concrete Girder Systems 

5.1 Introduction 
Although the state of Texas has typically used conventional AASHTO I-beams for 

prestressed concrete systems, a new suite of girders has been recently introduced, referred to as 
Tx I-girders. For a given depth, the Tx I-girders are generally heavier than many of the 
conventional prestressed girders. The TxDOT bridge manual uses the term “beam” for 
conventional I-beams, and the term “girder” for the Tx I-girders. To avoid confusion about the 
terms of a beam and a girder in this report, both terms used in this study have the same meaning 
of a flexural member in a concrete bridge, and the terms are used interchangeably. 

Although the laboratory tests and field monitoring provided valuable data for improving 
the understanding of the behavior of concrete girder systems, the finite element models that were 
generated provided a uniquely valuable tool for studying the basic performance of a wider array 
of problems. Therefore, parametric finite element analyses were conducted to identify critical 
overhang geometries for a wide range of concrete girder systems and to investigate effects of the 
girder system parameters on the rotational response of the fascia girder. The girder system 
parameters used in the parametric study included beam type, overhang width, top bracing 
connection type, span length, and top bracing distribution pattern. The parametric FEA models 
for the concrete girder systems subjected to overhang load were based upon the FEA models that 
were developed based upon comparisons with the laboratory test results and the field data. The 
input files were developed using the ANSYS Parametric Design Language (APDL) to facilitate 
modifications to the problem geometry.  

This chapter provides a discussion of the results of parametric FEA studies that were 
conducted over a wide range of girder system parameters. The next section of the chapter 
outlines the scope of the parametric study, followed by a section that highlights the main 
considerations for FEA modeling. The remaining sections provide a discussion of the results of 
parametric investigations, and lastly a summary of the findings is provided. 

5.2 Scope of Parametric Study 

5.2.1 Parameters and Their Ranges 

The basic parameters that were considered and their ranges for the bridge girder systems 
are summarized in Table 5.1. While a total of six independent parameters required significant 
computational effort, all the parameters were worthy of investigation. Although TxDOT has 
plans to stop producing the conventional I-beams and replace them with Tx I-girders, the types 
of beams considered included all of the five conventional I-beams and the seven Texas I-girders. 
Cross-sectional dimensions and properties for conventional I-beams and Tx I-girders are 
provided in Table 5.2 and Figure 5.1, and in Table 5.3 and Figure 5.2, respectively. Comparison 
of the shape of the conventional girders with the new cross-sections shows that both the top 
flange and bottom flange of conventional I-beams are significantly narrower than those of Tx I-
girders. While for conventional I-beams, the width of the bottom flange of the beam becomes 
large with depth of the beam, for Tx I-girders, the width of the bottom flange of the girder 
remains constant for all the girder depths. As expected, a beam of larger depth has a larger 
weight per unit length for both conventional I-beams and Tx I-girders. For each girder depth, the 
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weight per unit length of the conventional I-beams (with the exception of the Beam VI) is 
smaller than that of their Tx I-girder counterparts.  

Although the span lengths in Table 5.1 range from 30 ft to 120 ft, small beams such as 
Beam Types A and B, and Tx28 and Tx34 are practically suitable for short spans; large beams 
such as Beam Type VI and Tx70 are practically suitable for long spans. Three different span 
lengths were applied to each of the beam/girder types. The three different span lengths included 
60 ft, and lower and upper values. The lower and upper values for the span length were 
determined based on the girder type. For example, for Beam Type C considered as a shallow 
beam, the span lengths of 30 ft, 60 ft, and 90 ft were applied, while for Beam Type VI, the span 
lengths of 40 ft, 60 ft, and 120 ft were used. The parameter of girder spacing was considered to 
see the effects on the rotational response of the fascia girder, and the values for girder spacing in 
the table are representative of values used in practice. The overhang width was a key variable in 
the parametric study and ranged from 1 ft to 5 ft, which spreads across the practical range. Table 
5.4 summarizes the overhang width limits. The overhang width limits for I-beams were 
calculated in accordance with the rules for the overhang width limits in the TxDOT Bridge 
Design Manual (2008).  

Table 5.1: Parameters and Their Ranges 

Parameter Range 

Beam Type 5 conventional I-beams, 7 Texas I-Girders 

Span Length 30, 40, 60, 70, 80, 90, 100, 120 ft 

Girder Spacing 6.7, 7.7 and 8.7 ft 

Overhang Width 1 to 5 ft by increment of 0.1 ft 

Connection Type flexible connection, stiff connection 

Top Bracing Distribution 
distributed along beam length,  
concentrated at support locations  
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Table 5.2: Dimensions of Conventional I-Beams 

 

 
Figure 5.1: Cross Sections of Conventional I-Beams 

  

Beam Type A B C D E F G H J K W Yt Yb Area I  Weight 

Unit in. in. in. in. in. in. in. in. in. in. in. in. in. in.2 in.4 plf 

A 12 16 5 28 5 11 3 4 3 5 6 15.39 12.61 275.4 22,658 287 

B 12 18 6 34 5 3/4 14 2 3/4 5 ½ 2 3/4 5 3/4 6 1/2 19.07 14.93 360.3 43,177 375 

C 14 22 7 40 7 2/1 16 3 1/2 6 3 1/2 7 1/2 7 22.91 17.09 494.9 82,602 516 

IV 20 26 8 54 9 23 6 8 6 9 8 29.25 24.75 788.4 260,403 821 

VI See Figure 5.1 for beam dimensions 35.06 36.4 1,084.40 732,586 1,130 
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Table 5.3: Dimensions of Texas I-Girders 

Beam Type D B Yt Yb AREA Ix Iy Weight 

Unit in. in. in. in. in.2 in.4 in.4 plf 

Tx28 28 6 15.02 12.98 585 52,772 40,559 610 

Tx34 34 12 18.49 15.51 627 88,355 40731 653 

Tx40 40 18 21.9 18.1 669 134,990 40,902 697 

Tx46 46 22 25.09 20.1 761 198,089 46,478 793 

Tx54 54 30 30.49 23.51 817 299,740 46,707 851 

Tx62 62 37 1/2 33.72 28.28 910 463,072 57,351 948 

Tx70 70 45 1/2 38.09 31.91 966 628,747 57,579 1,006 
 

 
Figure 5.2: Cross Sections of Texas I-Girders 
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Table 5.4: Overhang Width Limits by TxDOT Bridge Design Manual 

Beam/girder type Overhang width limits (ft) 

I-beams 

A 1-3.53 
B 1-4.42 
C 1.08-4.5 
IV 1.33-4.75 
VI 2.25-5.67 

I-girders 

Tx28 2-4 
Tx34 2-4.67 
Tx40 2-4.75 
Tx46 2-4.75 
Tx54 2-4.75 
Tx62 2.25-5 
Tx70 2.25-5 

 
Overhang width limits for I-girders were as specified in the I-Girder Standard Drawings 

(TxDOT, 2007). 
The lower limits of the overhang width for the Tx I-girders are larger than those for the 

conventional I-beams. In addition, the upper limits of the overhang width for the Tx I-girders are 
usually larger than those for the conventional I-beams. This indicates that Tx I-girders are 
allowed to accommodate larger overhang width compared to conventional I-beams. The 
connection type for the top bracing bars included two types of connections that are referred to as 
the flexible connection and the stiff connection. The flexible connection is representative of the 
actual connection configuration typically used in practice for top bracing bar while the stiff 
connection is the connection configuration specified by the TxDOT Standard drawings. The 
flexible connection is used because the widespread use of precast concrete panels makes it 
difficult to implement stiff connection. As shown in Figure 5.3, the top bracing bar is attached to 
top of the R-bar for the flexible connection, while the top bracing bar is attached to the R-bar at a 
distance of 1.5 in. from the top surface of the concrete beam for the stiff connection. In the FE 
models for the parametric study, horizontal timber blocking was placed at the top corner of the 
bottom flange of the beam. The horizontal timber blocking combined with the top bracing bars 
provides restoring moments to the fascia beam. Although diagonal timber blocking is specified 
in the exterior bays of a girder system by the TxDOT standard drawings, they were 
conservatively ignored in the parametric study on girder systems as the validation studies 
showed that the blocking is ineffective at reducing girder twist and often has members with little 
or no force. Figure 5.4 demonstrates the thickened ends in concrete deck at bent before deck 
pouring. 
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Figure 5.3: Schematic for Flexible Connection and Stiff Connection 

The last parameter considered in Parameters and Their Ranges was the distribution of the 
top bracing bars. Although the TxDOT standard drawings specify top bracing to be distributed 
along the length of the girder (Figure 5.5 (a)), the effectiveness of the concept of end bracing 
where top bracing is concentrated at either end of the girder system (Figure 5.5 (b)) was 
investigated. Horizontal timber blocking was distributed at a uniform spacing along the length of 
the girder for both distributed top bracing and end top bracing. Figure 5.4 shows the formwork at 
the thickened ends of the concrete deck at the bent before deck pouring. At the thickened end 
typically 3 to 4 ft long, wooden formwork is used in place of concrete panels to support the fresh 
concrete in Figure 5.4. These thickened ends provide good conditions to implement the stiff 
connection if such a detail results in improved behavior for some conditions. In Figure 5.4, R-
bars that can be used for top bracing connection in the thickened end are about 10. This large 
number of R-bars results in several possibilities for improving the behavior of the girder system. 
Providing stiffer connections at the ends of the sections also makes practical sense based upon 
the previous results that showed that significant rigid body rotation occurs in the beams. 
Restraining twist at the ends therefore is a logical solution to the problem.  
 

(a) Flexible Connection (b) Stiff Connection 

1.5˝

5.25˝ 
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Figure 5.4: Thickened Ends in Concrete Deck at Bent Before Deck Pouring 

 

 
Figure 5.5: Plan View of Girder Systems with Distributed and End Bracings 

  

(a) Distributed Bracing (b) End Bracing 



 

 74

5.2.2 Other Conditions  

Although the focus of a parametrical investigation is often on the variables, an important 
aspect of such an investigation is the constraints of the problems. This section therefore provides 
an overview of some of the system parameters that were held constant, including the amount of 
bracing and the construction load. These parameters were fixed because minimum bracing was 
used and the worst construction load scenario was considered.  

The TxDOT standard drawings state that in exterior bays, the maximum bracing spacing 
for Beam Types A, B, and Tx28, Tx34 is 15 ft and the bracing spacing for all other prestressed 
girder systems is 30 ft. In addition, the first interior bracing must be located at a distance of 4 ft 
from the end of the beam. Table 5.5 summarizes the minimum bracing spacing in accordance to 
the TxDOT standard drawings, and was used in the parametric study. In the table, Beam Types 
A, B, and Tx28, Tx34 are classified as Bracing Group A, while all others are classified as 
Bracing Group B. The fact that more bracing is required for Bracing Group A, which includes 
small beams, looks reasonable because shallow beams generally possess smaller restoring 
moment capacity than large beams. The adequacy of the current minimum bracing requirements 
is a major focal point of this parametric investigation. Although the minimum bracing specified 
in the TxDOT standard drawings is allowed for bridge girder systems during construction, the 
actual bracing amount used in practice was observed to be more than the minimum requirements 
in the bridges the research team was involved with on this investigation. For example, the 
number of top bracing bars actually used in the Airport Concrete Bridge was nine, and almost 
twice the required minimum number. Similar practices were observed at other concrete bridge 
construction sites.  

Table 5.5: Minimum Bracing Spacing for Exterior Bays 
Bracing 
Group Span (ft) 30 40 50 60 70 80 90 100 110 120 

A Bracing 
Spacing (ft) 11 8 10.5 13 10.3 12 13.7 11.5 12.8 14 

B Bracing 
Spacing (ft) 11 16 21 26 15.5 18 20.5 23 25.5 28 

 
The total construction load considered in the parametric study included the self-weights 

of the beams, the fresh concrete deck, the overhang formwork, construction equipment, and the 
weight of the construction personnel. While the beams, fresh concrete, and overhang formwork 
have reasonably well established unit weights, the weights of the construction equipment and the 
construction personnel are highly variable. The author visited websites of major construction 
equipment manufactures and collected data sheets about weights of construction equipment. The 
manufacturers included Bid-Well and Dayton Superior, the respective manufacturers of the 
finishing screed and the overhang brackets. Additional information about weights of construction 
equipment was collected from design handbooks. These design handbooks included the design 
handbook from MeadowBurke (2007) and the steel bridge design handbook from National Steel 
Bridge Alliance (2006). When the effective weight of a screed is calculated, there are a couple of 
considerations. Because the paving carriage in a screed that levels fresh concrete keeps moving 
back and forth in operation, the paving carriage applies unequal loads to the rails supporting the 
screed. An imbalance load factor of 1.5 was multiplied to the weight of the screed to account for 
the imbalance load, and then half of this effective screed weight was conservatively distributed 
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to each rail. From the survey, the half of the effective screed weight calculated this way ranged 
from 3.9 to 5.7 kips, and the maximum value of 5.7 kips was used in the parametric study. Also, 
a weight of the construction personnel of 1.2 kips per girder was used as a point load at the 
midspan of each fascia girder. 

5.3 FE Modeling 
Figure 5.6 depicts a typical FE model of a concrete girder system that was used in the 

parametric study. A top bracing bar was connected to the R-bar, and a timber blocking was 
placed between the girders. The diagonal timber blocking was conservatively ignored because 
field measurements and early computational studies showed that the diagonal timbers had very 
small forces and don’t play an important role in preventing rotation of the girder about the 
longitudinal axis of the girder. Bearing pads were modeled as a series of compression-only linear 
spring elements, and the linear spring elements were spread uniformly at the bottom of the girder 
over the same area as actually occupied by the bearing pad. As the term “compression-only” 
implies, the linear spring element for the bearing pad is active in compression and inactive in 
tension. The horizontal timber blocking members were also modeled with the same compression-
only linear spring elements as for the bearing pad.  
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Figure 5.6: Finite Element Model for Parametric Analyses 

Solid elements were used to model concrete girders and linear material properties were 
assumed for the concrete. R-bars were modeled using a beam element based on Timoshenko 
beam theory, and linear elastic-perfectly plastic material model. The top bracing bar that 
connects to the R-bars was modeled with a truss element.  
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Several key assumptions for the FEA modeling were used in the parametric study. First, 
as discussed in the Chapter 3, a top bracing bar, a concrete panel, the Styrofoam panel support, 
and a girder can interact with each other during rotation of the girder, leading to increases in the 
stiffness and capacity of the top bracing. Because the beneficial effects of this interaction are not 
well understood, the interaction among system components was conservatively ignored 
throughout the parametric study. A second key assumption for the FEA modeling was about the 
concrete formwork in the thickened ends at each end of the bridge as shown in Figure 5.4. The 
concrete formwork is attached to the girder at top through steel rods and is believed to provide 
some restraint to the girder in a certain degree. This potential bracing force was also 
conservatively ignored, because the concrete formwork is a non-bracing member for the girder 
system and the potential bracing force from the concrete formwork is not generally reliable. 
Third, while self-weights such as beam self-weight and concrete panel weight are sequentially 
followed by construction load during actual construction, the loads are applied simultaneously in 
the parametric analyses. Finally, large-displacement analysis that would produce more accurate 
results was not used throughout the parametric analyses, because the girder rotation of interest 
was relatively small. 

5.4 Relationship of Beam Rotation & Overhang Width 
This section focuses on FEA results demonstrating the effect of the stiffness of the 

connection between the bracing bar and the R-bar. Two connections were considered: 1) a 
flexible connection where the bracing bar frames in to the top of the R-bar, and 2) a stiff 
connection were the bracing bar connects 1.5 inches from the bottom of the R-bar. The girder 
systems consisted of four girders with a span length of 60 ft and a girder spacing of 7.7 ft. 
Although longer span lengths were considered in the parametric studies, the results for a span 
length of 60 ft are presented because the shorter span is generally more critical because the girder 
weight is less. The minimum top bracing specified by the TxDOT standard drawings was used, 
along with horizontal timber blocking. The bracing bars and blocking were evenly distributed 
along the length. The girder rotations at midspan are graphed as a function of the overhang width 
in Figure 5.7 and Figure 5.8 for beams with the flexible connection. Figure 5.7 shows the 
behavior for the conventional Beam Types while Figure 5.8 shows the behavior for the Tx 
Girders. Beam Type VI had relatively small girder rotations for overhang sizes up to 5 feet. 
Beam Type IV had reasonable performance for overhang widths less than 3 feet. The other 
conventional I-beams of Beam Types A, B, and C, however, experienced a problematic beam 
rotation even for a typical overhang width of 3 ft. Compared to Beam Types IV and VI, these 
beams are considered as relatively shallow, with a narrow top flange width and small matching 
bearing width. These factors are directly related to the rotational response of the girder systems 
and are worthy of further explanation. The self-weight of the beams plays an important role in 
the rotational response as the self-weight provides a restoring moment. Therefore, smaller beams 
will generally have smaller rotational response because they have a lower self weight. Additional 
restoring moments come from the deck weight on the interior side of the fascia girder where the 
deck panel reacts on the inside of the top flange. Therefore, a wider top flange will usually result 
in a larger moment arm for the restoring force from the interior deck. The width of the bottom 
flange also is important to the rotational restraint because the flange width is related to the size of 
the elastomeric bearing. The smaller girders have narrower flange widths and smaller weights. 
As a result, these girders often have significantly lower rotational resistance compared to larger 
girder sizes. Figure 5.8 shows rotational response of Tx I-girders with flexible connection. All 
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the Tx I-girders showed good rotational response for a typical overhang width of 3 ft. For Tx I-
girders, smaller girders experienced more girder rotation, and this is consistent with results of the 
conventional I-beams.  

 

 
Figure 5.7: Rotational Response of Conventional I-Beams with Flexible Connection 

 
Figure 5.8: Rotational Response of Texas I-Girders with Flexible Connection 
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The behavior of the girders with the flexible connection was often controlled by the 
connection stiffness. For girder systems with stiff connection, the connection strength becomes 
more important as rupture of the R-bar can occur with rotation of the fascia girder. Based on the 
test results from Chapter 3, the stiff connection failed at smaller rotations in the fascia girder. 
The failure in the R-bars from these tests occurred at a value of 4.82 kips. Figure 5.9 and Figure 
5.10 demonstrate the rotational response of both conventional I-beams and Tx I-girders for stiff 
connection, respectively. The curves for the different girder systems were limited by a maximum 
bracing bar force of 3 kips, which corresponded to the design value for the maximum bar force 
of 4.82 kips observed from the laboratory test results. All the beam rotations for maximum 
overhang widths are less than 0.5 degree. As shown in Figure 5.9, only the Beam Types IV and 
VI were able to have overhang widths larger than 3.0 feet. Beam Types A, B and C all would 
experience strength problems with the R-bar connection for overhang widths less than 3 ft, 
which is a typical size. In comparison, in Figure 5.10, all the Tx I-girders showed good 
performance for a typical overhang width of 3 ft. 

Comparisons of results for flexible and stiff connection were made for a beam system of 
Beam Type VI in Figure 5.11 and a girder system of Tx70 in Figure 5.12, respectively. Results 
for the other beam/girder types are compared in Appendix C. The results from Figure 5.11 and 
Figure 5.12 are representative of the other beam and girder types. These two sections were 
selected for comparison because they represent the largest of the respective conventional I-beams 
and the Tx I-girders. For the same amount of top bracing, flexible connection allows the girder 
system larger overhang width than stiff connection. This is because flexible connection with high 
ductility allows the beam larger ultimate rotation than stiff connection, and restoring moment 
from the bearing pad increases with rotation of the beam. Although the stiff connections were 
limited by the connection force in the top bracing, the beams with stiff connection did behave 
much better from the perspective of overall girder rotation compared to the beams with the 
flexible connections.  

 

 
Figure 5.9: Rotational Response of Conventional I-Beams with Stiff Connection 
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Figure 5.10: Rotational Response of Texas I-Girders with Stiff Connection 

 

 
Figure 5.11: Comparison for Flexible and Stiff Connections for Beam VI  
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Figure 5.12: Comparison for Flexible and Stiff Connections for Tx 70  

5.5 Effects of Top Bracing Distribution 
Another parameter studied was the distribution of the bracing. Two bracing distributions 

were considered: bracing distributed along the length and end bracing only. For the case of the 
distributed bracing, the top bracing bars were uniformly distributed along the girder length, while 
for the end bracing, the top bracing bars were concentrated at each end of the girder. Similar to 
the results presented in the last section, the girder systems consisted of four girders with a span 
length of 60 ft and a girder spacing of 7.7 ft. The beam sections were divided into Group A and 
Group B based upon the number of required braces per span. Group A includes the conventional 
I-beam types A and B, and the Texas I-girder types Tx28 and Tx34, while Group B includes the 
other conventional I-beam types and the Texas I-girder types. Group A and Group B have five 
and three braces, respectively, for a span length of 60 ft. In Figure 5.13 and Figure 5.14, the stiff 
connection was used for all of the bracing systems and the curves for rotation versus overhang 
width were limited by the design capacity of the stiff connection based on the specified yield 
strength of the reinforcing bar. 

As shown in Figure 5.13 and Figure 5.14, while the girder systems with the concentrated 
top bracing experienced larger rotation of the fascia beam than the counterparts with distributed 
bracing, the difference in rotation of the fascia beam was generally small. In addition, the girder 
systems with concentrated top bracing generally had larger critical overhang widths than their 
counterparts with distributed bracing. This indicates that end bracing is a viable alternative to 
distributed bracing currently required by the TxDOT standard drawings. This alternative is 
attractive because the stiff connection can be used near the ends of the beams, where the deck 
panels cannot be used.  
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Figure 5.13: Effects of Bracing Distribution for Conventional I-Beams 

 

 
Figure 5.14: Effects of Bracing Distribution for Texas I-Girders 
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5.6 Effects of Beam Spacing 
As mentioned in the previous section, the weight of the concrete deck on the interior 

sides of the fascia beams provide a restoring moment against the overturning effects of the 
overhang. Specifically, the interior deck weight reacts on the edge of the top flange of the beam 
and has an eccentricity with respect to the centroid of the beam. The interior deck weight with an 
eccentricity provides restoring moment to the fascia girder. For a given deck thickness, the line 
weight density of the interior deck is a function of a girder spacing only, and is linearly 
proportional to a girder spacing. Therefore, larger girder spacing provides more restoring 
moment to the fascia girder. 

Effects of the beam spacing of the girder systems were investigated on rotational 
response of the girder system, and FEA results from the study are presented in this section. 
Figure 5.15 and Figure 5.16 show the rotational response of girder systems of Beam VI and 
Tx70, respectively, and both figures represent the typical rotational response of girder systems of 
the other beams/girders. All the girder systems studied consisted of 4 girders (beams) with a span 
length of 60 ft and with a minimum top bracing that employed the flexible connection. The 
required minimum number of top braces for girder systems of Beam VI and Tx70 with a span 
length of 60 ft was three, and this top bracing along with horizontal timber blocking was 
uniformly distributed along the girder length. The rotational response curves in each graph 
compare the results for beam spacings of 6.7 ft and 8.7 ft.  

The rotational response of girder systems of Beam VI and Tx70 in Figure 5.15 and Figure 
5.16 demonstrate that the larger girder spacing can improve the rotational behavior of the girder 
systems. From Figure 5.15, for a given overhang width, the girder system with a beam spacing of 
6.7 ft experienced larger beam rotation than the counterpart with a beam spacing of 8.7 ft. This 
trend was true for the entire range of overhang width considered. Similar behavior was observed 
for the girder systems of Tx70 in Figure 5.16. 
 

 
Figure 5.15: Effects of Girder Spacing for Conventional I-Beams 
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Figure 5.16: Effects of Girder Spacing for Texas I-Girders 

5.7 Effects of Beam Type 
Given TxDOT’s new line of prestressed girder shapes, an important parameter was the 

new shapes versus the conventional ones. Although all of the different conventional beams and 
the new Tx girder shapes were considered, the behavior of only two conventional shapes and two 
new shapes will be discussed. The trends were generally the same for the other shapes. The 
girder systems considered had a span of 60 ft and a girder spacing of 7.7 ft. The minimum 
bracing along with horizontal timber blocking as specified by the TxDOT standard drawings was 
used with the flexible connection. The bracing was distributed along the length of the girders. 
Group 1 in the comparison consists of the smaller beams while Group 2 consists of the larger 
beams. Breaking the beams up into two groups is also logical because Group 1 includes Beam 
Types A and B, and Tx28 and Tx34, which have different minimum bracing requirements 
compared to the Group 2 beams. The required minimum bracing amount for the Group 1 beams 
is larger than that for the Group 2 beams. Therefore, in order for comparison to make sense, 
comparisons were conducted for the beams/girders that belong to the same bracing group 
category. Figure 5.17 and Figure 5.18 compare results for the beams/girders with Group 1 and 
Group 2, respectively. 

Figure 5.17 shows that larger beams and girders have better structural performance. This 
is because larger beams/girders have a wider top flange, a wider bearing pad, and a larger beam 
self-weight, and these factors are directly related to the restoring moment capacity of the fascia 
girder of the girder system as explained before. Tx I-girders generally have a wider top flange, a 
wider bearing pad, and a larger beam self-weight than their conventional I-beam counterparts. 
Therefore, from a rotational stability perspective, Tx I-girders generally behave better than their 
conventional I-beam counterparts, as is verified in Figure 5.17 and Figure 5.18. The general 
exception to this is the Beam VI curve, which does show larger permissible overhang widths 
than the Tx 70 girder.  
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Figure 5.17: Effects of Beam Type of Small Beams 

 
Figure 5.18: Effects of Beam Type of Large Beams 

However, Beam VI has the widest top flange, the largest beam self-weight, and the 
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5.8 Closing Remarks 
The results from the parametric FEA studies were presented in this chapter along with a 

discussion of the general comparisons. Several important findings were obtained and are 
summarized here as follows.  

While conventional beams of Beam Types IV and VI showed good rotational response 
for a typical overhang width of 3 ft, the other conventional beams of Beam Types A, B, and C 
experienced problematic beam rotations. In comparison, all of the Tx I-girders showed good 
rotational response for a typical overhang width of 3 ft. 

Investigations were made with conventional bracing layouts where the top bracing bars 
are distributed along the length as well as the alternative bracing layouts where the bracing bars 
are concentrated at the ends of the beam. The advantage of focusing the bracing at the ends of 
the section is that stiffer connections are possible as the bracing bars can connect lower on the R-
bars. Although the girder systems with concentrated top bracing experienced larger rotation of 
the fascia beam than the counterparts with distributed bracing, the difference in rotation of the 
fascia beam was generally small. Therefore, the method of end bracing can provide a good 
alternate for the distributed bracing that is currently required by TxDOT standard drawing.  

For a given deck thickness, the line weight density of the interior deck is a function of a 
girder spacing only, and is linearly proportional to a girder spacing. Therefore, larger girder 
spacing provides more restoring moment to the fascia girder of the girder system. Lastly, larger 
beams/girders have better structural performance due to the wider top flange, the wider bearing 
pad and the larger beam self-weight. 
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Chapter 6.  Rigid Body Model for Concrete Girder Systems and 
Design Methodology 

6.1 Introduction 
Field data and the parametric FE analyses show that the girders in a concrete girder 

system can be reasonably approximated as torsionally rigid for construction load levels. The 
assumption of torsional rigidity greatly simplifies the evaluation of behavior of the girder 
subjected to construction overhang loads. In this chapter, a rigid-body model is developed and a 
simple design equation for overhang construction is derived based on the rigid-body model. Key 
assumptions include modeling the girder as torsionally rigid and modeling the bearing pad as a 
compression-only elastic foundation. 

The purpose of the rigid-body model is to develop a simple design equation for overhang 
construction, and to provide a bracing design methodology. Following the identification of 
overturning and restoring forces on girder systems, a rigid-body model for a stand-alone beam on 
elastomeric bearing pads is developed and verified using the laboratory data from the beam 
overturning test. The next section discusses a rigid-body model for a beam with lateral bracing 
followed by the validation of the rigid-body model with lateral bracing using results from the FE 
model. The remaining sections discuss an overhang design equation and a recommended design 
procedure. Last, a summary of the chapter is presented.  

6.2 Identification of Overturning and Restoring Forces on Girder Systems 
Figure 6.1 shows overturning forces and restoring forces for a fascia beam during 

construction. The forces quantities indicated on the figure are defined in Table 6.1. All forces 
shown acting on the left side of the fascia beam tend to overturn the beam while the beam self-
weight, the slab haunch, and an interior deck provide a restoring moment to the beam. The 
overturning forces include weights of the concrete on the overhang, the finishing equipment, and 
construction personnel.  
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Figure 6.1: Overturning and Restoring Forces and their Eccentricities  

In addition to defining the basic force quantities acting on the fascia girder, Figure 6.1 
also summarizes all of the definitions of general system. The overturning forces can be replaced 
by their resultant force and effective eccentricity.  

 
ܨ  = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ௙௪ (6.1)ܨ
 

The effective eccentricity of the resultant force can be determined in the following way.  
 

 ݁ = ௢௛ܮ௢௛ܨ + ௦ௗܮ௦ௗܨ + ௪௞ܮ௪௞ܨ + ௢௛ܨ௙௪ܮ௙௪ܨ + ௦ௗܨ + ௪௞ܨ + ௙௪ܨ  (6.2)

 
The resultant force of all of overturning forces and the effective eccentricity depend on 

the overhang width as shown in Table 6.1. As expected, a larger overhang width leads to the 
larger overhang resultant force and a larger eccentricity. 
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Table 6.1: Definition of System Parameters 

Type Parameter Definition Unit 

General 

߱௖ unit weight of concrete ݇݅݌/݅݊.ଷ ߱௙௪ unit weight of overhang formwork ݇݅݌/݅݊.ଶ ݐ௦ slab thickness (8 in. typical) ݅݊. ݏ௕௦ Beam spacing ݅݊. ௕ܰ௠ number of beams of bridge unitless ݓ௕௥ௗ net width of bridge (=( ௕ܰ௠ −  .݊݅ ௢௛ width of overhangݓ.݊݅ span of beam ܮ.݊݅ ( ௕௦ݏ(1
Restoring-
Force 
Related 

 ௜ௗܮ
Eccentricity of half of interior deck weight  
(= half of top flange of beam) 

݅݊. ௕ܹ௠ Weight of beam ݇݅݌ ௦ܹ௛ weight of slab haunch (= ߱௖2ܮ௜ௗ(ݐ௦ +  ݌݅݇ (ܮ(2

௜ܹௗ 
half of interior deck weight between fascia beam 
and first interior (= ߱௖ݐ௦ݏ)ܮ௕௦ −  (௜ௗ)/2ܮ2

 ݌݅݇

Overturning-
Force 
Related 

 ௢௛ܮ
Eccentricity of net overhang weight 
௜ௗܮ =) + ௢௛ݓ) −  (௜ௗ)/2ܮ

 ௦ௗܮ .݊݅
Eccentricity of half of finishing equipment weight 
 (௢௛ݓ =)

 ௪௞ܮ .݊݅
Eccentricity of weight of workers 
௢௛ݓ =) + 1 × 12) 

 ௙௪ Eccentricity of weight of overhang formworkܮ .݊݅
௜ௗܮ =) + (2 × 12 + ௢௛ݓ −  (௜ௗ)/2ܮ

 ௪௕ܨ .݊݅
Half of work bridge weight 
 (௕௥ௗ/2ݓ * 12/ 1000/ 23.5=)

௢௛ݓ)௦ݐ௢௛ weight of net overhang (= ߱௖ܨ ݌݅݇ −  ௙௪ܨ ݌݅݇ ௪௞ Weight of workers (= 1.25)ܨ݌݅݇ (௪௕ܨ + 5.7 =) ௦ௗ half of finishing equipment weightܨ݌݅݇ (ܮ(௜ௗܮ
weight of overhang formwork  
(= ߱௙௪(2 × 12 + ௢௛ݓ −  ݌݅݇ (ܮ(௜ௗܮ

 

6.3 First-Order Analysis of Stand-alone Beam on Elastomeric Bearing Pads 
The presence of the elastomeric bearing adds complexity on many levels to the problem 

of evaluating the torsional behavior of the fascia girder. Although the bearing compresses under 
gravity load, moment applied as a result of the overhang causes the axial compression of the 
bearing to vary over the width of the beam. Large eccentricity of applied load can actually cause 
the beam to lift off the bearing, creating a gap between the bearing and beam similar to that 
shown in Figure 6.2 from the Hutto Concrete Bridge. The variation in compressibility of the 
bearing complicates the problem as the bearing reactions affect the overturning calculations. 
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Figure 6.2: Lift-off of Fascia Beam at Hutto Concrete Bridge 

Figure 6.3 depicts a simplified free body of a fascia beam with an overhang. The effects 
of the bracing bar and blocking are not included now, but are considered later. Developing a 
solution based upon only the girder and bearing pad is valuable because the solution can be 
compared with the test results from the laboratory tipping tests before the effects of the bracing 
bars and R-bars are incorporated into the model.  

The elastomeric bearing is represented by the series of springs at the base of the beam 
over the bearing width, ݓ௕. The overhang forces have been summarized in a single resultant, F, 
acting at an effective eccentricity e. In this simplified free body, the beam weight is the only 
restoring force shown. The effects of the additional stabilizing forces are considered later in the 
chapter.  

The rigid-body movement of the beam from gravity load and overturning effects is 
depicted in Figure 6.4(a). The free body of the beam system is sketched in Figure 6.4(b) 
assuming that the beam is in full contact with the bearing. A first-order analysis is considered in 
this section so that the forces are shown on the undeformed structure. Second-order effects are 
considered in the next section.  
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Figure 6.3: Rigid-body Model for Stand-alone Beam on Elastomeric Bearing Pads 
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Figure 6.4: Free-body diagram of Stand-alone Beam during Full Contact 

The eccentrically applied load, ܨ and the beam self-weight, ௕ܹ௠ must be in equilibrium 
with the resistance from the elastomeric bearing pad in the vertical direction. For the bearing 
pad, ݇௕ is defined as the compressive stiffness of the bearing per width of the bearing, resulting 

in a unit of 
௞௜௣ ௜௡.⁄௜௡. , and ∆ represents the downward movement of the Point O of the beam. The 

vertical equilibrium results in the following expression:  
 

ܨ  + ௕ܹ௠ = ݇௕ݓ௕∆ (6.3)
 

Moment equilibrium of all of the forces can be taken about the Point O. The eccentricity 
of the beam self-weight is zero because the first-order analysis is considered in this section and 
the beam self-weight passes through the Point O. 
 

ܨ  × ݁ = ௕6ݓ ቆ݇௕ݓ௕ଶ2ߠ ቇ (6.4) 

 
Simplifying Equation (6.4) produces the following expression: 

 
ܨ  = ݇௕ݓ௕ଷ12݁  (6.5) ߠ
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This equation describes the relationship between the eccentrically applied load and the 

rotation of the beam when the bearing is in full contact (beam does not lift off the bearing).  
As overturning effects increase, the beam may reach a particular state where it separates 

from the elastomeric bearing pad. The eccentric load and the rotation of the beam at the initiation 
of separation of the beam from the elastomeric bearing pad are defined as the “lift-off load” and 
the “lift-off rotation,” respectively. Lift-off will occur first at Point B in the figure. At the instant 
of lift-off, the displacement of the Point B is zero. The bearing deformation at Point B will 
consist of the axial deformation of the bearing due to the full gravity load minus the relaxation 
due to the overturning effect of the beam rotating through the angle θ. Therefore, setting the 
condition of zero displacement at Point B yields the following expression: 

 
 ( ௕ܹ௠ + ௕ݓ௅)݇௕ܨ − ௕ଶݓ௅݁݇௕ܨ6 = 0 (6.6) 

where  FL  is the eccentric load at the moment of the initiation of the lift-off of the beam. 
Solving Equation (6.6) for FL, the lift-off load becomes 
 

௅ܨ  = ௕ܹ௠ݓ௕(6݁ −  ௕) (6.7)ݓ

 
Substituting Equation (6.7) into Equation (6.5), the lift-off rotation becomes 
 

௟ߠ  = 2 ௕ܹ௠݇௕ݓ௕ଶ 1ቀ1 −  ௕6݁ቁݓ
(6.8) 

 
After the beam lifts off the bearing pad, the beam experiences separation from the 

bearing pad and loses some of the resistance from the bearing pad. Figure 6.5(a) depicts the 
rigid-body movement of the beam after lift-off. Only the portion of the bearing in contact with 
the beam exerts force on the bottom of the beam, as shown in Figure 6.5(b).  
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Figure 6.5: Free-body diagram of Stand-alone Beam during Partial Loss of Contact 

As during the full contact of the beam, the eccentrically applied load, ܨ and the beam 
self-weight, ௕ܹ௠ must be in equilibrium with the resistance from the elastomeric bearing pads in 
the vertical direction:  

 
ܨ  + ௕ܹ௠ = ݇௕2 ߠ ൬ݓ௕2 + ൰ଶߠ∆

 (6.9) 

 
The moment equilibrium of all the forces can be taken about the Point O. 
 

ܨ  × ݁ = ܨ) + ௕ܹ௠) ൬ݓ௕3 − ൰ (6.10)ߠ3∆

 
Substituting Equation (6.10) into Equation (6.9) and solving for θ produces the following 
expression: 
 

ߠ  = 89 1݇௕ ( ௕ܹ௠ + 2݁)ܨ)ଷ(ܨ − (௕ݓ − ௕ܹ௠ݓ௕)ଶ (6.11)
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Combining Equations (6.5) and (6.11), the rotation of the beam can be expressed as a 
function of the eccentric load applied to the beam.  
 

ߠ  = ۈۉ
ۇ ቆ 12݁݇௕ݓ௕ଷቇ ܨ , ݎ݋݂ ܨ ≤ ௟ 89 1݇௕ܨ ( ௕ܹ௠ + 2݁)ܨ)ଷ(ܨ − (௕ݓ − ௕ܹ௠ݓ௕)ଶ , ݎ݋݂ ܨ ≥ ௟ܨ ۋی

ۊ
 (6.12)

 
The derivations in this section were based upon a first-order analysis. The effect of a 

change in geometry of load on the problem is considered in the next section.  

6.4 Second-Order Analysis of Stand-alone Beam on Elastomeric Bearing Pads 
The key difference between the second-order analysis and the first-order analysis of the 

rigid-body model is that the second-order analysis considers equilibrium in the deformed 
configuration. The second-order analysis requires taking equilibrium of all of forces in the 
deformed position of the body and accounts for effects of change in geometry of all of forces 
involved in equilibrium. With rotation of the beam, the eccentricity of the applied load increases 
and the beam self-weight creates eccentricity with respect to the center of gravity of the beam 
from the undeformed position. The increase in eccentricity of the forces reduces the overturning 
capacity of the beam and also decreases the rotational stiffness of the beam system. The problem 
solution begins with the assumption that the bearing is in full contact with the beam. Figure 
6.5(a) depicts the beam in the deformed position. Because the second order effects are 
considered in this section, the free body of the beam in this case includes the effects of the 
changes in geometry as shown in Figure 6.5(b).  
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Figure 6.6: Free-body diagram of Stand-alone Beam during Full Contact 

The eccentrically applied load, ܨ and the beam self-weight, ௕ܹ௠ must be in equilibrium 
with the resistance from the elastomeric bearing pads in the vertical direction. For the bearing 
pad, ݇௕ is defined as the compressive stiffness of the bearing per width of the bearing, resulting 

in a unit of 
௞௜௣ ௜௡.⁄௜௡. , and ∆ represents the downward movement of the Point, O, of the beam. 

Vertical equilibrium yields the same result from the first order analysis. 
 
 ௕ܹ௠ + ܨ = ݇௕ݓ௕∆ (6.13)

 
Moment equilibrium of all of the forces can be taken about the Point O, which produces the 
following expression: 
 

݁)ܨ  + ℎߠ) + ௕ܹ௠݀௖ߠ = ௕6ݓ ቆ݇௕ݓ௕ଶ2ߠ ቇ (6.14)

 
Simplifying Equation (6.14) produces the following expression for the rigid-body rotation: 
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Ó 
 Á 
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ߠ  = ௕ଷ12ݓ௕݇݁ܨ − ℎܨ − ௕ܹ௠݀௖ 
(6.15)

 
This equation describes the relationship between the eccentrically applied load and the 

rotation of the beam while the beam is still in full contact with the bearing.  
As with the first-order analysis, the lift-off load and lift-off rotation can be obtained by 

using the kinematic condition that when the beam separates from the bearing at Point B, the 
displacement of the bearing at B becomes zero.  

 
 ௕ܹ௠ + ௕ݓ௅݇௕ܨ − ௕ଷ12ݓ௟݁൬݇௕ܨ − ௟ℎܨ − ௕ܹ௠݀௖൰ ௕2ݓ = 0 

(6.16) 

where ܨ௅ is the eccentric load at the moment of the lift-off of the beam. 
 
Solving Equation (6.16) for ܨ௅, the lift-off load becomes 
 

=௅ܨ  12ℎ ቌ− ቆ(ℎ + ݀௖) ௕ܹ௠ + ݇௕ݓ௕ଶ ቀ2݁ − ௕12ቁቇݓ
+ ඨቆ(ℎ + ݀௖) ௕ܹ௠ + ݇௕ݓ௕ଶ ቀ2݁ − ௕12ቁቇଶݓ + 4ℎ ௕ܹ௠ ቆ݇௕ݓ௕ଷ12 − ௕ܹ௠݀௖ቇቍ 

(6.17)

 
Equation (6.17) can be substituted into Equation (6.15), and solving for the lift-off rotation 
produces the following expression: 
 

 
௟ߠ  = ௕ଷ12ݓ௅݁݇௕ܨ − ௅ℎܨ − ௕ܹ௠݀௖ 

(6.18) 

 
After the beam lifts off the bearing pads, it separates from the bearing pads and loses 

some of the resistance from the bearing pads. The resulting deformations and free-body diagram 
are shown in Figure 6.7. As when the bearing is in full contact with the beam, the eccentrically 
applied load ܨ and the beam self-weight ௕ܹ௠ must be in vertical equilibrium with the resistance 
from the elastomeric bearing pads in the vertical direction, which produces the following 
expression: 

 
ܨ  + ௕ܹ௠ = ݇௕2 ߠ ൬ݓ௕2 + ൰ଶߠ∆

 (6.19)

 
Rotational moment equilibrium of forces about the Point O produces the following condition: 
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݁)ܨ  + ℎߠ) + ௕ܹ௠݀௖ߠ = ( ௕ܹ௠ + (ܨ ൬ݓ௕3 −  ൰ (6.20)ߠ3∆

 
Substituting Equation (6.20) into Equation (6.19), and solving for the relationship between F and 
θ, results in the following expression: 
 

ܨ)  + ௕ܹ௠)ଷ = ݇௕8 ሼ(6݁ߠ + 6ℎߠ − ܨ(௕ݓ3 + 6 ௕ܹ௠݀௖ߠ − 3 ௕ܹ௠ݓ௕ሽଶ (6.21)

 
Combining Equations (6.15) and (6.21), the rotation of the beam can be expressed as a function 
of the eccentric load applied to the beam: 
 
 

ۈۉ
ۇ ߠ = ௕ଷ12ݓ௕݇݁ܨ − ℎܨ − ௕ܹ௠݀௖ , ߠ ݎ݋݂ ≤ ௅ߠ

( ௕ܹ௠ + ଷ(ܨ = ݇௕8 ሼ(6݁ߠ + 6ℎߠ − ܨ(௕ݓ3 + 6 ௕ܹ௠݀௖ߠ − 3 ௕ܹ௠ݓ௕ሽଶ , ߠ ݎ݋݂ ≥ ௅ߠ (6.22)

 

 
Figure 6.7: Free-Body Diagram of Rigid Body during Partial Loss of Contact 
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6.5 Comparison of Closed-Form Solutions for Stand-alone Beam with 
Overturning Test Results 

The support conditions for the overturning test of Chapter 3 match the stand-alone beams 
in the previous section for which expressions were developed for the tipping load and resulting 
twist. The span length and the eccentricity of the applied load were 55.5 ft and 36.25 in., 
respectively. The applied eccentric load versus the rigid-body rotation from the test results is 
graphed in Figure 6.8, along with the results from the first-order and second-order analytic 
solutions developed in the last two sections. The results of second-order analysis of the rigid-
body model show good agreement with those of the overturning test over the entire range of 
rigid-body rotations. In addition, the second-order analytic solution of the rigid-body model 
captures the descending branch of the curve of the overturning test results well. This indicates 
that the second-order analysis of the rigid-body model clearly shows geometric effects of the 
loads on rotation of the beam. While the solution of first-order analysis of the rigid-body model 
does not capture the descending branch of the curve of the overturning test results, the results of 
first-order analysis of the rigid-body model show good agreement with those of the overturning 
test for small rotation that is in the typical design range. In design the main area of interest is 
when the beam becomes unstable and starts to tip. Therefore, the first order solution provides 
reasonable estimates of when the beam becomes unstable and is simpler than the second order 
solution. Therefore, Equation (6.12) from the first-order analysis of the rigid-body model is used 
in the next section to develop a rigid-body model with lateral bracing.  

 

 
Figure 6.8: Test Results versus Rigid-Body Solutions 
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6.6 Development of Rigid-body Model for Concrete Girder Systems 
Figure 6.9 shows a depiction of the rigid body of a rectangular shape that represents the 

concrete beam with the support conditions and bracing represented by the appropriate springs. 
The beam sits on compression-only elastomeric bearing pad while braced at top and at a distance ݀஽ from the bottom of the rigid body. The shape of the beam is represented by a rectangle for 
simplicity. The force ܨ with an eccentricity of ݁ acts to overturn the beam while the beam self-
weight, ௕ܹ௠, the weight of the slab haunch on top of the beam, and the half weight of the 
interior concrete deck, ௜ܹௗ provide the restoring moment to the beam.  

 

 
Figure 6.9: Rigid Body with Bracing on Compression-Only Elastic Foundation  

The vertical stiffness of the elastomeric bearing per unit width is represented by the 
springs of stiffness ݇௕, while the lateral bearing stiffness is represented by the spring with 
stiffness ݇௕௟. The lateral stiffness of the combined bracing bar and the R-bar is represented by the 
spring with stiffness ݇௦௧, while the stiffness of the wood blocking is represented by the spring 
with stiffness ݇௪ௗ. Vertically, the elastomeric bearing pad acts as a series of independent 
compression-only springs. The wood blocking at a height of ݀஽from the bottom of the rigid body 
is also treated as a compression-only spring. The top bracing, consisting of a R-bar and a top 
bracing bar attached on top of that R-bar is idealized as a spring, which behaves linear-perfectly 
plastic or behaves linearly up to the rupture of the R-bar depending on the connection type. The 
flexible connection generally fails by yielding while the stiff connection generally fails by 
rupture of the R-bar. The flexible connection is chosen for the initial derivation for the rigid-
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body model; at the end of the section, however, the governing equation for a girder system with 
stiff connection is presented.  

With rotation of the rigid body, several events can occur: yielding of the top bracing; lift-
off of the rigid body at the edge of the bearing pad; or a rotational limit of the girder. In terms of 
girder rotation, there are multiple limit states that may control the behavior. A serviceability limit 
rotation of 0.5 degrees was selected. Although this limit was somewhat arbitrary, it is also less 
than the tipping rotation witnessed in the lab and also the 2~3 degree rigid-body rotation 
measured in the Hutto Bridge. Another limit that was imposed on the rotation is lift-off of the 
rigid body up to the first interior quarter point on the bearing pad.  

Under load, the rigid body undergoes the downward and lateral movements, and rotation 
as shown in Figure 6.10. The center of rotation can be located anywhere, but is chosen as the 
bottom center of the rigid body, the Point ܱ for convenience. As shown in Table 6.2, the primary 
kinematic variables are ∆௛, ∆௩, and ߠ, whose signs are positive to the right, downward and 
counterclockwise, respectively. The displacements of the points of interest on the rigid body can 
be expressed in terms of ∆௛, ∆௩, and ߠ as indicated in Table 6.2. 

 

 
Figure 6.10: Translations and Rotation of Rigid Body 
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Table 6.2: Displacements of Points of Interest 

point displacement 

O (∆௛, ∆௩) 

D (∆௛ − dୈθ, ∆௩ − Lୈθ) 

E (∆௛ − hθ, ∆௩) 

B ቀ∆௛ − dୈθ, ∆௩ − wୠ2 θቁ 

 
With the first-order analysis, it is useful to sum the beam self-weight and the weight of 

the slab haunch because both weights pass through the Point  ܱ and do not have eccentricity with 
respect to the Point O. 

 
 ଴ܹ = ௕ܹ௠ + ௦ܹ௛ (6.23)
 

In Figure 6.11, the applied load F and the beam self-weight, the slab haunch weight and 
half of the interior deck weight must be in vertical equilibrium with the resistance from the 
elastomeric bearing pads.  
 

ܨ  + ଴ܹ + ௜ܹ = ݇௕ݓ௕∆௩ (6.24)
 



 

 103

 
Figure 6.11: Free-body diagram of Rigid Body with Bracing before Lift-off 

The force in the top bracing, ܨா, the force in timber blocking, ܨ஽, and the shear force in 
the elastomeric bearing pad, ܨை, satisfy equilibrium in the horizontal direction: 
 

஽ܨ−  − ைܨ + ாܨ = 0  (6.25)
 

The lateral forces at Points D, E, and O can be obtained by substituting the displacement 
at each point into the constitutive relationship of each member:  
 

஽ܨ  = ݇௪ௗ(∆௛ − ݀஽ߠ), positive in compression (6.26) 

ாܨ  = ݇௦௧(−∆௛ + hߠ), positive in tension (6.27) 

ைܨ  = ݇௕௟(∆௛) = 0 (6.28) 
 

The lateral stiffness of the elastomeric bearing pad, ݇௕௟, is assumed to be equal to zero, as 
it is very small compared to the stiffness of the wood blocking, ݇௪ௗ, and the stiffness of the top 
bracing, ݇௦௧. Therefore, the lateral force in the bearing is taken equal to zero (ܨை = 0). 
Substituting Equations (6.26), (6.27), and (6.28) into (6.25), and solving for ∆௛, the horizontal 
displacement, ∆௛ becomes 
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 ∆௛= ݇௦௧h + ݇௪ௗ݀஽݇௦௧ + ݇௪ௗ (6.29) ߠ

 
Substituting Equation (6.29) into Equations (6.26), (6.27), and (6.28), the forces at Points D, E, 
and O can be determined. 
 

஽ܨ  = ݇௪ௗ݇௦௧݀௕௥݇௦௧ + ݇௪ௗ (6.30) ߠ

ாܨ  = ݇௦௧݇௪ௗ݀௕௥݇௦௧ + ݇௪ௗ (6.31) ߠ

ைܨ  = 0 (6.32)
 
Rotation moment equilibrium of the forces acting on the rigid body about the Point O gives the 
following. 
 

݁ܨ  − ௜ܹௗܮ௜ௗ − ாℎܨ + ஽݀஽ܨ − ௕6ݓ ቆ݇௕ݓ௕ଶ2ߠ ቇ = 0 (6.33) 

 
Substituting Equations (6.25) through (6.28) and ݀௕ = ℎ − ݀஽ into Equation (6.33) and 
simplifying yield the following expression: 
 

݁ܨ  = ௜ܹௗܮ௜ௗ + ݇௕ݓ௕ଷ12 ߠ + ݇௪ௗ(∆௛ − ݀஽ߠ)݀௕௥ (6.34) 

 
Substituting Equation (6.29) into Equation (6.34) produces the governing equation for the rigid-
body model that shows the relationship between the applied load and the rotation of the beam 
before the top bracing yields and the beam lifts off.  
 

݁ܨ  = ௜ܹௗܮ௜ௗ + ቆ݇௕ݓ௕ଷ12 + ݇௦௧݇௪ௗ݀௕ଶ݇௦௧ + ݇௪ௗቇ (6.35) ߠ

 
With rotation of the beam, the first event that occurs to the girder system is the yielding of the R-
bar. The governing equation for the girder system after the yielding of the top bracing can be 
derived as before the yielding of the top bracing. The mathematical expressions that are affected 
by yielding of the top bracing are the lateral forces in the top bracing and the timber blocking. 
Therefore, instead of going through the entire derivation, it is convenient to modify the equation 
of moment equilibrium to obtain the governing equation. For rotation between the yielding of the 
top bracing and lift-off of the beam, force in the top bracing is conservatively limited to its 
specified yield capacity.  
 

ாܨ  = P୫ୟ୶ (6.36) 
 
Substituting Equation (6.36) and ܨை = 0 (݇௕௟ = 0) into Equation (6.25), the force in the timber 
blocking, ܨ஽ can be obtained as follows. 
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஽ܨ  = ாܨ = P୫ୟ୶ (6.37) 

 
Substituting Equations (6.36) and (6.37) into the equation of moment equilibrium of Equation 
(6.33), the governing equation for the girder system for rotation between the yielding of the top 
bracing and the lift-off of the beam can be obtained: 
 

݁ܨ  = ௜ܹௗܮ௜ௗ + P୫ୟ୶݀௕௥ + ݇௕ݓ௕ଷ12 (6.38) ߠ

 
Additionally, it is useful to know the angles of rotation of the beam at the first yielding of the top 
bracing and at lift-off. Substituting the ultimate capacity of the top bracing of Equation (6.36) 
into Equation (6.31), the angle of rotation at the moment of yielding of top bracing can be 
obtained and is defined as the bracing yield angle in the following way:  
 

஻௥௒ߠ  = ݇௦௧ + ݇௪ௗ݇௦௧݇௪ௗ݀௕ P୫ୟ୶ (6.39)

 
Lift-off occurs when the vertical displacement of the right edge of the elastomeric bearing pad 
becomes zero.  
 

 ∆௩ − ௕2ݓ ߠ = 0 (6.40)
 
Substituting Equation (6.24) and Equation (6.38) into Equation (6.40), and solving for the lift-off 
force produces the following expression: 
 

௅ܨ  = ଴ܹݓ௕ + ௜ܹௗ(ݓ௕ + (௜ௗܮ6 + 6ܲ݀௕௥(6݁ − (௕ݓ  (6.41)

 
Substituting Equation (6.41) into Equation (6.38), the lift-off angle becomes 
 

௅ߠ  = 12݇௕ݓ௕ଶ ( ଴ܹ݁ + ௜ܹௗ(݁ + (௜ௗܮ + P୫ୟ୶݀௕௥)(6݁ − (௕ݓ  (6.42)

 
After the beam lifts off, it experiences partial loss of contact with the elastomeric bearing pad. 
The corresponding free-body diagram is shown in Figure 6.12. Similar to the case during the full 
contact of the beam, the applied load, F, the beam self-weight and slab haunch weight, W0, and 
half of the interior deck weight, Wid must be in vertical equilibrium with the resistance from the 
elastomeric bearing pads in the vertical direction: 
 

ܨ  + ଴ܹ + ௜ܹௗ = ݇௕2 ߠ ൬ݓ௕2 + ∆௩ߠ ൰ଶ
 (6.43)
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Figure 6.12: Free-body diagram of Rigid Body with Bracing after Lift-off 

Moment equilibrium of forces about the Point O gives the following expression: 
 

݁ܨ  − ௜ܹௗܮ௜ௗ − ாℎܨ + ஽݀஽ܨ − ܨ) + ଴ܹ + ௜ܹ) ൬ݓ௕3 − ∆௩3ߠ൰ = 0 (6.44)

 
Substituting Equations (6.36), (6.37), and ݀௕௥ = ℎ − ݀஽ into Equation (6.44), Equation (6.44) 
becomes: 
 

݁ܨ  = ௜ܹௗܮ௜ௗ + P୫ୟ୶݀௕௥ + ܨ) + ଴ܹ + ௜ܹ) ൬ݓ௕3 − ∆௩3ߠ൰ (6.45)

 
Substituting Equation (6.45) into Equation (6.43), the governing equation for the girder system 
rotation after the beam lifts off is obtained: 
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ߠ  = 89݇௕ ܨ) + ଴ܹ + ௜ܹ)ଷ൫(−2݁ + ܨ(௕ݓ + )௕ݓ ଴ܹ + ௜ܹௗ) + ௜ௗܮ2 ௜ܹௗ + 2݀௕௥P୫ୟ୶൯ଶ (6.46)

 
Combining Equations (6.35), (6.38) and (6.46), the complete governing equation for the girder 
system is obtained, describing the relationship between the applied force and the rotation of the 
beam.  
 

݁ܨ  = ௜ܹௗܮ௜ௗ + ቆ݇௕ݓ௕ଷ12 + ݇௦௧݇௪ௗ݀௕ଶ݇௦௧ + ݇௪ௗቇ ≥ߠ ݎ݋݂ ߠ  ஻௥௒ߠ

݁ܨ (6.47) = ௜ܹௗܮ௜ௗ + P୫ୟ୶݀௕௥ + ݇௕ݓ௕ଷ12  ߠ
≥஻௥௒ߠ ݎ݋݂ ߠ ≤  ௅ߠ

 

ߠ =  89݇௕ ܨ) + ଴ܹ + ௜ܹ)ଷ൫(−2݁ + ܨ(௕ݓ + )௕ݓ ଴ܹ + ௜ܹௗ) + ௜ௗܮ2 ௜ܹௗ + 2݀௕௥P୫ୟ୶൯ଶ 
≥௅ߠ ݎ݋݂  ߠ 

 
Figure 6.13 shows the typical application of Equation (6.47) to an AASHTO Type VI 

beam with a span length of 60 ft, a girder spacing of 7.7 ft, and a flexible bracing connection. 
The curve shows the progression of limit states as the load is gradually increased. Initially, the 
girder system behaves linearly until a top bracing bar yields. The girder system then loses some 
rotational stiffness. As the load continues to increase, the girder system starts lifting off at the 
edge of the bearing pad and continues to lose rotational stiffness due to the decrease in contact 
area between the bearing pad and the beam. With additional load, the girder system experiences 
lift-off at the first interior quarter point on the bearing pad and a rotation of 0.5 degree 
sequentially in this case. However, the order of these two events can be reversed. 

From a design perspective, the event where the beam lifts off at the first interior quarter 
point on the bearing pad is of interest. The beam rotation and the corresponding applied force 
will be determined. Quarter-point lift-off rotation is defined as the rotation in which the vertical 
displacement of the first interior quarter point on the bearing pad becomes zero. At this rotation, 
the following kinematic conditions can be established:  

 
 ∆௩ − ௕4ݓ ߠ = 0 (6.48)
 
Substituting Equation (6.48) into Equation (6.45) and solving for FQPL, the force required for the 
beam to lift off at the first interior quarter point on the bearing pad is obtained. 
 

ொ௉௅ܨ  = 4 ௜ܹௗܮ௜ௗ + 4P୫ୟ୶݀௕௥ + )௕ݓ ଴ܹ + ௜ܹௗ)4݁ − ௕ݓ  (6.49)

 
Substituting Equation (6.49) into Equation (6.46), the angle corresponding to ܨொ௉௅, quarter point 
lift-off force can be obtained. 
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(6.50)

 
So far, the governing equation for the girder system with the flexible connection has been 

derived. The main difference between the flexible connection and the stiff connection is that the 
flexible connection is linear elastic-perfectly plastic, while the stiff connection fails in rupture of 
the R-bar. Because the derivation of the governing equation for a girder system with the stiff 
connection is essentially the same as for that with flexible connection, the resulting governing 
equations are given as follows:  
 

 
(6.51)

(6.52)

 
Equations (6.51) and (6.52) are the governing equations for a girder system with a stiff 

connection and the rotation at the moment of rupture of the R-bar, respectively. For girders with 
a stiff connection, rupture of the R-bar typically governs the behavior.  

 

 
Figure 6.13: Applied Moment and Beam Rotation  
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6.7 Validation of Rigid-body Model with Finite Element Analysis Results 
The finite element model that was previously validated through comparisons with 

laboratory tests and field measurements was used to examine the accuracy of the above rigid-
body equations for girder systems with lateral bracing. The first-order numerical solutions for the 
rigid-body model for a girder system with lateral bracing (including flexible and stiff 
connections) were obtained by using the governing equations for rigid-body models (Equations 
(6.47) and (6.51)) that were developed in the previous section.  

The first-order analyses of three-dimensional finite element models for girder systems 
with lateral bracing were conducted. The finite element model consisted of 4 beams across the 
width of the bridge, and had a span of 60 ft and a girder spacing of 7.7 ft. Girder systems for 
finite element analysis were subjected to the construction loads explained in the previous section, 
and had the minimum top bracing distributed uniformly along the beam length. 

Figure 6.14 and Figure 6.15 depict graphs of beam rotation and overhang width for girder 
systems with flexible and stiff connections, respectively. For a girder system with a given 
overhang width, the beam rotation on the y axis represents the maximum rotation that the girder 
system could experience for the full construction load. In general, the results from the rigid-body 
model equations show good agreement with the FEA results. This indicates that the rigid-body 
model equations can be used to determine the necessary amount of bracing for a girder system 
with given overhang width, in order to prevent excessive rotation of the fascia beam. 

 

 

Figure 6.14: Beam Rotation and Overhang Width for Flexible Connection 
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Figure 6.15: Beam Rotation and Overhang Width for Stiff Connection 

6.8 Overhang Design Equation and Recommended Design Procedure 

6.8.1 Summary of Overhang Design Equations 

In the previous sections, the governing equations for a concrete girder system were 
derived and also compared with FEA solutions. The equations had good agreement with the FEA 
solutions, and can therefore be used for design. This section therefore provides recommendations 
on the use of the expressions for design.  

For girder systems with flexible connection, two criteria must be checked. First is that the 
applied eccentric load must be less than or equal to the quarter-point lift-off force of Equation 
(6.53).  

 

(6.53)

The second criterion is that the beam rotation for the applied load corresponding to a given 
overhang width must be less than or equal to a beam rotation of 0.5 degrees. Since it is not 
known whether the beam lifts off for the applied load corresponding to a given overhang width, 
two separate beam rotation equations must be checked. Equations (6.54) and (6.55) give beam 
rotations before and after lift-off of the beam, respectively.  
 

(6.54) 

 
(6.55) 
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For girder systems with a stiff connection, the governing behavior is rupture of R-bar. For 

the range of the practical values of the system parameters, at the moment of rupture of the R-bar, 
the girder is typically in full contact with the bearing pad. Therefore, the beam rotation of 
Equation (6.56) for the applied load corresponding to a given overhang width must be less than 
or equal to a beam rotation for rupture of the R-bar, Equation (6.57).  
 

ߠ  = ݁ܨ) − ௜ܹௗܮ௜ௗ)൬݇௕ݓ௕ଷ12 + ݇௦௧݇௪ௗ݀௕௥ଶ݇௦௧ + ݇௪ௗ ൰  (ߨ/180)
(6.56)

஻௥௒ߠ  = ݇௦௧ + ݇௪ௗ݇௦௧݇௪ௗ݀௕ P୫ୟ୶(180/ߨ) (6.57)

6.8.2 Recommended Design Procedure 

In this sub-section, overhang design procedures are developed. The design procedure for 
girder systems with flexible connection is followed by the design procedure for girder systems 
with stiff connection.  

The standard design parameters and their values shall be given as in Table 6.3. 

Table 6.3: Standard Design Parameters 

Parameter Value Unit 

Concrete Unit Weight ߱௖ 0.15 kip/ftଷ 

Overhang Formwork Unit Weight ߱௙௪ 0.01 kip/ftଶ 

Top Bracing Stiffness per Single, kୱ୲୭  15.5 (flexible), 39 (stiff ) kip/in. 
Capacity of Top Bracing per Single,P୫ୟ୶୭  1.2 (flexible), 3 (stiff) kip 

Axial Rigidity of Wood Blocking per Single 11,025 kip 

Half of Screed Weight 5.7 kip 

Work Bridge Weight per Length 0.02 kip/ft 
Weight of Workers ܨ௪௞ 1.25 kip 

 
The system parameters and their definitions for a bridge girder system are listed in Table 

6.4. These values are calculated by using the information on a given bridge girder system.  
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Table 6.4: Girder System Parameters 

Parameter Definition Unit ݐ௦ slab thickness (8 in. typical) in. ݏ௕௦ Beam spacing in. ௕ܰ௠ number of beams of bridge unitless ݓ௕௥ௗ net width of bridge (=( ௕ܰ௠ − .span of beam in.݇௕  total compressive stiffness of two bearing pads per width  ൬kip/in.in ܮ.௕௦ ) inݏ(1 ൰ݓ௢௛ width of overhang in.ܮ௜ௗ 
Eccentricity of half of interior deck weight  
(= half of top flange of beam) 

in. 
௕ܹ௠ Weight of beam kip௦ܹ௛ weight of slab haunch (= ߱௖2ܮ௜ௗ(ݐ௦ +  kip (ܮ(2

௜ܹௗ 
half of interior deck weight between fascia beam and first 
interior (= ߱௖ݐ௦ݏ)ܮ௕௦ −  (௜ௗ)/2ܮ2

kip ܮ௢௛ 
Eccentricity of net overhang weight 
௜ௗܮ =) + ௢௛ݓ) −  (௜ௗ)/2ܮ

in. ܮ௦ௗ Eccentricity of half of finishing equipment weight (= ݓ௢௛) in.ܮ௪௞ 
Eccentricity of weight of workers 
௢௛ݓ =) + 1 × 12) 

in. ܮ௙௪ Eccentricity of weight of overhang formwork 
௜ௗܮ =) + (2 × 12 + ௢௛ݓ −  (௜ௗ)/2ܮ

in. ܨ௪௕ 
Half of work bridge weight 
 (௕௥ௗ/2ݓ * 12/ 1000/ 23.5=)

kip ܨ௢௛ weight of net overhang (= ߱௖ݐ௦(ݓ௢௛ −  ௙௪ܨkip (௪௕ܨ + 5.7 =) ௦ௗ half of finishing equipment weightܨkip (ܮ(௜ௗܮ
weight of overhang formwork 
(= ߱௙௪(2 × 12 + ௢௛ݓ −  kip (ܮ(௜ௗܮ

 

Flexible Connection 

Step 1: Calculate effective eccentric force and its eccentricity 
Step 1-A: Determine the following forces and dimensions. ܨ௪௕, Half of Work Bridge Weight: = 23.5/1000/12*ݓ௕௥ௗ/2 ܨ௢௛, Weight of Net Overhang: = ߱௖ݐ௦(ݓ௢௛ − ௙௪, Weight of Overhang Formwork: = ߱௙௪(2ܨ ௪௞, Weight of workers: = 1.25 kipsܨ ௪௕ܨ +௦ௗ, Half of Finishing Equipment Weight: = 5.7ܨ ܮ(௜ௗܮ × 12 + ௢௛ݓ − ௜ௗܮ = :௢௛ Eccentricity of net overhang weightܮ        ܮ(௜ௗܮ + ௢௛ݓ) − ௢௛ݓ = :௪௞ Eccentricity of weight of workersܮ      ௢௛ݓ = :௦ௗ Eccentricity of half of finishing equipment weightܮ ௜ௗ)/2ܮ + 1 × ௜ௗܮ = :௙௪ Eccentricity of weight of overhang formworkܮ 12 + (2 × 12 + ௢௛ݓ −    ௜ௗ)/2ܮ
Step 1-B: Calculate effective eccentric force and its eccentricity.  
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ܨ = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ݁  ௙௪ = (26+6.22+1.25+5)ܨ = ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢி೚೓ାிೞ೏ାிೢೖାி೑ೢ   

Step 2: Calculate quarter-point lift-off force and check it against with the effective eccentric 
force. 
Step 2-A: Determine the following items.  ௕ܹ௠, Weight of Beam  ௦ܹ௛, Weight of Slab Haunch  ௜ܹௗ, Half of Weight of Interior Deck  ଴ܹ= ௕ܹ௠+ ௦ܹ௛ 
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭   ௕, Bearing Width  ݀௕௥, Bracing Moment Armݓ  ௜ௗ, Half of Top Flange Widthܮ  
Step 2-B: Calculate the quarter-point lift-off force.  ܨொ௉௅, Quarter-Point Lift-off Force = 

ସௐ೔೏௅೔೏ାସ୔ౣ౗౮ௗ್ೝା௪್(ௐబାௐ೔೏)ସ௘ି௪್  

Step 2-C: Check if ܨ (effective eccentric force) ≤ ܨொ௉௅(quarter-point lift-off force) 
If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the 
step 2.  
Step 3: Check beam rotations 
Step 3-A: Determine the compressive stiffness of bearing pads.  
For a given bearing pad type, total compressive stiffness of two bearing pads for one fascia 
girder is determined from Table B.2 in Appendix B. ݇௕, total compressive stiffness ቀ௞௜௣/௜௡.௜௡. ቁ of two bearing pads per width  

Step 3-B: Calculate ߠଵ. ߠଵ = 12݇௕ݓ௕ଷ ݁ܨ) − ௜ܹௗܮ௜ௗ − ௠ܲ௔௫݀௕௥)(180 ⁄ߨ ) 

Step 3-C: Calculate ߠଶ ߠଶ= ଼ଽ௞್ (ிାௐబାௐ೔೏)య൫(ିଶ௘ା௪್)ிା௪್(ௐబାௐ೔೏)ାଶ௅೔೏ௐ೔೏ାଶௗ್ೝ୔ౣ౗౮൯మ   (degree) (ߨ/180)

Step 3-D: Check if (ߠଵand ߠଶ) ≤ 0.5 degrees (serviceability limit angle). 
If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the 
step 2. 
Step 4: Summarize Final Design. 

Stiff Connection 

Step 1: Calculate effective eccentric force and its eccentricity 
Step 1-A: Determine the following forces and dimensions.  ܨ௪௕, Half of Work Bridge Weight: = 23.5/1000/12*ݓ௕௥ௗ/2 ܨ௢௛, Weight of Net Overhang: = ߱௖ݐ௦(ݓ௢௛ − ௙௪, Weight of overhang formwork: = ߱௙௪(2ܨ ௪௞, Weight of workers: = 1.25 kipsܨ ௪௕ܨ +௦ௗ, Half of Finishing Equipment Weight: = 5.7ܨ ܮ(௜ௗܮ × 12 + ௢௛ݓ − ௜ௗܮ = :௢௛ Eccentricity of net overhang weightܮ        ܮ(௜ௗܮ + ௢௛ݓ) −  ௜ௗ)/2ܮ
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௢௛ݓ = :௪௞ Eccentricity of weight of workersܮ      ௢௛ݓ = :௦ௗ Eccentricity of half of finishing equipment weightܮ + 1 × ௜ௗܮ = :௙௪ Eccentricity of weight of overhang formworkܮ 12 + (2 × 12 + ௢௛ݓ −    ௜ௗ)/2ܮ
Step 1-B: Calculate effective eccentric force and its eccentricity.  ܨ = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ݁  ௙௪ = (26+6.22+1.25+5)ܨ = ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢி೚೓ାிೞ೏ାிೢೖାி೑ೢ   

Step 2: Check for rupture of R-bar.  
Step 2-A: Determine the following items  ௜ܹௗ, Half of Weight of Interior Deck  ܮ௜ௗ, Half of Top Flange Width  ݓ௕, Bearing Width  ݇௕, total compressive stiffness ቀ௞௜௣/௜௡.௜௡. ቁ of two bearing pads per width (from Table B.2 in 

Appendix B) kୱ୲, Total Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.)  ݇௪ௗ, Total Wood Blocking Stiffness kip/in.   
= (# of wood blockings)*(11025 kip)/(beam spacing - width of bottom flange of beam)  
Total Capacity of Top Bracing Bars: = (# of Top Braces)* (3 kips) ݀௕௥, Bracing Moment Arm  
Step 2-B: Check if beam rotation at rupture of R-bar ≤ ream rotation for a given overhang width ߠ஻௥௒, Beam Rotation at Rupture of R-bar = 

௞ೞ೟ା௞ೢ೏௞ೞ೟௞ೢ೏ௗ್ೝ P୫ୟ୶(180/ߨ) ߠ , Beam Rotation for Given Overhang Width: =  (ி௘ିௐ೔೏௅೔೏)ቆೖ್ೢయ್భమ ାೖೞ೟ೖೢ೏೏್ೝమೖೞ೟శೖೢ೏ ቇ  (ߨ/180)

Check if ߠ஻௥௒≤ ߠ. 
If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the 
step 2.  
Step 3: Summarize Final Design. 

6.9 Closing Remarks 
A rigid-body model for a stand-alone beam on bearing pads was developed. The solutions 

for both the first order analysis and the second order analysis of the rigid-body model were 
obtained and were verified with the data from the beam overturning test. The results of the 
second-order analysis of the rigid-body model showed good agreement with those of the 
overturning test over the entire range of rigid-body rotations. In addition, the second-order 
analytic solution of the rigid-body model captured the descending branch of the curve of the 
overturning test results well. Although the solution of first-order analysis of the rigid-body model 
did not capture the descending branch of the curve of the overturning test results, the results of 
first-order analysis of the rigid-body model showed good agreement with those of the 
overturning test for the small rotation that is in the typical design range. Because in design the 
main area of interest is when the beam becomes unstable and starts to tip, the first order solution 
provides reasonable estimates of when the beam becomes unstable and is simpler than the second 
order solution. 

The solutions for the first-order analyses of the rigid-body model for a girder system with 
lateral bracing including flexible and stiff connections were obtained and were verified with the 
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results from the FEA model that was validated through comparisons with laboratory tests and 
field measurements. Based on the solutions for the rigid-body model for a girder system with 
lateral bracing, a simple design equation and a design methodology were developed to be used 
for overhang bracing design.  
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Chapter 7.  System Buckling of Steel Girder Systems 

7.1 Introduction 
While most steel girder bridges consist of four or more girders, only two or three girders 

are needed in applications such as pedestrian bridges or bridge widenings. Increased traffic 
demands often require the addition of traffic lanes, which requires widening the bridge. In most 
situations, the widening is completed by adding a few girders to the bridge. The widened deck 
segment may not be connected to the original bridge in certain cases if the condition warrants 
such a need. The resulting bridge addition typically is a two- or three-girder system with a 
relatively large length-to-width ratio that makes these girders susceptible to a system mode of 
buckling that is critical during construction of the bridge deck (Yura et al., 2008). Figure 7.1 
shows the system buckling mode of a steel twin-girder system. In a system buckling mode, the 
girder system behaves as a unit and the entire cross-section deflects vertically and laterally while 
rotating about its shear center. The system mode of buckling is relatively insensitive to the 
spacing between cross-frames, because the internal cross frames can restrain the relative 
displacement or rotation between the two girders but cannot prevent the rotation of the entire 
cross section of the system as shown in Figure 7.1.  

The system buckling behavior is often made worse by the torsional load that results from 
the gravity load from the bridge overhang. Figure 7.2 shows the plan and cross section of a twin 
I-girder system subjected to an overhang load. Although the concrete deck overhangs on both the 
interior and exterior sides of the widening, one end of the formwork on the interior side is 
usually supported by the existing structure, which usually results in a significant reduction in the 
torque on that side of the girders. The weight of the concrete on the exterior overhang is usually 
supported by cantilever overhang brackets that react on the top flange and the girder web. The 
unbalanced eccentric overhang loads result in torsion on the girder system.  
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Figure 7.1: System Buckling Mode 

SC

SC  

φ 

v 

u 

φ 

y 

x 

= SC (shear center) 

A 

A 

(a) Plan View 

(b) Cross Section View A-A 



 

 119

 
Figure 7.2: Twin I-Girder System under Overhang Loads 

The eccentric load forces the girder system to twist, which can decrease the stability of 
the girder system, possibly resulting in a dangerous situation during concrete placement. 

Global lateral torsional buckling can also be an issue for steel box-girder bridges before 
composite action is fully developed. The failure of the Marcy Pedestrian Bridge in 2002 is 
attributed to overall lateral torsional buckling of the girder during placement of the concrete 
bridge deck (Popp 2004). Although the girder had closely spaced internal K-frames, a top lateral 
truss was not provided, which resulted in too low of a torsional stiffness and led to the collapse. 
In addition to the box girder collapse, global lateral torsional buckling (also called system 
buckling) has caused problems for I-girder systems. One such problem occurred during 
placement of the concrete bridge deck for a twin I-girder system that was used for a bridge 
widening in Texas. The twin I-girders had a 166 ft simple span with a spacing of 5.1 ft, resulting 
in a large span-to-width ratio (Zhou, 2006). During placement of the concrete bridge deck, the 
girders experienced a large torsional deformation, requiring the concrete deck to be removed so 
that a retrofit could be developed for the bridge. The unbalanced torsion from the overhang 
caused the bridge to twist towards the overhang.  

Current design specifications for bridges (AASHTO, 2007) and buildings (AISC, 2005) 
consider only the lateral torsional buckling of individual beams between brace points. Global 
lateral buckling of a girder system is primarily a problem for systems with a relatively large 
length/width ratio. Therefore, this mode can be problematic in systems with either closely spaced 
girders or systems with only a few girders across the width. However, the torsional behavior of 
these systems is not well understood, especially for cases subjected to combined bending and 
torsion due to eccentric loads, such as in the case of unbalanced overhang construction.  

The closed form solution for lateral torsional buckling of a simply supported girder 
subjected to uniform moment was derived by Timoshenko (Timoshenko and Gere, 1961). The 
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solution is widely used in bridge and building specifications as a design equation for lateral 
torsional buckling of individual beams and considers the beam behavior for buckling between 
brace points. Yura et al. (2008) derived Equation (7.1) for the global lateral buckling moment of 
a twin girder system that had good agreement with FEA solutions (ANSYS, 2008).  
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where, ܮ௚= span length, ܧ= modulus of elasticity, ܩ= shear modulus, ܫ௫= moment of inertia 
about strong axis, ܫ௬= moment of inertia about weak axis, ܬ= torsional constant, ℎ௢= distance 
between flange centroids, and ܵ= girder spacing. The closed form solution shown above is for 
doubly symmetric I-sections with uniform moment but can be modified for various loading 
conditions and for singly symmetric sections as outlined in Yura et al. (2008). However, the 
solution was derived for bending caused by symmetric gravity loading and did not consider the 
torsional loading that may result due to unbalanced overhang loads.  

The purpose of the study on steel girder systems is to investigate the global lateral 
torsional behavior of systems under torsion due to eccentric loads such as the unbalanced loading 
that may result from overhang construction. Parametric investigations using FEA models 
(ANSYS, 2008) were conducted to improve the understanding of the behavior of twin girder 
systems in the global lateral-torsional buckling mode. The major parametric variables that were 
considered included section type, girder spacing, span length, overhang width, and the magnitude 
and shape of the girder imperfection. The analytic solution to nullify the torsion due to overhang 
loads in the girder system was derived and checked against imperfections on the girder system. 
The FEA results showed the effects of each parameter on the lateral torsional buckling behavior 
of the twin girder system to improve the understanding of the behavior. Based upon the results, 
rules for geometric proportioning were developed to minimize the unbalanced torsion on girder 
systems used for widening applications. The chapter has been divided into five sections. 
Following this introductory section, an overview of the finite element modeling techniques for 
the system buckling mode is discussed. A derivation of the necessary geometry to eliminate the 
unbalanced torsion is then provided. Finite element results are then presented to demonstrate the 
system buckling behavior and the effectiveness of offsetting the unbalanced load. Finally, the 
important findings are summarized.  

7.2 FEA Modeling 
The structural behavior of a twin girder system subjected to torque from unbalanced 

overhang loads was studied by conducting parametric finite element analyses. Both eigenvalue 
buckling analyses and large displacement analyses were carried out assuming linear elastic 
materials, which is appropriate as the critical stage for buckling is usually during construction 
when stresses are well below yield. The girder cross sections that were used in FEA models are 
depicted in Figure 7.3.  

Sections D60 and D70 are doubly symmetric with depths of 60 in. and 70 in., 
respectively. Section S70 has a single plane of symmetry through the web and a depth of 70 
inches. Compared to D70, the section of D60 has about 29% less moment of inertia about the 
strong axis and essentially the same weak axis moment of inertia. 
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Figure 7.3: Cross Sections Studied 

For singly-symmetric sections, the effective moment of inertia about the weak axis can be 
calculated by the expression (Yura et al. 2008):  

௬,௘௙௙ܫ  = ௬௖ܫ + ൬ܿݐ൰ ௬௧ (7.2)ܫ

where Iyc and Iyt are the respective moments of inertia of the compression and tension flanges 
about an axis through the web, and t and c are the respective extreme fiber distances from the 
neutral axis of the tension and compression flange. The section of S70 has about 16% more 
effective moment of inertia about the weak axis than the section D70. Angles of L5×5×3/4 were 
provided for the end cross-frames while angles of L4×4×3/4 were provided for intermediate 
cross frames. Transverse web stiffeners with a thickness of 0.5 in. and a width of 90% of half of 
the top flange width were also used at the supports and at the locations of intermediate cross 
frames. 

The finite element model of a typical girder system is shown in Figure 7.4. The cross-
sections of the girders and the transverse web stiffeners were modeled using eight-node shell 
elements with an aspect ratio as close to unity as possible. The shell elements for the transverse 
web stiffeners shared nodes with the web elements for the girders. The stiffeners did not offer 
any warping restraint to the flanges as they were not attached to the flange nodes away from the 
web intersection. The stiffness of the cross-frames was identical to tension-only systems because 
one of the diagonals was omitted so that only three truss members were used. The cross frame 
members framed into the girders at the node at the flange to web intersection. Two of the truss 
elements were horizontal, linking the flanges of adjacent girders, and the other member was a 
diagonal that linked the bottom web node of one girder to the top web node of the adjacent 
girder. The girders were simply supported, and the section was free to warp at the supports.  
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Top View Plan View
Figure 7.4: Finite Element Model of Girder System 

The load of the fresh concrete was simulated by a uniformly distributed load applied 
along the girder length at the nodes joining the top flange to the web. The torsion due to the 
overhang load was simulated by applying lateral loads to the top and bottom flanges of the girder 
in the horizontal direction to form a force couple. The self-weight of the girder system was 
modeled as a vertical load applied at the centroid. In the large displacement analyses, the loads 
were sequentially applied in the order of girder self-weight and the fresh concrete load because 
the girder self-weight already exists before the fresh concrete load is applied to the girder. In 
some cases, the girder self-weight was conservatively included in the weight of the fresh 
concrete that was applied at the top flange, which is a critical condition for load height effects. 

Table 7.1 lists the parameters and the ranges that were used in the parametric FEA 
studies. The range of the girder spacing was taken between 5 to 10 ft and the girder span ranged 
from 120 to 180 feet. Although practical values were chosen for the spans and girder spacing, 
these common values produce large span to width ratios, which make the system mode of 
buckling critical. The range of the overhang width was varied from 2 to 4 feet, which is 
consistent with common practice where the most common overhang width is usually around 3 ft. 
In many bridge widening projects, the widths of the overhang on the internal and external side 
are equal; however, unequal overhang widths were considered to improve the distribution of 
torsion on the bridge widening. In addition to torque due to the overhang load, the imperfection 
of the girder system can amplify the torque as the eccentricity of the applied load may be 
increased. A half-sine wave of three different kinds of imperfection shapes was utilized to study 
these effects. The shapes of the imperfections are shown in Figure 7.5. The Case A imperfection 
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consisted of the case of a lateral sweep of the top flange while the bottom flange remained 
straight. Case C consisted of a pure lateral sweep of both flanges, and Case B has both flanges 
with a lateral sweep; however, the top flange had a larger sweep. Wang and Helwig (2005) 
showed that the Case A imperfection was critical in terms of resulting in the largest brace forces.  

Table 7.1: Parameters and Their Ranges 

Parameter Range 

Cross section 
two doubly symmetric sections and one singly symmetric 
section (see Figure 7.3) 

Span 120, 150, 180 ft 
Girder Spacing 5, 7.5, 10 ft 
Overhang Width 2,3,4 ft 

Overhang Width Ratio equal overhang widths, unequal overhang widths 

Cross-Frame Spacing 10, 30 ft 

Load self-weight, fresh concrete load 

Imperfection three different cases 
 

 
Figure 7.5: Imperfections Considered 

7.3 Derivation of Self-Equilibrating Overhang Width 
In a widening, the added girders are often isolated from the existing bridge girders to 

allow the new girders to deflect during construction. Although the girders are not generally tied 
back to the existing structure, the deck forms are often supported off the existing structure. 
Therefore, although there is an overhang on both sides of the widening, only half of the interior 
overhang load is supported by the widening with the formwork reaction applied at the tip of the 
flange of the interior girder. The exterior overhang load is supported on cantilever overhang 
brackets that apply torque on the exterior girder of the widening. 
Figure 7.6 depicts the overhang loads on both sides of the twin girder system. The fresh concrete 
load that is applied between girders is omitted from the figure for clarity because it does not 
contribute to the torque about the shear center of the twin girder system. 
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Figure 7.6: Cross-Section of Twin-Girder System under Overhang Loads 

The self-weight of the twin girder system is also omitted for the same reason. The interior 
overhang load, ܨ௜, corresponds to the half of the load on the interior overhang between the 
existing bridge and the edge of top flange of the interior girder of the twin girder system. The 
exterior overhang load that is applied at the top flange of the girder, ܨ௘, is the total weight of the 
external overhang. Although some of the external overhang load is transmitted through friction 
between the web and the cantilever bracket, this component was conservatively neglected 
because most of the overhang bracket force is transmitted at the top of the girder. In addition to 
the vertical overhang load of ܨ௘, the torque of ܨ௘ is applied to the exterior girder through the 
overhang brackets and is represented as Te in the figure. 

Moment equilibrium of the overhang loads about the shear center of the twin girder 
system can be established to develop an expression in terms of the interior overhang width and 
the exterior overhang width to result in zero torque on the bridge widening system. Equation 
(7.3) shows the resulting expression in which the interior overhang width has been expressed as a 
function of the exterior overhang width, the top flange width, and the spacing of the twin girder 
system for the condition of zero torque on the girder system in the widening. 
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Figure 7.7 illustrates the relationship of the interior overhang width and the exterior 

overhang width of the twin girder system of Section D70 to eliminate the torque about the shear 
center for the twin girder system. For most practical systems, the interior overhang width to 
produce zero torque is in the range of 2 to 3 times the exterior overhang width. 
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Figure 7.7: Relationship of Interior and Exterior Overhang Widths for Zero Torque 

7.4 FEA Results of system Buckling 

7.4.1 Global Lateral Buckling Moment of Twin Girder Systems 

Before the effects of combined bending and torsion were studied with the FEA models, 
results from the FEA analysis were compared with predictions from Equation (7.1) that was 
presented in Yura et al. (2008). The first comparisons were made with uniform moment loading 
as that is the loading the derivation was based upon. Parametric evaluations were conducted with 
variables consisting of section type, span, girder spacing, and cross-frame spacing specified as in 
Table 7.1. Table 7.2 lists comparisons of the FEA results and the predictions from Equation 
(7.1). In the table, the minus values indicates that the prediction from Equation (7.1) is larger 
than the value from the FEA results, and NA means that individual beam buckling governs rather 
than global lateral buckling for given parametric conditions. As shown in the table, the results 
from the FEA studies are in good agreement with the results from the solution by Yura et al. 
(2008). For example, for the cross-frame spacing of 10 ft, the maximum difference between the 
FEA results and the closed form solution for doubly symmetric sections of D60 and D70 was 
less than 2%, while the maximum difference for the singly symmetric section of S70 was less 
than 8%. For the cross-frame spacing of 30 ft, the maximum difference between the FEA results 
and the closed form solution for all the sections considered was within 8%. These differences 
result from the assumptions in the derivation of the closed form solution by Yura et al. (2008). 
Such assumptions were that the cross-section of the twin girder system is maintained as rigid 
along the entire length of the girder and the cross-section of each girder is doubly symmetric.  
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Table 7.2: Comparisons of FEA results and Closed-Form Solutions 

Span 
Length 

Section 
Type 

Girder 
Spacing 
(ft) 

FEA (kips-ft) 
Mg (kips-ft) 

 (Equation 
(7.1)) 

Percentage Difference 

Cross-Frame Spacing (ft) Cross-Frame Spacing (ft) 

10 ft.  30 ft.  10 ft.  30 ft.  

120 ft 

D60 

5 ft. 5676 (k-ft)  5591 (k-ft)  5632 (k-ft)  0.8% -0.7% 

7.5 ft. 8290 (k-ft)  8023 (k-ft)  8289 (k-ft)  0.0% -3.2% 

10 ft. 10830 (k-ft) 10229 (k-ft)  10976 (k-ft)  -1.3% -6.8% 

D70 

5 ft. 6673 (k-ft)  6564 (k-ft)  6647 (k-ft)  0.4% -1.2% 

7.5 ft. 9772 (k-ft)  9435 (k-ft)  9816 (k-ft)  -0.5% -3.9% 

10 ft. 12766 (k-ft)  12021 (k-ft)  13016 (k-ft)  -1.9% -7.6% 

S70 

5 ft. 7206 (k-ft)  7013 (k-ft)  7039 (k-ft)  2.4% -0.4% 

7.5 ft. 10943 (k-ft)  NA 10502 (k-ft)  4.2% NA 

10 ft. 14543 (k-ft)  NA 13976 (k-ft)  4.1% NA 

150 ft 

D60 

5 ft. 3703 (k-ft)  3679 (k-ft)  3651 (k-ft)  1.4% 0.8% 

7.5 ft. 5394 (k-ft)  5321 (k-ft)  5336 (k-ft)  1.1% -0.3% 

10 ft. 7079 (k-ft)  6912 (k-ft)  7049 (k-ft)  0.4% -1.9% 

D70 

5 ft. 4347 (k-ft)  4317 (k-ft)  4295 (k-ft)  1.2% 0.5% 

7.5 ft. 6363 (k-ft)  6270 (k-ft)  6310 (k-ft)  0.8% -0.6% 

10 ft. 8359 (k-ft)  8151 (k-ft)  8351 (k-ft)  0.1% -2.4% 

S70 

5 ft. 4707 (k-ft)  4659 (k-ft)  4524 (k-ft)  4.0% 3.0% 

7.5 ft. 7143 (k-ft)  6981 (k-ft)  6734 (k-ft)  6.1% 3.7% 

10 ft. 9555 (k-ft)  NA 8954 (k-ft)  6.7% NA 

180 ft 

D60 

5 ft. 2618 (k-ft)  2609 (k-ft)  2575 (k-ft)  1.7% 1.3% 

7.5 ft. 3791 (k-ft)  3766 (k-ft)  3733 (k-ft)  1.6% 0.9% 

10 ft. 4974 (k-ft)  4917 (k-ft)  4915 (k-ft)  1.2% 0.0% 

D70 

5 ft. 3065 (k-ft)  3054 (k-ft)  3016 (k-ft)  1.6% 1.2% 

7.5 ft. 4467 (k-ft)  4435 (k-ft)  4405 (k-ft)  1.4% 0.7% 

10 ft. 5878 (k-ft)  5805 (k-ft)  5817 (k-ft)  1.0% -0.2% 

S70 

5 ft. 3326 (k-ft)  3310 (k-ft)  3158 (k-ft)  5.3% 4.8% 

7.5 ft. 5023 (k-ft)  4970 (k-ft)  4687 (k-ft)  7.2% 6.0% 

10 ft. 6725 (k-ft)  6601 (k-ft)  6226 (k-ft)  8.0% 6.0% 

 
The effects of the cross frame spacing on the global lateral buckling moment was 

investigated by using the parametric FE models subjected to uniform line load over the entire 
parametric set in Table 7.1. For the full range of parameters in Table 7.1, the global buckling 
moments were relatively insensitive to the cross frame spacing. For cross frame spacings of 10 
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ft. and 30 ft. the solutions were within 8% of each other with the smaller spacing giving the 
higher buckling capacity. This is consistent with the findings form Yura et al. (2008).  

Figure 7.8 illustrates the global lateral buckling moment of the twin girder system versus 
the span and section type for the case of a girder spacing of 5 ft and a uniform line load applied 
at the top flange of the girder. As expected, the global lateral buckling capacity is smaller for 
longer girder spans. The global buckling moment of section S70 is always greater than the other 
two sections studied. The larger capacity of the S70 section relative to the doubly symmetric 
sections is because the effective moment of inertia of section S70 about the weak axis is 16.4% 
larger than those of sections D60 and D70. Figure 7.9 shows the global lateral buckling moment 
of the twin girder system versus the girder spacing for the case of a 150 ft span and a uniform 
line load at the top flange of the girder. The global lateral buckling moment of each section 
increases linearly with girder spacing.  

 

 
Figure 7.8: Global Lateral Buckling Moment of Girder Systems with Respect to Section Type 

and Span Length 
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Figure 7.9: Effects of Girder Spacing on Global Lateral Buckling Moment 

7.4.2 Large-Displacement Analyses 

Large displacement analyses of twin girder systems subjected to gravity loads from girder 
self-weight and fresh concrete were conducted on systems with the full range of the parametric 
set in Table 7.1. For most of the graphs shown in this section, the overhang widths were 3 ft, 
which is a relatively typical size. The impact of variable overhang widths is demonstrated later in 
this section.  

Figure 7.10 shows a graph of the fresh concrete load vs. mid-span twist of girder systems 
of spans of 150 ft and 180 ft with a girder spacing of 7.5 ft. As would typically be found in 
practice, the formwork for the overhang on the interior side is supported by both the existing 
construction and the girders in the widening. The torsion results from the differences in 
formwork support on the interior and exterior overhangs. The girder systems of span of 180 ft 
showed excessive twist at mid-span before they reached even half of the full fresh concrete load. 
Relatively large twist also occurred to the girder systems of span of 150 ft which would likely be 
problematic during construction.  

Figure 7.11 demonstrates how the girder spacing affects the torsional behavior of the twin 
girder system. The girder systems had a span of 150 ft. The girder system with a spacing of 5 ft 
became unstable at approximately 88% of the full fresh concrete load. The girders with the larger 
spacing have higher system warping stiffness and therefore have smaller resulting twists.  

In Figure 7.12, the twin girder systems consisted of section type D70 with a span of 150 
ft, and girder spacing of 7.5 ft. The graphs show that that the torsional behavior of the girder 
system is very sensitive to small changes in overhang width. With larger overhang widths, the 
unbalanced torque increases and the girders experience larger twists.  

To minimize the torsion due to the overhang loads, Equation (7.3) was developed for 
proportioning the interior and exterior overhang widths such that moment equilibrium of the 
externally applied loads about the shear center of the girder system is satisfied with zero net 
torque on the girder. 
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Figure 7.10: Behavior of Girder System under Torsion 

 

 
Figure 7.11: Effects of Girder Spacing on Torsional Behavior of Girder Systems 
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Figure 7.12: Effects of Overhang Width on Torsional Behavior of Girder System 

For the perfect girder system without imperfection, overhang loads of the self-
equilibrating overhang width would not cause torsion for the girder system. Therefore, the only 
torque that would be on the girder would be the result of imperfections in the girder. Figure 7.13 
shows the relationship of the applied load and net mid-span twist and illustrates the effects of 
imperfections on the system behavior. The girder system of section D70 had a span of 120 ft 
with a girder spacing of 5 ft and a cross-frame spacing of 30 ft. Based upon Equation (7.3), the 
interior and exterior overhang widths are proportioned to 6.81 ft and 3 ft, respectively. The 
imperfection of a half-sine wave with three different initial twists of the girder was applied to the 
girder system. The imperfection of Lb/500, where Lb is the spacing between brace points, is often 
used based upon typical codes of standard practice on erection tolerances (AISC 2005—Code of 
Standard Practice reference). The imperfection magnitude of 0.72 in. at mid-span was based on 
Lb/500, where Lb was taken as 30 ft in Figure 7.13. The imperfections are shown in Figure 7.13. 
The Case A imperfection consisted of a straight bottom flange along the girder length and a 
lateral sweep of the top flange of Lb/500, which was recommended as the critical imperfection 
shape by Wang and Helwig (2005). The imperfection Case B was consistent with the primary 
mode from the eigenvalue analysis of the twin girder system without imperfection and with the 
same maximum value of Lb/500 used in the other imperfections. The imperfection Case C 
consisted of pure sweep of the system.  

The FEA results showed that the Case A imperfection is the worst scenario among the 
three considered because it causes the girder system to twist more than the other two, which is 
consistent with the recommendations of Wang and Helwig (2005). However, for the 
configuration of the girder system considered, all three cases cause the relatively small net mid-
span twists for the girder system with self-equilibrating overhangs. For example, the maximum 
midspan twist of 0.25 degrees combined with the lateral deformation of the section produced a 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

W
et

 C
on

cr
et

e 
Lo

ad
×1

00
 %

Mid-Span Twist (deg.)

overhang width (2 ft)

overhang width (3 ft)

overhang width (4 ft)



 

 131

total lateral deformation of 1.67 inches at the maximum load. This deformation is approximately 
twice the initial imperfection.  

In Figure 7.14, the girder system with self-equilibrating overhang widths (exterior and 
interior overhand widths of 3 ft and 6.81 ft, respectively) is compared with its counterpart with 
equal overhang widths (3 ft for each overhang width). The girder system with self-equilibrating 
overhang widths carried the higher fresh concrete load, because its interior overhang was wider 
than that of the girder system with equal overhang widths as mentioned above. Both girder 
systems consisted of section type D70 with a span of 120 ft, a girder spacing of 5 ft, a cross-
frame spacing of 30 ft, and Case A imperfection. Figure 7.14 illustrates that the girder system 
with self-equilibrating widths underwent less twist that the girder system with equal-overhang 
widths. This indicates that the elimination of the torsion due to the overhang loads by 
proportioning the interior and exterior overhang widths leads to the better structural behavior of 
the girder system. This also suggests that the concept of self-equilibrating overhang width can be 
utilized for bridge widening projects to minimize the effects of the overhang load.  

 
 

 
Figure 7.13: Effects of Imperfections on Torsional Behavior of Girder System 
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Figure 7.14: Effects of Proportioning of Overhang Widths 

7.5 Closing Remarks 
The instability of the twin girder system with combined flexure and torsion due to 

unbalanced overhang loads was investigated. The parametric FEA studies were carried out on a 
twin girder system to improve the understanding of the behavior. Both eigenvalue buckling 
analyses and large displacement analyses were conducted considering the impact of several 
variables. In addition, a closed form solution for self-equilibrating overhang width of the twin 
girder system was derived and compared with the computational solutions. Based upon the 
results, the following conclusions can be made:  

• The unbalanced eccentric ovehang load leads to a significant amount of lateral 
displacment and twist of twin girder systems and should be taken into consideration for 
design of systems in bridge widening applications or other cases with unbalanced 
loading on girder systems.  

• For girder systems failing in the global system buckling mode, the spacing of 
intermediate cross-frames does not have a significant impact on the buckling behavior 
of girder systems with practical geometries.  

• The torsional resistance of the girders failing in the system mode of buckling can be 
improved by increasing either Ix or Iy,eff of the girders.  

• The system mode of buckling becomes more critical for smaller girder spacings, larger 
span to width ratios of the girders, and larger overhang widths. 

• Many of the twin girder systems considered in the study had insufficient capacities in 
the global buckling mode for the fresh concrete load of a typical slab thickness.  
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• Proportioning interior and exterior overhang widths to produce zero net torque on the 
girder system will minimize the effects of the eccentric load due to the overhang loads. 
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Chapter 8.  Effect of Local Plate Bending on Stability of Webs of 
Steel Girders 

8.1 Introduction 
As discussed in Chapter 2, slab overhangs are generally supported by overhang brackets 

during construction. In steel girders, the overhang brackets connect to the top flange with a 
hanger welded to the flange and then react on the web of the girder. The vertical shear from the 
overhang is transmitted primarily through a vertical component of the hangar force; however, 
some of the reaction also is transmitted through friction between the bracket and the web. The 
overhang moment that is caused by the eccentric load is resisted by the force couple that 
develops between the lateral component of the hangar force on the top flange and the portion 
where the bracket reacts on the steel web. Ideally, these overhang brackets should be positioned 
to react close to the bottom flange of the girder where the web plate is the stiffest. However, in 
current practice, the layout of the overhang brackets as well as the determination of the bracket 
reaction height from the bottom flange of the girder are often not specified by a designer but 
instead are left up to a contractor. Although the brackets do permit some adjustment so that the 
reaction points can be moved, the research team has found many cases where the overhang 
brackets were not adjusted and instead installed with the same configuration used in previous 
jobs. In many instances, the brackets react near the mid-depth of the web or may react on the 
compression zone of the web. Figure 8.1 shows the overhang brackets installed on the fascia 
girders at a transition bent. The same bracket depth used on the prestressed concrete girder was 
also used on the steel girder, regardless of the fact that the steel girder has a much deeper section. 
As a result, the bottom of the overhang brackets reacted at about the mid-depth of the steel 
girder, which is a very flexible point of the web. As discussed in the earlier chapters, overhang 
construction often causes an eccentric load, and consequently a torque, on the fascia girders. 
Specifically, the bottom of the overhang bracket exerts a lateral load on the web of the fascia 
girder. This lateral load can intensify imperfections in the web. The impact of the lateral force in 
the web plate is not well understood with respect to the structural performance of the steel girder.  

 

 
Figure 8.1: Overhang Brackets Reacting at the Mid-Depth of Steel Girder Web 
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The purpose of this portion of the study is to investigate the impact of the bracket 
reaction force on the structural performance of the web. Parametric finite element analyses were 
conducted to improve the understanding of the structural behavior of the web subjected to 
overhang loads. The major factors that dominate lateral deformations of the web are identified 
and the design recommendations are provided for the geometry of the overhang bracket. Based 
upon the FEA investigation the impact of the overhang bracket reaction on the structural 
behavior of the fascia girder is evaluated. 

8.2 Background 
To determine the effect of the bracket reaction on the girder web, a clear understanding of 

the overhang load transfer mechanism is necessary. During the concrete deck placement, the 
fascia girder is subjected to the overhang load as depicted in Figure 8.2. 

 

 
Figure 8.2: Eccentric Load from Fresh Concrete on Overhang 

The overhang load, which is eccentric with respect to the center of the fascia girder, is 
transferred to the fascia girder through the overhang bracket. The overhang load comes from 
several sources including the weight of the formwork, fresh concrete, and the finishing 
equipment that is supported on the screed rail near the edge of the overhang. Although sources 
such as the construction personnel and finishing equipment do apply load through the overhang 
bracket, this load does not generally lead to force in the majority of the brackets as the concrete 
sets up. As a result these forces do not lead to web deformation that might get locked into the 
composite girder. Therefore, the primary force that is considered as leading to lateral force on the 
web will be the fresh concrete load. The overhang bracket usually reacts on the web, thereby 
resulting in the lateral deformation in the web. The overhang load in the net overhang width, 
which is defined as the distance from the edge of the top flange to the edge of the concrete deck, 
can be expressed as  

 
௢௛ܨ  = ߱௖൫ݓ௢௛ −  ௦ (8.1)ݐ௙൯ݓ

௦ݐ
 ௙ݓ ௢௛ݓ
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Overhang Bracket
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where ߱௖ is the fresh concrete density,  ݓ௢௛ is the overhang width from center of the fascia 
girder to the edge of concrete deck, ݓ௙ is half of the top flange width, and ݐ௦ is the deck 
thickness. Equation (2.1) indicates that the eccentric load is linearly proportional to the net 
overhang width.  

The fresh concrete load in the net overhang,  ܨ௢௛ that is depicted in Figure 8.3(a) 
produces the torque, ௢ܶ௛, that is obtained by multiplying ܨ௢௛with its moment arm with respect to 
the flange edge, ൫ݓ௢௛ −  .௙൯/2ݓ

 
 ௢ܶ௛ = ௢௛ݓ௢௛൫ܨ − ௙൯/2 (8.2)ݓ

 
Substitution of Equation (2.1) into Equation (8.2) gives the following expression: 
 

 ௢ܶ௛ = ߱௖ݐ௦൫ݓ௢௛ − ௙൯ଶ/2 (8.3)ݓ
 

 
Figure 8.3: Bracket Reaction Force 

The eccentric overhang load, ܨ௢௛, can be replaced with the equivalent overhang load 
system as shown in Figure 8.3(b). The equivalent overhang load system in Figure 8.3(b) consists 
of the vertical component, ܨ௢௛, and a force couple, ܪ௢௛ℎ௢௛. Equating a force couple,ܪ௢௛ℎ௢௛, 
with Equation (8.3) , the component of the force couple, ܪ௢௛, becomes 

 
௢௛ܪ  = ߱௖ݐ௦ ൫ݓ௢௛ − ௙൯ଶ2ℎ௢௛ݓ  (8.4)

 
For a given concrete weight density and a given deck thickness, the bracket reaction 

force, ܪ௢௛, is quadratically proportional to the net overhang width and inversely proportional to 
the vertical dimension of the overhang bracket. Therefore, larger net overhang width will lead to 

 ௢௛ܪ

 ௢௛ܪ

௢௛ܨ ௢௛ܨ
ℎ௢௛

(a) Eccentric Overhang Load (b) Equivalent Overhang Load System 

ℎ௢௛ 

൫ݓ௢௛ −  ௙ݓ ௙൯/2ݓ
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larger bracket reaction force. In addition, the bracket reaction force becomes theoretically infinite 
as the vertical dimension of the overhang bracket approaches the top flange. Therefore, as 
expected, larger vertical dimensions of overhang brackets are more effective for minimizing the 
bracket reaction force.  

8.3 FEA Modeling 
The structural behavior of the web in the girder subjected to the torque from the overhang 

was studied by using finite-element modeling techniques as described in Chapter 3 (ANSYS 
2009). The large displacement analyses were conducted with an assumption of linear elastic 
materials, which is appropriate because the stresses in the web due to torque from the overhang 
are well below yield. The girder cross section that were used in FEA models are shown in Figure 
8.4. All sections are doubly symmetric, and all dimensions of each section are identical with each 
other except for the depth of the web. The depths of the web of Sections D38, D56, and D75 are 
37.5 in., 56.25 in., and 75 in., respectively. As shown in Table 8.1, the web slenderness ratios are 
within the practical range of the web slenderness commonly used in bridge construction and 
were proportioned to study the effects of the web slenderness on the web behavior. The 
slenderness ratios of Sections D56 and D75 are 1.5 times and 2 times as large as that of D38, 
respectively. The webs of Sections D38, D56, and D75 are classified as compact, non-compact 
and slender, respectively, in accordance with AASHTO/LRFD (2007). The flanges, which are 
the same for all the sections, have a flange slenderness of eight, and are classified as compact in 
accordance with AASHTO/LRFD (2007).  

 

 
Figure 8.4: Cross-Sections Studied 
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The three dimensional finite element model of a typical girder is shown in Figure 8.5. 
Transverse web stiffeners that are depicted in light blue in the figure were used both at the 
supports and along the length of the girder. The stiffeners have a thickness of 0.5 in. and a width 
equal to 90% of half of the flange width. Eight-node shell elements were used to model the cross 
sections of the girder and the transverse web stiffeners. The transverse web stiffeners did not 
provide any warping restraint to the top and bottom flanges of the girder because they were 
detached from the flange nodes. The lateral bracing was provided at both top and bottom flanges 
at every 5 feet to prevent the lateral-torsional buckling of the girder during the analysis. The FEA 
girder model was simply supported, and the section was free to warp at the supports.  
 
 

 
Figure 8.5: Finite Element Model for Steel Fascia Girder 

The girder self-weight was applied by using the gravitational acceleration, and the 
concrete deck load was applied to the top flange of the girder. The fresh concrete deck load 
included the loads in the overhang, in the slab haunch and in the interior deck for a girder 
spacing of 5 ft. The equivalent load system that was explained in the previous section was 
utilized to simulate the torque due to the overhang load, which forms a force couple in the 
horizontal direction parallel to the flange plane. The one component of the force couple was 
applied to the top flange of the girder and the other component of the force couple was applied to 
the web where the overhang bracket reacts. 

Table 8.2 summarizes the parameters and their ranges that were used in the parametric 
FEA studies. AASHTO/Standard (2002) requires that the ratio of web depth to span length be 
less than 1/25. Thus, while the span length of D38 was 60 ft, the span length of D56 and D75 
was 120 ft. The web slenderness ratios included 75, 113, and 150. For the overhang bracket 
reaction height, five different locations were chosen and were evenly spaced along the depth of 
the web. Overhang widths from the center of the girder to the edge of the slab were 3 ft. and 4 ft. 
The stiffener spacing varied from 10 ft to 30 ft.  
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In addition to the main parameters for the FEA studies summarized in Table 8.2, the 
effects of the flange width and web imperfections were also considered. Because the flange 
width of 20 in. listed in Table 8.1 may be practically large, particularly for the Section D38, 
smaller flange widths were also considered. AASHTO/LRFD (2007) requires that the ratio of 
flange width to web depth be larger than 1/6. Thus, the ratio of flange width to web depth was 
adjusted to be 1/5 for narrow flanges, which is slightly larger than the minimum value of 1/6. 
The narrow flanges for Section D38, D56, and D75 were 7.5 in., 11.25 in. and 15 in. wide, 
respectively.  

Table 8.1: Dimensional Properties of Cross Sections Studies 

Type Parameter Symbol Unit D38 D56 D75 

Web 

Web Thickness tw inch 0.5 0.5 0.5 

Web Depth D(=dw) inch 37.5 56.25 75 

Web Slenderness λw - 75 113 150 

Web Area Aw in.2 18.75 28.13 37.5 

Flange 

Flange Thickness tf inch 1.25 1.25 1.25 

Flange Width bf inch 20 20 20 

Flange Slenderness λf - 8 8 8 

Area Af in.2 25 25 25 

Deformation 
Fabrication 
Imperfection Limit ∆଴ (=  inch 0.25 0.35 0.50 (150ܦ

 

Table 8.2: Parameters and Their Ranges 

Parameter Range 
Span Length 60 ft (D38), 120 ft (D56 and D75) 
Web Slenderness Ratio 76, 113 and 150 
Bracket Reaction Height 5 different positions along depth of girder 
Overhang Width 3 and 4 ft 
Stiffener Spacing 10 ft and 30 ft 
Load girder self-weight and fresh concrete load 
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Figure 8.6: Web Plate Imperfection for Girder Model (Rescaled) 

The initial imperfections were applied to the web to consider the effects of the initial web 
imperfections on the web behavior. The key factors concerning the application of web 
imperfections were the magnitude and shape of the imperfection in the web. The American 
Welding Society (AWS) D1.5 Specifications (2008) have a limit of D/150 (D: depth of web) 
plate tolerance that was adopted as a reference for the selection of the magnitudes of initial 
imperfections for the FEA models. The imperfections were applied to the web in the same 
direction as the overhang bracket reaction force because the bracket reaction force will tend to 
intensify the imperfections in the same direction as the bracket reaction force.  

The determination of the web imperfection shape for the FEA models required the 
preliminary finite element analysis for the perfect FEA model that had no imperfection. The 
preliminary analysis for the perfect FEA model was conducted by fixing the edge nodes of each 
web segment between transverse stiffeners and applying the lateral displacement of a maximum 
imperfection at the center node of each web segment. The imperfection shape in the web was 
obtained by updating the geometry of the perfect FEA model on the deformations from the 
preliminary analysis results. As an example, the web plate imperfection shape for a plate girder 
model is depicted in Figure 8.6 with the magnitude of the imperfection greatly amplified. 
Although the impacts of imperfections on the web performance were investigated, most of the 
results that are presented in this chapter were for perfectly flat webs so that the effect of the 
various parameters could be investigated. At the end of the chapter, the effects of the web plate 
imperfections are demonstrated. 

8.4 FEA Results and Discussions 
Large displacement analyses were conducted on girders with the full range of the 

parametric set listed in Table 8.2. Unless specified otherwise, the FEA girder models that are 
discussed in this section had no imperfection in the web. The typical overhang width of 3 ft was 
used for all the graphs presented in this section except for the graphs that demonstrate the effects 
of the overhang width on the web behavior.  
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8.4.1 Effects of Web Slenderness 

The large displacement FEA studies first focused on the effects of the web slenderness on 
the girder behavior. The finite element analyses were conducted for 60 different parametric 
conditions for girder models that had no web imperfections.  

Figure 8.7 and Figure 8.8 illustrates the effects of web slenderness on the web behavior 
for respective stiffener spacings of 10 and 30 feet. The overhang bracket was positioned at 
midheight of the web in both cases. On both figures, the lateral deformations in the web in the x-
axis are plotted against the depth of the web on the y-axis. From both Figure 8.7 and Figure 8.8, 
the maximum lateral deformation in the web occurred near the mid-depth of the web. This was 
the case that was observed for all of the analyses with the overhang bracket reaction height in the 
tension zone in the web including the mid-depth of the web. However, when the overhang 
bracket reacts in the compression zone in the web, the maximum deformation point occurs 
higher up in the compression zone in the web.  

For the change in web slenderness from 75 to 150, which is two times increase in the web 
slenderness ratio, maximum web deformations for stiffener spacings of 10 ft and 30 ft increased 
from 0.027 in. to 0.066 in., and 0.047 in. to 0.153 in., respectively. This indicates that the webs 
with larger web slenderness ratios are more susceptible to larger web deformations. A 
comparison of the graphs shows that the effect of the stiffener spacing is heavily dependent on 
the girder depth. For example, the web deformations did not differ that much between the values 
of the stiffener spacing for the D38 section. For a 10 ft. spacing the maximum web deformation 
is 0.027 in. and increases to 0.047 in. for the 30 ft. spacing (74% increase). For the D75 section 
the maximum web deformation is 0.066 in. for the 10 ft. spacing and increases to 0.153 in for the 
stiffener spacing of 30 ft. (132% increase) spacing.  

 
 

 
Figure 8.7:  Effects of Web Slenderness for Stiffener Spacing of 10 ft 
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Figure 8.8: Effects of Web Slenderness for Stiffener Spacing of 30 ft 

8.4.2 Effects of Overhang Bracket Reaction Height 

As mentioned earlier, although it is preferable for the overhang bracket to react near the 
bottom flange of the girder, in many situations, the brackets have been observed to react near 
midheight of the web. The FEA models that addressed the issues of bracket reaction heights 
allowed the five different reaction locations for overhang brackets that were evenly spaced along 
the depth of the web.  

Figure 8.9 and Figure 8.10 demonstrates how the overhang bracket reaction height affects 
the web deformation in the girder subjected to overhang loads. Figure 8.9 and Figure 8.10 show 
the results for girder section of D38 and D75, respectively. The web deformation profiles in the 
graphs were nondimensionalized with respect to the corresponding imperfection tolerances listed 
in Table 8.1. Although the FEA girder models allowed the five different reaction locations for 
overhang brackets, both figures show the results for only three of the different reaction locations 
for clarity. The values that are shown are for reactions at one sixth, half, and the five sixths of the 
web depth.  
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Figure 8.9: Effects of Overhang Bracket Reaction Height for Girder Type D75 

 
Figure 8.10: Effects of Overhang Bracket Reaction Height for Girder Type D38 

The web deformations for reactions at 1/3 and 2/3 of the web depth follow the general 
trend shown in the figures with the location of the maximum deformation shifting up as the 
reaction point shifted up.  

Both graphs show that web deformations increase as the overhang bracket reacts closer to 
the top flange of the girder. There are two potential contributing factors for the larger 
deformation as the reaction point shifts upward. The most significant factor is most likely 
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because the magnitude of the lateral force required increases as the bracket reaction shifts 
upward as the moment arm between the force couple is reduced. The other contributing factor is 
because the compressive stress in the upper portion of the web makes the plate more flexible. In 
order to investigate which factor makes more contribution to the effects of the bracket reaction 
height, the approach of a unit line load was introduced into the finite element analyses. In this 
approach, the same unit line load, 1 kip/ft., was laterally distributed to the web at the five 
different bracket reaction heights as well as the edge of the top flange.  

Essentially, this approach can tell which reaction point in the web for the same lateral 
load is the most susceptible to web deformation. Figure 8.11 shows the FEA results that 
demonstrate the effect of the loading point on the web deformation. The web deformation 
profiles for the loading points at the one sixth and the five sixths of the web depth are almost 
symmetric about the mid-depth of the web, with the maximum web deformation for the 
compression zone loading slightly larger than that for the tension zone loading. This indicates 
that the loading point in the compression zone in the web does not intensify the web deformation 
significantly. Therefore, it can be concluded that for construction load levels, the effects of the 
overhang bracket reaction height on the web deformation is mainly due to the magnitude of the 
overhang bracket reaction. The magnitude of the overhang bracket reaction force can be 
significantly reduced by adjusting the vertical dimension of the overhang bracket. As shown in 
Equation (8.4), longer vertical dimensions of overhang brackets generate smaller reaction forces 
for the web, thereby minimizing web deformations. Because the overhang framing into middepth 
of the web is the worst case, all of the FEA results presented in the remainder of this chapter are 
for the case of the overhang bracket framing into middepth of the web. Cases in which the 
overhang bracket frames into a different location on the web will result in a different 
deformation profile; however, the basic trends in the behavior will be the same.  

 

 
Figure 8.11: Effects of Loading Point for Girder Type D75 
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8.4.3 Effects of Stiffener Spacing 

The nonlinear large displacement FEA analyses also investigated the effects of the 
stiffener spacing on the girder behavior. Figure 8.12 shows the FEA results for girder type D75 
that illustrate the effects of the stiffener spacing on the web deformation, and the FEA results for 
other girder types are presented in Appendix D. As expected, the larger stiffener spacing caused 
more web deformation as shown in the figure. This indicates that transverse web stiffeners play a 
role in restraining the lateral deformation in the web. The change in the stiffener spacing from 10 
feet to 30 feet more than doubled the amount of web deformation. This trend was similar for the 
other two girder types of D38 and D56. However, the increase in the stiffener spacing for D38 
and D56 affects the increase in web deformation less than that for D75. 

 

 
Figure 8.12: Effects of Stiffener Spacing for Girder Type D75 

8.4.4 Effects of Overhang Width 

Figures 8.13 and 8.14 use FEA results to illustrate the effects of the overhang width on 
the web deformation. Figures 8.13 and 8.14 describe FEA results for girder types of D36 and 
D75, respectively. As expected, the web deformation increased with the overhang width. The 
change in the overhang width from 3 ft. to 4 ft. resulted in approximately 2.3 times more web 
deformation. This shows that the web deformation is significantly influenced by the overhang 
width. For a given girder depth, the impact of the larger overhang can come in two areas. A 
wider overhang obviously has a larger gravity load due to the increase in the amount of concrete 
on the overhang. In addition, if the diagonal frames into midheight of the web panel for both 
overhang widths, the difference in geometry can also amplify the overhang force. The larger 
width will have a smaller angle for the diagonal of the overhang bracket, which therefore 
increases the diagonal force due to the different geometry.  
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Figure 8.13: Effects of Overhang Width for Girder Type D38 

 
Figure 8.14: Effects of Overhang Width for Girder Type D75 
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web behavior. The 7.5 in. wide flange is a 62.5% decrease in the top flange width compared to 
the 20 in. flange and the smaller flange had a 75% average increase in the web deformation. The 
increase in the web deformation is caused by the larger lateral load and also by the smaller 
torsional restraint provided to the web by the smaller flange.  
 

 
Figure 8.15: Effects of Top Flange Width for Girder Type D38 

8.4.6 P-Delta Effect 

The web in the fascia girder with the overhang loads is subjected to a complicated state of 
stress from the combined bending and lateral load from the overhang. In-plane bending of the 
girder results in a linear stress distribution with compression in the upper portion of the web and 
tension in the lower portion. In addition, the lateral load from the overhang causes out-of-plane 
bending in the web plate. This loading condition creates P-delta effects for the web similar to the 
case for a column subjected to axial load combined with the bending moment that results in an 
increase in the moment and lateral deflection in the column. This P-delta effect is illustrated in 
Figure 8.16. The girder had an overhang width of 3 ft with the overhang bracket reacting at the 
mid-depth of the web. While the girder represented by the deformation profile in blue was 
subjected to both the vertical load and the lateral load, the girder represented by the deformation 
profile in pink was subjected to only the lateral load. Although the web with the combined 
loading experienced more lateral deformations, the P-delta effect was not too significant. The 
case shown is for the girder with the most slender web. The P-delta effects for the other two 
girder sections were smaller.  
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Figure 8.16: P-Delat Effect for Girder Type D75 

8.4.7 Effects of Web Imperfections 

Plate girders with initial web imperfections in the web were investigated. The direction of 
the imperfections was considered to be the same as the overhang bracket reaction force. 
Nonlinear large-displacement finite element analyses (FEA) were performed on selected plate 
girder models. The imperfections in the web plates were obtained as outlined in Section 8.3. 
Comparisons of the FEA results between perfect girders and girders with initial web 
imperfections are shown in Figure 8.17 where the solid-line curves and the dotted-line curves 
represent a perfect girder and a girder with initial imperfections, respectively. The graph shows 
that although there was a slight change in the web deformation profiles, the effects of web 
imperfections were relatively small. The shifts in the curves are primarily caused by P-delta 
effects; however as was outlined in the last section, the P-delta effects were relatively small. 
Therefore, increasing the plate deformation by a value equal to the maximum permissible 
imperfection had a relatively small effect. The main area that is impacted is the upper portion of 
the web where the web is in compression. However, the impact is not very significant.  
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Figure 8.17: Effect of Web Imperfections  

8.5 Closing Remarks 
The investigation into the behavior of steel fascia girders subjected to overhang loads 

during construction was conducted to improve the understanding on the impact of the overhang 
on the structural performance of the steel girders. Extensive parametric studies were conducted 
using the finite-element analyses with a wide range of variables. Based upon the study, the 
following conclusions were reached:  

• Web deformations resulting from overhang brackets reacting on the web plate 
increase with increases in the web slenderness. 

• Web deformations increased as the overhang bracket reacted closer to the top flange 
of the girder. For a given overhang width, the primary cause of the increase in web 
deformations was due to the fact that the bracket reaction increases as the bracket 
diagonal reacts higher on the web. The magnitude of the overhang bracket reaction 
force can be significantly reduced by adjusting the vertical leg for the overhang 
bracket, thereby resulting in smaller web deformations. 

• The transverse web stiffener helps to restrict the web deformations caused from the 
overhang brackets reacting on the web plate. A smaller stiffener spacing produces 
smaller web deformation. The effects of the stiffener spacing are more pronounced 
for webs with larger values of the web slenderness.  

• Web deformations increase with the overhang width. In addition, for a given 
overhang width, smaller top flange widths result in larger net overhang widths, 
thereby leading to more web deformation.  

• Fascia girder webs with overhang loads are subjected to combined loading of vertical 
bending and lateral loads from the overhang bracket. Although the compression 
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portions of the web with the combined loading experienced more lateral deformation, 
the P-delta effect on the web deformation was not too significant.  

• The imperfections on the webs in the girders produced a change in the web 
deformation profile for a girder without web imperfections. However, the effects of 
the web imperfection were relatively small.  

• Finally, the overhang width, the overhang bracket reaction height, the web 
slenderness, and the stiffener spacing were the dominating factors for the lateral 
deformation in the web in the girder that is subjected to the overhang load. Although 
these dominating factors intensified web lateral deformation, the range of lateral 
deformations in the web for the cross sections studied was below the fabrication 
imperfection limit of D/150 specified in the Bridge Welding Code from the American 
Welding Society (2008). In finished bridges, a web with an imperfection in the same 
direction as the lateral deformation imposed by the overhang bracket is likely to have 
web deformations larger than the D/150 limit, although the effects are most likely 
relatively minor.  
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Chapter 9.  Summary and Conclusions 

9.1 Summary 
Overhang construction can pose several problems for both concrete and steel girder 

systems. Current design methodologies in bridge design don’t often consider the overhang 
demands on bridge behavior, but instead utilize typical details. The construction loads in these 
overhangs are transferred to the fascia girder through overhang brackets. The specific layout of 
the overhang brackets are often left up to the contractor. Because of the relatively large 
eccentricity of the overhang load, the fascia girders on concrete and steel girder systems are often 
subjected to large torques that are often not considered by engineers during the design process. 
These torques can cause excessive rotations of the girder system that should be considered 
during the design process. Problematic deformations have occurred in both concrete and steel 
girder systems in Texas. The large torques have caused the fascia girder in a prestressed concrete 
girder bridge to lift off of the bearing pads during construction and also caused a twin steel girder 
system in a bridge widening to nearly fail by system lateral torsional buckling. In addition, there 
were concerns that the reaction forces from overhang brackets could distort the web, thereby 
leading to local instabilities or large web imperfections that get locked into the girders once the 
deck cures.  

The research presented in this report was part of a research investigation sponsored by the 
Texas Department of Transportation (TxDOT) to investigate the effects of overhang construction 
on the behavior of concrete and steel girder systems.  

The primary goals of the research project included improving the understanding of bridge 
behavior due to overhang loads, identifying critical overhang geometries as a function of the 
overhang loading, evaluating the global and local instabilities of steel girder systems, and 
developing simple design methodologies and design recommendations for overhang 
construction.  

The research investigation included field monitoring, laboratory testing, and parametric 
finite element analyses. Three bridges were instrumented and monitored during the concrete 
deck pour to collect data that was used to validate finite element models that were used to study 
the effects of overhang construction on the bridge behavior. In addition to the field studies, 
laboratory tests were conducted on elements of concrete girder systems at the Phil M. Ferguson 
Structural Engineering Laboratory at The University of Texas at Austin. The tests consisted of 
lateral stiffness and strength tests on the bracing bar systems used to restrain prestressed concrete 
girders, overturning tests on a prestressed concrete beam with elastomeric bearing pads, and 
rotational tests of the girder and panel deck system. The laboratory testing provided valuable 
data for the FEA models for the concrete bridges that were used to clarify several uncertainties in 
the modeling of key elements in concrete girder systems. 

Based on the validated models, detailed parametric studies were conducted to investigate 
the effects of the overhang loading on girder behavior. Results from the parametric studies were 
used to identify the geometries of girder systems that are prone to problems with the overhangs 
as well as to provide design suggestions. In addition, a closed-form solution for lateral rotation in 
the fascia girder in a concrete girder bridge was derived by using a rigid-body model and used to 
develop design methodologies and recommendations for overhang construction.  
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9.2 Conclusions 
The conclusions of the research study are summarized in this section. The study resulted 

in substantial improvement in the understanding of the overhang construction on the structural 
behavior of the bridge girder systems. The identification of critical overhang geometries was 
achieved along with the development of design equations and recommendations for overhang 
construction. The conclusions are provided in three subsections. The summary and 
recommendations for prestressed concrete girder systems are provided first, followed by global 
buckling of steel girder systems, and the last subsection provides a summary of local effects of 
steel girder webs. Specific recommendations for design are made in Section 9.3. 

9.2.1 Prestressed Concrete Girder Systems 

Based upon the studies of overhang construction on concrete girder systems, the 
following conclusions can be made:  

• The lateral stiffness of the R-bars was small compared to the axial stiffness of the 
top bracing bar. In addition, the strength of the R-bar and connection to the bracing 
bar were significantly smaller than the yield capacity of the bracing bar. This 
indicates that the lateral stiffness and capacity of top bracing are governed by the R-
bar. 

• The maximum rotation that the AASHTO Type C beam sustained in the laboratory 
tipping test was approximately 2.5 degrees. This would likely be a typical value for 
most prestressed concrete beams.  

• Three different connection configurations were evaluated in the laboratory 
including the TxDOT standard connection in Figure 9.1. The other two connections 
are more representative of the connection that is commonly used in practice in 
which the bracing bar passes over the top of the precast deck panels and is bent to 
connect to the R-bar. The Standard connection configuration possessed a higher 
stiffness and was also stronger than the connections that are used in practice. The 
connections that are used in practice exhibited better ductility than the standard 
connection.  

• Forces in the diagonal timber blocking were very small and often zero in the 
analysis. The diagonal timber blocking does not provide restraint to twisting of the 
girders due to a lack of positive connection between the girders and the timbers. 
The primary role of the timber blocking is to distribute lateral loads between the 
girders. With symmetric overhang loads and geometry, the horizontal bottom strut 
does distribute lateral compressive loads from opposing overhangs.  

• While conventional Beam Types IV and VI showed good rotational response for a 
typical overhang width of 3 ft, conventional Beam Types A, B and C experienced 
excessive beam rotations. In comparison, all of the Tx I-girders showed good 
rotational response for a typical overhang width of 3 ft. 

• Two different distributions of top bracing bars were considered in the investigation. 
The first case had the bracing distributed uniformly along the length (distributed 
bracing). The second case had the bracing concentrated at the ends of the beam (end 
bracing). End bracing can provide a good alternate for the distributed bracing that is 
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currently required by the TxDOT standard drawings. End bracing also allows the 
contractor to use the bracing detail of the Standard connection in Figure 9.1(a) that 
is found in the TxDOT standard drawings as a thickened deck can be used for this 
connection type.  

• Larger girder spacing leads to more restoring moment to the fascia girder of the 
girder system. 

• Larger beams showed better performance at resisting twist from the eccentric 
overhang due to the wider top flange, the wider bearing pad, and the larger beam 
self-weight. 

• The rigid-body model that was developed for predicting the twist of the girder had 
reasonable agreement with the FEA analysis. The model can be used to evaluate the 
girder twist during construction. The model can also be used to determine the 
amount of bracing necessary to restrain the twist during construction. Values for the 
stiffness and strength of key elements of the prestressed girder system are provided 
in Section 9.3.1 for design recommendations. 

 

 
Figure 9.1: Connection Configurations for Top Bracing 

9.2.2 System Buckling of Steel Girder Systems 

The instability of twin girder systems such as those used in bridge widening with 
combined flexure and torsion due to unbalanced overhang loads was investigated, and the 
parametric FEA studies were carried out on steel twin-girder systems to improve the 
understanding of the behavior. A closed-form solution for self-equilibrating overhang width of 
the twin girder system was derived and compared with the computational solutions. Conclusions 
from these studies are as follows:  

• The unbalanced eccentric overhang load leads to a significant amount of lateral 
displacement and twist of twin girder systems and should be taken into 
consideration in the design of systems for bridge widening applications or other 
cases with unbalanced loading on girder systems.  

• For girder systems failing in the global system buckling mode, the spacing of 
intermediate cross-frames did not have a significant impact on the buckling 
behavior of the girder systems that were considered. 

Top Bracing Bar 

R-bar 

Top Bracing Bar 30˚ 

R-bar 
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• The system mode of buckling becomes more critical for smaller girder spacings, 
larger span to width ratios of the girders, and larger overhang widths. 

• Proportioning interior and exterior overhang widths to produce zero net torque on 
the girder system will minimize the effects of the eccentric load due to the overhang 
loads. 

9.2.3 Local Stability of Web of Steel Girders 

The investigation into the steel fascia girder that is subjected to the construction overhang 
loads was conducted to improve the understanding of the structural behavior of the web in the 
girder. The extensive parametric studies by using the finite-element analyses were performed 
over the wide range of parameters, and produced the following conclusions.  

• Girders with a larger web slenderness experienced larger web deformations from 
the overhang brackets reacting on the web.  

• For a given overhang size and girder depth, web deformations increased as the 
overhang bracket reacted closer to the top flange of the girder. The larger 
deformations were caused by the increase in the bracket reaction that occurs as the 
spacing between the force couple from the overhang bracket decreased. The 
magnitude of the overhang bracket reaction force can be significantly reduced by 
adjusting the vertical dimension of the overhang bracket, thereby resulting in 
smaller web deformations. 

• The overhang width, the overhang bracket vertical dimension, the web slenderness 
and the stiffener spacing were the dominating factors for the lateral deformation in 
the web in the girder subjected to the overhang load. 

• The range of lateral deformations in the web for the cross sections studied was 
below the fabrication imperfection limit of D/150 specified in the Bridge Welding 
Code from the American Welding Society (2008). 

9.3 Design Recommendations 
The study improved the understanding of the impact of overhang construction on the 

structural behavior of the bridge girder systems. Based on the research results from field 
monitoring, laboratory testing, and analytical studies, design recommendations for overhang 
construction in concrete and steel bridges can be proposed and are summarized in the following 
subsections. 

9.3.1 Prestressed Concrete Girder Systems  

• The connection types for top bracing bars included two types of connections that 
are referred to as the flexible connection and the stiff connection. The flexible 
connection is representative of the actual connection configuration typically used in 
practice for the top bracing bar while the stiff connection is the connection 
configuration specified by the TxDOT standard drawings. The flexible connection 
is used because the widespread use of precast concrete panels makes it difficult to 
implement stiff connection. Both connection types are recommended to be used for 
bracing for concrete girder systems through the adequate amount of bracing 
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determined by the proposed overhang design equation. The stiff connection can 
generally be used in the end regions of the beams where the thickened end may be 
used without the deck panels.  

• Two top bracing distributions were considered: bracing distributed along the length 
of the bridge and end bracing. For the case of the distributed bracing, the top 
bracing bars were uniformly distributed along the girder length, while for the end 
bracing, the top bracing bars were concentrated at each end of the girder. The 
method of end bracing can provide an alternative over distributed bracing that is 
currently required by TxDOT standard drawing. The end bracing method is 
recommended especially when the concrete deck panels are not used at the 
thickened ends and the stiff connection is to be implemented.  

• The horizontal timber blocking in combination with the top bracing bars is much 
more effective at restraining rotation of the girder than the diagonal timber 
blocking. The horizontal timber blocking combined with top bracing provides 
restoring moment to the fascia girder. Therefore, horizontal timber blocking is 
recommended to be used for bracing of girder systems at the locations of the top 
bracing bars. 

• The rigid-body model is recommended to be used for evaluating the safety of 
concrete girder systems subjected to overhang construction loads. Key values of the 
bearing stiffness, the stiffness of the timber blocking, and the R-bar/bracing bar 
stiffness are given in Table 9.1 

Table 9.1: Design Values for Structural Components in Girder Systems 
Top 
Bracing 

Connection Type Stiffness Strength Note 

Stiff 39 (kip/in.) 3 (kips) R-bar (#4), Top Bracing Bar (#5) 

Flexible 15.5 
(kip/in.) 

1.2 (kips) 

Timber Blocking Young's 
Modulus 

Cross 
Sectional Area 

Timber Size (4 by 4 in.) 

700 ksi 12.25 in.2 

Bearing 
Pads 

Beam Type Pad Size Compressive 
Stiffness per 
Width 

Lateral Stiffness 

Length Width 

Conventional 
I-Beams 

7 in. 12 in. 31.2 ((kip/in.)/in.) 3.2 (kip/in.) 

7 in. 14 in. 34.7 ((kip/in.)/in.) 3.7 (kip/in.) 

7 in. 16 in. 37.8 ((kip/in.)/in.) 4.3 (kip/in.) 

7 in. 22 in. 44.9 ((kip/in.)/in.) 5.9 (kip/in.) 

9 in. 24 in. 87.4 ((kip/in.)/in.) 8.3 (kip/in.) 

Tx I-Girders 8 in. 21 in. 60.9 ((kip/in.)/in.) 6.4 (kip/in.) 

9 in. 21 in. 81 ((kip/in.)/in.) 7.2 (kip/in.) 

10 in. 21 in. 104 ((kip/in.)/in.) 8 (kip/in.) 
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9.3.2 System Buckling of Steel Girder Systems 

• Steel girder systems with a relatively large length to width ratio combined with 
unbalanced load from the overhangs are susceptible to the system mode of buckling 
that is critical during construction of the bridge deck. Therefore, the unbalanced 
ovehang load should be taken into consideration for design of systems in bridge 
widening applications or other cases with unbalanced loading on girder systems 

• For system buckling, proportioning the interior and exterior overhang widths to 
produce zero net torque on the girder system is suggested to minimize the effects of 
the eccentric overhang loads. 

9.3.3 Effects of Overhang Brackets on Local Deformations in Web Plates 

• For a given overhang width, the overhang bracket that reacts close to the top flange 
can produce substantial lateral reaction force on the web. Therefore, the use of the 
large ratio of overhang bracket vertical dimension to overhang width, which often 
results in overhang brackets reacting close to the bottom flange, is recommended to 
minimize the bracket reaction force. 

• The overhang width, the overhang bracket reaction height, the web slenderness, and 
the stiffener spacing were the dominating factors for the lateral deformation in the 
web in the girder that is subjected to the overhang load. Although these dominating 
factors intensified web lateral deformation, the range of lateral deformations in the 
web for the cross sections studied was below the fabrication imperfection limit of 
D/150 specified in the Bridge Welding Code from the American Welding Society 
(2008). In finished bridges, a web with an imperfection in the same direction as the 
lateral deformation imposed by the overhang bracket is likely to have web 
deformations larger than the D/150 limit, although the effects are most likely 
relatively minor.  
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Appendix A: System Buckling of Twin-Girder System  

A.1 Lateral Torsional Buckling of a Single Girder in Pure Bending 

Prior to discussing the system buckling mode, the classical solution for the lateral 
torsional buckling of a single girder that is subjected to pure bending is reviewed (Timoshenko 
and Gere, 1961). Figure A.1 shows the doubly symmetric beam that is simply supported with 
constant moment. At both ends, the twist of the beam is prevented but the beam is free to warp. 
The basic assumptions include linear-elastic material, small deformation and no cross-section 
distortion. When the lateral torsional buckling occurs to the beam, the beam will experience three 
distinct deformations that are in-plane bending (vertical bending), out-of-bending (lateral 
bending), and the twist of the cross-section as shown in the Figure A.2. 

 

 
Figure A.1 Simply Supported Beam Subjected to Pure Bending 
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Figure A.2 Deformed Configurations in Lateral Torsional Buckling Mode  

The global coordinate system of x, y and z coordinates is introduced along with the local 
coordinate system of ξ, η and ζ coordinates. While the global coordinate system is fixed, the axes 
of the local coordinate system coincide with the centroidal axes of the deformed beam. The 
positions of the local axes of the beam are defined by the vertical displacement, v, in the y-
direction, the lateral displacement, u, in the x-axis, and the rotation, φ, about the z-direction. The 
applied external moment, which is about the x-axis, can be related to the internal resisting 
moments with respect to ξ, η and ζ axes.  
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 Mஞ = Mφ (A.1) 

 M஗ = −Mφ (A.2) 

 M஖ = M dudz (A.3) 

 
The application of the Euler beam theory gives the three governing differential equations of 
equilibrium. 

 Mஞ = −EI୶ dଶvdzଶ (A.4) 

 M஗ = EI୷ dଶudzଶ (A.5) 

 M஖ = GJ dφdz − EI୵ dଷφdzଷ (A.6) 

 
Substitution of Equations (A.1) to (A.3) into Equations (A.4) to (A.6) gives 

 EI୶ dଶvdzଶ + M = 0 (A.7) 

 EI୷ dଶudzଶ + Mφ = 0 (A.8) 

 GJ dφdz − EI୵ dଷφdzଷ − M dudz = 0 (A.9) 

Equation (A.7) represents the in-plane bending behavior of the beam. Since Equation (A.7) is a 
function of the vertical displacement, v only, the solution to the equation (A.7) can be obtained 
independently from the other two Equations (A.8) and (A.9). The second and third equations that 
describe the lateral bending and twisting behavior of the beam, respectively, are coupled with 
each other and must be solved simultaneously. Differentiation of Equation (A.9) and substitution 
of the result into Equation (A.8) gives the differential equation that is a function of the twist 
rotation, φ only. 

  EI୵ dସφdzସ − GJ dଶφdzଶ − MଶEI୷ φ = 0 (A.10) 

Equation (A.10) that describes the lateral torsional buckling behavior of the beam is a fourth-
order linear differential equation with constant coefficients. By denoting “a” and “b” as  

 a = GJ2EI୵ , b = MଶEI୷EI୵ (A.11) 

Substitution of Equation (A.11) into Equation (A.10) gives 

  dସφdzସ − 2a dଶφdzଶ − bφ = 0 (A.12) 



 

 162

The general solution for Equation (A.12) can be assumed as 

 φ = A sin(mz) + Bcos(mz) + Csinh(nz) + Dcosh(nz) (A.13) 

where m and n are positive, real quantities that are functions of a and b. 

 
 m = ට−a + ඥaଶ + b, n = ටa + ඥaଶ + b, (A.14) 

The four arbitrary constants in Equation (A.13) can be determined by using the boundary 
conditions for a simply supported beam. The prevention of the twist of the beam at each end and 
the allowance of the warping deformation of the beam at each end provide the following 
conditions.  

 a) z = 0, φ = 0 

(A.15)  b) z = 0, φ" = 0 
 c) z = L, φ = 0 
 d) z = L, φ" = 0 

By using the first two boundary conditions in Equation (A.15), the constants B and D are 
determined as 

 B = D = 0 (A.16) 

Substitution of Equation (A.16) into Equation (A.13) and the application of the other two 
boundary conditions give the following equations. 

 A(mଶ + nଶ) sin(mL) = 0  

(A.17) 
 C(mଶ + nଶ) sinh(nL) = 0

Because m and n are both positive non-zero values and sinh(nL) is zero only if nL = 0, C must 
be zero. Thus, the non-trivial solution to Equation (A.17) becomes 

 sin(mL) = 0 (A.18) 

The smallest value of m that satisfies Equation (A.18) is 

 m = πL (A.19) 

Substitution of Equation (A.19) into Equation (A.14) gives 

 −a + ඥ(aଶ + b) = ቀπLቁଶ
(A.20) 

Substitution of Equation (A.11) into Equation (A.20) leads to the closed-form solution for the 
buckling moment of a doubly-symmetric I-beam in pure bending.  

 (M)ୡ୰ = πL ඨEI୷GJ + πଶEଶI୷I୵Lଶ (A.21) 
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A.2 System Buckling of a Twin-Girder System in Pure Bending 

Figure A.3 shows the original configuration of the cross-section of a twin-girder system 
as well as the deformed configuration of the system during system buckling. The girder system 
consists of doubly symmetric I-girders with a spacing of S.  

 

 
Figure A.3 Cross-Section View of Twin-Girder System in System Buckling Mode 

The constant moments, Mଵ and Mଶ are applied to the twin girders, respectively. For the 
deformed configuration of the cross-section in the figure, only the internal shear forces 
associated with the rotation of the entire cross-section about the shear center are depicted for 
clarity and will be explained in detail later. The simplifying assumption that the two girders are 
continuously braced by internal cross-frames with infinite stiffness leads to the assumption that 
the cross-section of the girder system remains rigid during system buckling. Although the stiff 
internal cross-frames can restrain the relative displacement or rotation between the two girders, 
they cannot prevent the displacement and rotation of the entire cross-section of the girder system. 
During the system buckling, the entire cross-section will experience the vertical and lateral 
displacements and the rotation about the shear center of the cross-section. The external moments M஗ and M஖ about the η and ζ axes, respectively can be related to the external moments Mଵ 
and Mଶ about the x axis.  

V′ 
V′ 

v′ v′

S 

SC

SC  

= SC (shear center) 

φ 

Mଵ Mଶ 

v 

u 

φ 

z 

y 

x 



 

 164

 ൫M஗൯ୣ୶୲ୣ୰୬ୟ୪ ≈ −(Mଵ + Mଶ)φ (A.22) 

 ൫M஖൯ୣ୶୲ୣ୰୬ୟ୪ ≈ (Mଵ + Mଶ) dudz (A.23) 

Attention should be paid to the fact that the total internal lateral bending resisting moment of the 
entire cross-section is the sum of the internal resisting moments of the two girders about the 
weak axis of the girder.  

 ൫M஗൯୧୬୲ୣ୰୬ୟ୪ ≈ 2EI୷ dଶudzଶ (A.24) 

where I୷ is the moment of inertia of the single girder about the weak axis.  
With respect to the vertical displacement, v, of the entire cross-section, each girder has a 

vertical differential displacement, v′ due to the rotation of the entire-cross section about the shear 
center. The relationship between the vertical differential displacement,v′, and the rotation angle, φ, is given by 

 vᇱ = 12 φS (A.25) 

The vertical differential displacement causes an additional internal moment and shear force on 
each girder. These internal moment and shear force can be determined by using the classical 
Euler beam bending theory.  

 Mᇱ = −EI୶ dଶv′dzଶ = − 12 EI୶S dଶφdzଶ  (A.26) 

 Vᇱ = dM′dz = − 12 EI୶S dଷφdzଷ  (A.27) 

Since the vertical differential displacements of the two girders are equal and opposite, the 
internal moments and shear forces on the two girders are also equal in magnitude and opposite in 
sign. Therefore, for the entire cross-section, the sum of the additional moments or the additional 
shear forces cancels out each other. However, the additional shear forces forms a couple and, 
thus, increases the internal torsional resistance of the entire cross-section, which is given by  

 Tᇱ = VᇱS = − 12 EI୶Sଶ dଷφdzଷ  (A.28) 

The total internal torsional resistance of the twin-girder system includes the St. Venant torsion, 
the warping torsion and the shear couple of Equation (A.28). Thus, the total internal torsional 
resistance becomes 

 ൫M஖൯୧୬୲ୣ୰୬ୟ୪ = 2GJ dφdz − 2EI୵ dଷφdzଷ − 12 EI୶Sଶ dଷφdzଷ (A.29) 

Equating Equations (A.22) and (A.24) , and Equations (A.23) and (A.29), respectively gives  

 EI୷ dଶudzଶ + (Mଵ + Mଶ)2 φ = 0 (A.30) 

 GJ dφdz −  E ൬I୵ + 14 I୶Sଶ൰ dଷφdzଷ − (Mଵ + Mଶ)2 dudz = 0 (A.31) 
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The average of the external moments on the two girders is 

 Mୟ୴ୣ = (Mଵ + Mଶ)2  (A.32) 

Differentiation of Equation (A.31) and substitution of the resulting expression into Equation 
(A.30) gives 

  E ൬I୵ + 14 I୶Sଶ൰ dସφdzସ − GJ dଶφdzଶ − Mୟ୴ୣଶEI୷ φ = 0 (A.33) 

Comparison of Equation (A.33) to Equation (A.10) indicates that the Mୟ୴ୣ,ୡ୰ can be determined 

by replacing the I୵ in Equation (A.21) with ቀI୵ + ଵସ I୶Sଶቁ. Therefore, the solution for the 

Equation (A.33) becomes 

 Mୟ୴ୣ,ୡ୰ = πL  ඨEI୷GJ + πଶEଶI୷ ቀI୵ + 14 I୶SଶቁLଶ (A.34) 

Substitution of I୵ = I୵dଶ/4 for doubly symmetric I-sections into Equation (A.34) gives 

 Mୟ୴ୣ,ୡ୰ = πL  ඨEI୷GJ + πଶEଶI୷൫I୷dଶ + I୶Sଶ൯4Lଶ (A.35) 

Finally, the system buckling capacity of a twin-girder system with doubly symmetric I-sections 
can be expressed as 

 (Mଵ + Mଶ)ୡ୰ = 2πL ඨEI୷GJ + πଶEଶI୷൫I୷dଶ + I୶Sଶ൯4Lଶ (A.36) 

where, ܮ= span length, ܧ= modulus of elasticity, ܩ= shear modulus, ܫ௫= moment of inertia about 
strong axis, ܫ௬= moment of inertia about weak axis, ܬ= torsional constant, ݀= distance between 
flange centroids, and ܵ= girder spacing. 
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Appendix B: Bearing Pad Stiffness 

This chapter discusses the method for determining the compressive and shear stiffnesses 
for elastomeric bearing pads. The values of the compressive stiffness and shear stiffness for 
elastomeric bearing pads that were calculated based on the method presented in this chapter were 
used throughout the study.  

Figure shows the dimensional parameters for an elastomeric bearing pad. The parameters 
for dimensions for the elastomeric bearing pad are defined as follows. 

=) Area of bearing pad =ܣ length of bearing pad parallel to the length of the beam ܹ= width of bearing pad perpendicular to the length of the beam =ܮ  =) ℎ௥௜= thickness of elastomer layer ݅ ℎ௥௧= total elastomer thickness (ܹܮ ∑ ℎ௥௜) ℎ௦= thickness of reinforcing steel shim 
 

The shape factor of elastomer layer ݅ is defined as the ratio of plan area of layer ݅ to area 
of perimeter free to bulge.  

 ௜ܵ = ܮ)2ℎ௥௜ܹܮ + ܹ) (B.1)

 
Figure B.1 Dimensions for Elastomeric Bearing Pad 

 
The most accepted method of determining compressive modulus for a reinforced 

elastomeric bearing pad is given as (Muscarella and Yura, 1995). 

௖௜ܧ  = 1)ܩ3 + 2݇ ௜ܵଶ) (B.2)

where ܧ௖= effective compressive modulus of elastomeric layer ݅, ܩ= shear modulus of a bearing 
pad, k= constant dependent on elastomer hardness (0.75, 0.60, and 0.55 for 50, 60, and 70 
durometer elastomeric material, respectively), ௜ܵ= shape factor of layer ݅. The compressive 
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stiffness for layer ݅ can be related to the effective compressive modulus, ܧ௖, for a given area (ܣ) 
and thickness (ℎ௥௜) of the layer ݅.  

 ݇௖௜ = ℎ௥௜ܣ௖௜ܧ  (B.3)

For purposes of determining the compressive stiffness of the bearing pad that consists of 
multiple layers, the elastomer layers in the bearing pad can be considered as springs in series. 
Thus, the compressive stiffness of the bearing pad that has ݊ elastomer layers becomes 

 
1݇௖ = ෍ 1݇௖௜

௡
௜ୀଵ  (B.4)

By applying the stiffness reduction factor of 3, the initial compressive stiffness of the 
bearing pad can be expressed as 

 ݇௖଴ = 13 ݇௖ (B.5)

The reason for using the stiffness reduction factor for the compressive stiffness of the 
bearing pad is as follows. Figure  B.2 shows the graph of the typical compressive stress-strain 
relationships for a 3 shim flat bearing and a 3 shim 4% tapered bearing that was presented by 
Muscarella and Yura (1995). The graph shows that the bearings behave linearly for small stress 
levels, and exhibit strain hardening for further load. The Equation (2.1) for the compressive 
modulus for a reinforced elastomeric bearing pad is more agreeable with the curves between 
compressive stresses of 500 psi and 1500 psi, which is the most common working range for 
bearings (Muscarella and Yura, 1995). 
 

 
Figure B.2 Compressive Stress-Strain Curves for 70 Durometer Flat and Tapered 3-Shims 

Bearings (from Muscarella and Yura (1995)) 

The range of compressive stresses of 500 psi and 1500 psi corresponds to service load 
levels rather than construction load levels. In general, the construction load levels are well below 
the service load levels. Therefore, the use of the initial slope of the material curve was 
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considered suitable for girder systems under construction load levels, typically for girder systems 
with short span lengths. To convert the compressive modulus of Equation (2.1) to the initial 
compressive modulus, the stiffness reduction factor of 3 was used.  

The shear stiffness of the bearing pad can be determined by using the plan area, total 
thickness, and shear modulus of the bearing pad, and can be expressed as 

 ݇௦ = ℎ௥௧ (B.6)ܣܩ

The use of the procedure to determine the initial compressive stiffness (݇௖଴) and shear 
stiffness (݇௦) of the bearing pad that was discussed above is illustrated by using the rectangular 
bearing pad that was used in the beam overturning test. The parameters for dimensions for the 
rectangular bearing pad in the beam overturning test were as follows. 

 ݊ =8 elastomer layers 
ܮ  = 7" ܹ = ܣ "16 = 112 ݅݊.ଶ ℎ௥ଵ = ℎ௥଼ = 0.25" ℎ௥ଷ = ℎ௥ସ = ℎ௥ହ = ℎ௥଺ = ℎ௥଻ = 0.27" 

 ℎ௥௧ = 2.125" ℎ௦ = 0.105" 
 
While the shear modulus, ܩ, for the elastomer hardness of 50 ranges from 0.077 ksi to 

0.11 ksi, the lower limit of 0.077 ksi was used throughout the study, which is a conservative 
value from the design point of view. For the elastomer hardness of 50, the constant, ݇, dependent 
on elastomer hardness was 0.75. 

The use of Equation (B.1) through Equation (B.3) gives the shape factor, compressive 
modulus, and compressive stiffness for each layer, which are listed in Table B.1. The application 
of Equation (B.4) gives the compressive stiffness of the bearing pad.  

Table B.1 Compressive Stress for Each Layer 
Layer Number ݅ 1 2 3 4 5 6 7 8 
Thickness (in.) 0.25 0.27 0.27 0.27 0.27 0.27 0.27 0.25 ௜ܵ 9.74 8.99 8.99 8.99 8.99 8.99 8.99 9.74 ܧ௖௜ (ksi) 33.1 28.2 28.2 28.2 28.2 28.2 28.2 33.1 ݇௖௜ (k/in.) 14827.3 11676.2 11676.2 11676.2 11676.2 11676.2 11676.2 14827.3 

 
 1݇௖ = ൬ 114827.3 + 111676.2 + 111676.2 + 111676.2 + 111676.2 + 111676.2 + 111676.2 + 114827.3൰ 

 ݇௖ = 1541.4 k/in. 
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By applying Equation (B.5), the initial compressive stiffness of the bearing pad is 
calculated as 

 ݇௖଴ = ଵହସଵ.ସ ଷ = 513.81 kips/in. 

The use of Equation (B.6) gives the shear stiffness of the bearing pad.  ݇௦ = ଴.଴଻଻×ଵଵଶଶ.ଵଶହ = 4.06 kips/in. 

 
TxDOT provides the standard drawings for elastomeric bearing pads that match the 

conventional I-beams and the Texas I-girders. For reference, the initial compressive stiffness and 
shear stiffness for theses elastomeric bearing pads were calculated by using the method discussed 
above and listed in Table B.2. 

Table B.2 Stiffness Values per Single Elastomeric Bearing Pad 

Beam Type 

Pad Size Initial Compressive 
Stiffness per Width ൬݇݅݌/݅݊.݅݊. ൰ 

Lateral Stiffness (݇݅݌/݅݊. ) Length (in.) Width (in.) 

I-Beams 

7 12 31.2 3.2 
7 14 34.7 3.7 
7 16 37.8 4.3 
7 22 44.9 5.9 
9 24 87.4 8.3 

I-Girders 
8 21 60.9 6.4 
9 21 81.0 7.2 
10 21 104.0 8.0 
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Appendix C: Comparison of FEA Results for Flexible and Stiff 
Connections 

This section contains the additional graphs that demonstrate comparisons of FEA results 
for flexible and stiff connections (Figures C.1–C.11.). The girder system consisted of four 
girders of a span length 60 ft and a girder spacing of 7.7 ft. the bracing was distributed uniformly 
along the length of the girder.  
 

 
Figure C.1 Comparison for Flexible and Stiff Connection for Beam Type A 
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Figure C.2 Comparison for Flexible and Stiff Connection for Beam Type B 

 

 
Figure C.3 Comparison for Flexible and Stiff Connection for Beam Type C 
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Figure C.4 Comparison for Flexible and Stiff Connection for Beam Type IV 

 

 
Figure C.5 Comparison for Flexible and Stiff Connection for Tx28 
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Figure C.6 Comparison for Flexible and Stiff Connection for Tx34 

 

 
Figure C.7 Comparison for Flexible and Stiff Connection for Tx40 
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Figure C.8 Comparison for Flexible and Stiff Connection for Tx46 

 

 
Figure C.9 Comparison for Flexible and Stiff Connection for Tx54 
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Figure C.10 Comparison for Flexible and Stiff Connection for Tx62 

 

 
Figure C.11 Comparison for Flexible and Stiff Connection for Tx70 
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Appendix D: Design Examples 

The purpose of this appendix is to provide design examples based on the procedure 
proposed in the Chapter 6 of this report. The examples are intended to illustrate the overhang 
design method. Examples 1 and 2 demonstrate the overhang design for flexible connections, 
while Example 3 demonstrates the overhang design for stiff connection. Example 1 shows the 
overhang design for a concrete girder system of the AASHTO Type IV beam that is similar to 
the Airport Concrete Bridge and Example 2 shows the overhang design for a concrete girder 
system of AASHTO Type B Beam that is similar to Hutto Concrete Bridge.  

Example 1: Find if the minimum required bracing is sufficient for a concrete girder 
system consisting of AASHTO Type IV beams of an overhang width of 3 ft. The connection 
between the bracing bars and the R-bars consist of the flexible connection. 

Beam Type: Beam Type IV 
Line Unit Weight of Beam: 821 ݂݈݌ 
Width of Top Flange of Beam: 20 in. ܮ, Span Length: 120 ft ݏ௕௦, Beam Spacing: 7.33 ft 
# of Beams: 7 ݓ௕௥ௗ, Width of Bridge: (# of Beams – 1)* ݏ௕௦ = 43.98 ft 
Connection Type of Top Bracing: Flexible Connection ݊௦௧, # of Top Braces: 5 (minimum required) from TxDOT standard drawing ݊௪ௗ, # of Wood Blocking: 5 (minimum required) ݀௕௥, Bracing Moment Arm: 46 in. ݓ௢௛, Overhang Width: 3 ft (from center of beam to edge of overhang) ݐ௦, Thickness of Slab: 8 in. 
Thickness of Slab Haunch: 10 in.  
Bearing Width: 22 in. 

 
Step 1: Calculate Effective Eccentric Force and Its Eccentricity ܨ௪௕, Half of Work Bridge Weight: = 23.5/1000/12*ݓ௕௥ௗ/2 

              = 23.5/1000*43.98/2 = 0.517 kip ܨ௢௛, Weight of Net Overhang: = ߱௖ݐ௦(ݓ௢௛ −  ܮ(௜ௗܮ
            = 0.15*8/12*(36-10)/12*120 = 26 kips ܨ௦ௗ, Half of Finishing Equipment Weight: = 5.7+ ܨ௪௕ 
                = 5.7+0.517 = 6.22 kips ܨ௪௞, Weight of workers: = 1.25 kips ܨ௙௪, Weight of Overhang Formwork : = ߱௙௪(2 × 12 + ௢௛ݓ −  ܮ(௜ௗܮ
                = 0.01*(2*12+36-10)/12*120 = 5 kips ܮ௢௛ Eccentricity of net overhang weight: = ܮ௜ௗ + ௢௛ݓ) −  ௜ௗ)/2ܮ
                 = 10+(36-10)/2 = 23 in.           ܮ௦ௗ Eccentricity of half of finishing equipment weight: = ݓ௢௛ 
                 = 36 in.           ܮ௪௞ Eccentricity of weight of workers: = ݓ௢௛ + 1 × 12 
                 = 36+1*12 = 48 in.           
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௜ௗܮ = :௙௪ Eccentricity of weight of overhang formworkܮ + (2 × 12 + ௢௛ݓ −  ௜ௗ)/2ܮ
                 = 10+(2*12+36-10)/2 = 35 in.           ܨ = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ݁ ௙௪ = (26+6.22+1.25+5) = 38.5 kipsܨ = ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢி೚೓ାிೞ೏ାிೢೖାி೑ೢ  = (26*23+6.22*36+1.25*48+5*35)/ (26+6.22+1.25+5) 

             = 27.5 in.  
 

Step 2: Calculate Quarter-Point Lift-off Force ௕ܹ௠, Weight of Beam = (821 ݂݈݌*L) = (821/1000)*(120) = 98.52 kips ௦ܹ௛, Weight of Slab Haunch = (߱௖2ܮ௜ௗ(ݐ௦ +   ܮ(2
             = 0.15*(2*10/12)(10/12)*(120) = 25 kips ௜ܹௗ, Half of Weight of Interior Deck = ߱௖ݐ௦ݏ)ܮ௕௦ −  ௜ௗ)/2ܮ2
               = 0.15*(8/12)(120)(7.33-2*10/12)/2 = 33.98 kips ଴ܹ= ௕ܹ௠+ ௦ܹ௛= 98.52+25 =123.52 kips 
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭  = 5*1.2 = 6 kips ܮ௜ௗ, Half of Top Flange Width = 10 in. ݓ௕, Bearing Width = 22 in. ݀௕௥, Bracing Moment Arm = 46 in. ܨொ௉௅, Quarter-Point Lift-off Force = 

ସௐ೔೏௅೔೏ାସ୔ౣ౗౮ௗ್ೝା௪್(ௐబାௐ೔೏)ସ௘ି௪್  

= (4*33.98*10+4*6*46+22*(123.52+33.98)/(4*27.5-22) = 67.4 kips 
Check ܨ(=38.5 kips) ≤ ܨொ௉௅(=67.4 kips), OK! 
 

Step 3: Calculate Beam Rotations ݇௕, total vertical stiffness of bearing per width = 2*44.9 ቀ௞௜௣/௜௡.௜௡. ቁ= 89.8 ቀ௞௜௣/௜௡.௜௡. ቁ ߠଵ = 12݇௕ݓ௕ଷ ݁ܨ) − ௜ܹௗܮ௜ௗ − ௠ܲ௔௫݀௕௥)(180 ⁄ߨ ) 

 = 12/(89.8*223)*(38.5*27.5-33.98*10-6*46)*(180/π) = 0.32 degree ≤ 0.5, OK! 
ଶ= ଼ଽ௞್ߠ  (ிାௐబାௐ೔೏)య൫(ିଶ௘ା௪್)ிା௪್(ௐబାௐ೔೏)ାଶ௅೔೏ௐ೔೏ାଶௗ್ೝ୔ౣ౗౮൯మ   (degree) (ߨ/180)

 = 8/(9*89.8)*(38.5+123.52+33.98)3/((-2*27.5+22)*38.5+22*(123.52+33.98)   
  +2*10*33.98+2*46*6)2*(180/π) = 0.36 degree ≤ 0.5, OK! 
 

Step 4: Summarize Final Design 
Use 5 top bracing bars in flexible connection for overhang of 3 ft.  

 
Example 2: Find if the minimum required bracing is sufficient for a concrete girder 

system of AASHTO Type B beams of a overhang width of 3ft. The top bracing bars are fastened 
to the R-bars with flexible connections. 

Beam Type: Beam Type B 
Line Unit Weight of Beam: 375 ݂݈݌ 
Width of Top Flange of Beam: 12 in. ܮ, Span Length: 60 ft ݏ௕௦, Beam Spacing: 6.88 ft 
# of Beams: 9 
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 ௕௦ = 55.04 ftݏ *௕௥ௗ, Width of Bridge: (# of Beams – 1)ݓ
Connection Type of Top Bracing: Flexible Connection ݊௦௧, # of Top Braces: 5 (minimum required) from TxDOT standard drawing ݊௪ௗ, # of Wood Blocking: 5 (minimum required) ݀௕௥, Bracing Moment Arm: 28 in. ݓ௢௛, Overhang Width: 3 ft (from center of beam to edge of overhang) ݐ௦, Thickness of Slab: 8 in. 
Thickness of Slab Haunch: 10 in.  
Bearing Width: 14 in. 

 
Step 1: Calculate Effective Eccentric Force and Its Eccentricity ܨ௪௕, Half of Work Bridge Weight: = 23.5/1000*ݓ௕௥ௗ/2 

              = 23.5/1000*55.04/2 = 0.647 kip ܨ௢௛, Weight of Net Overhang: = ߱௖ݐ௦(ݓ௢௛ −  ܮ(௜ௗܮ
            = 0.15*8/12*(36-6)/12*60 = 15 kips ܨ௦ௗ, Half of Finishing Equipment Weight: = 5.7+ ܨ௪௕ 
                = 5.7+0.647 = 6.35 kips ܨ௪௞, Weight of workers: = 1.25 kips ܨ௙௪, Weight of Overhang Formwork: = ߱௙௪(2 × 12 + ௢௛ݓ −  ܮ(௜ௗܮ
                = 0.01*(2*12+36-6)/12*60 = 2.7 kips ܮ௢௛ Eccentricity of net overhang weight: = ܮ௜ௗ + ௢௛ݓ) −  ௜ௗ)/2ܮ
                 = 6+(36-6)/2 = 21 in.           ܮ௦ௗ Eccentricity of half of finishing equipment weight: = ݓ௢௛ 
                 = 36 in.           ܮ௪௞ Eccentricity of weight of workers: = ݓ௢௛ + 1 × 12 
                 = 36+1*12 = 48 in.           ܮ௙௪ Eccentricity of weight of overhang formwork: = ܮ௜ௗ + (2 × 12 + ௢௛ݓ −  ௜ௗ)/2ܮ
                 = 6+(2*12+36-6)/2 = 33 in.           ܨ = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ݁ ௙௪ = (15+6.35+1.25+2.7) = 25.3 kipsܨ = ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢி೚೓ାிೞ೏ାிೢೖାி೑ೢ , 

 = (15*21+6.35*36+1.25*48+2.7*33)/ (15+6.35+1.25+2.7) = 27.38 in.  
 

Step 2: Calculate Quarter-Point Lift-off Force ௕ܹ௠, Weight of Beam = (375 ݂݈݌*L) = (375/1000)*(60) = 22.5 kips ௦ܹ௛, Weight of Slab Haunch = (߱௖2ܮ௜ௗ(ݐ௦ +   ܮ(2
             = 0.15*(2*6/12)(10/12)*(60) = 7.5 kips ௜ܹௗ, Half of Weight of Interior Deck = ߱௖ݐ௦ݏ)ܮ௕௦ −  ௜ௗ)/2ܮ2
               = 0.15*(8/12)(60)(6.88-2*6/12)/2 = 17.64 kips ଴ܹ= ௕ܹ௠+ ௦ܹ௛= 22.5+7.5 = 30 kips 
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭  = 5*1.2 = 6 kips ܮ௜ௗ, Half of Top Flange Width = 6 in. ݓ௕, Bearing Width = 14 in. ݀௕௥, Bracing Moment Arm = 28 in. ܨொ௉௅, Quarter-Point Lift-off Force = 

ସௐ೔೏௅೔೏ାସ୔ౣ౗౮ௗ್ೝା௪್(ௐబାௐ೔೏)ସ௘ି௪್  



 

 180

= (4*17.64*6+4*6*28+14*(30+17.64))/(4*27.38-14) = 18.45 kips 
Check ܨ(=25.3 kips) ≥ ܨொ௉௅(=18.45 kips), NG! 
Increase the number of top bracing bars by trial and error 
 

Step 3: Recalculate Quarter-Point Lift-off Force 
Try 14 for the number of top bracing bars 

Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭  = 14*1.2 = 16.8 kips ܨொ௉௅, Quarter-Point Lift-off Force = 
ସௐ೔೏௅೔೏ାସ୔ౣ౗౮ௗ್ೝା௪್(ௐబାௐ೔೏)ସ௘ି௪್  

= (4*17.64*6+4*16.8*28+14*(30+17.64))/(4*27.38-14) = 31.1 kips 
Check ܨ(=25.3 kips) ≤ ܨொ௉௅(=31.1 kips), OK! 
 

Step 4: Calculate Beam Rotations ݇௕, total vertical stiffness of bearing per width = 2*34.7 = 69.4 ቀ௞௜௣/௜௡.௜௡. ቁ ߠଵ= ( ) ( )π/180
3

×−− brmaxidid

b

dPLW
k

12
Fe

wb

 

 = 12/(69.4*143)*(25.3*27.38-17.64*6-16.8*28)*(180/π) = 0.42 degree ≤ 0.5, OK! 
ଶ= ଼ଽ௞್ߠ  (ிାௐబାௐ೔೏)య൫(ିଶ௘ା௪್)ிା௪್(ௐబାௐ೔೏)ାଶ௅೔೏ௐ೔೏ାଶௗ್ೝ୔ౣ౗౮൯మ   (degree) (ߨ/180)

 = 8/(9*69.4)*(25.3+30+17.64)3/((-2*27.38+14)*25.3+14*(30+17.64)   
  +2*6*17.64+2*28*16.8)2*(180/π) = 0.46 degree ≤ 0.5, OK! 
 

Step 5: Summarize Final Design 
Use 14 top bracing bars in flexible connection for overhang of 3 ft.  
Keep 5 wood blockings. 

 
Example 3: Find the minimum required bracing for a concrete girder system of 

AASHTO Type B beams with a 3ft overhang width. The top bracing bars are fastened to the R-
bars with the stiff connection. 

Beam Type: Beam Type B 
Line Unit Weight of Beam: 375 ݂݈݌ 
Width of Top Flange of Beam: 12 in. 
Width of Bottom Flange of Beam: 18 in. ܮ, Span Length: 60 ft ݏ௕௦, Beam Spacing: 6.88 ft 
# of Beams: 9 ݓ௕௥ௗ, Width of Bridge: (# of Beams – 1)* ݏ௕௦ = 55.04 ft 
Connection Type of Top Bracing: Stiff Connection ݊௦௧, # of Top Braces: 5 from TxDOT standard drawing ݊௪ௗ, # of Wood Blocking: 5 from TxDOT standard drawing 
Length of Wood Blocking: (Beam Spacing - Width of Bottom Flange of Beam)  
           = ( 6.88-18/12) = 5.38 ft ݀௕௥, Bracing Moment Arm: 28 in. ݓ௢௛, Overhang Width,: 3 ft (from center of beam to edge of overhang) 
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 .௦, Thickness of Slab: 8 inݐ
Thickness of Slab Haunch: 10 in.  
Bearing Width: 14 in. 

 
Step 1: Calculate Effective Eccentric Force and Its Eccentricity ܨ௪௕, Half of Work Bridge Weight: = 23.5/1000*ݓ௕௥ௗ/2 

              = 23.5/1000*55.04/2 = 0.647 kip ܨ௢௛, Weight of Net Overhang: = ߱௖ݐ௦(ݓ௢௛ −  ܮ(௜ௗܮ
            = 0.15*8/12*(36-6)/12*60 = 15 kips ܨ௦ௗ, Half of Finishing Equipment Weight: = 5.7+ ܨ௪௕ 
                = 5.7+0.647 = 6.35 kips ܨ௪௞, Weight of workers: = 1.25 kips ܨ௙௪, Weight of Overhang Formwork: = ߱௙௪(2 × 12 + ௢௛ݓ −  ܮ(௜ௗܮ
                = 0.01*(2*12+36-6)/12*60 = 2.7 kips ܮ௢௛ Eccentricity of net overhang weight: = ܮ௜ௗ + ௢௛ݓ) −  ௜ௗ)/2ܮ
                 = 6+(36-6)/2 = 21 in.           ܮ௦ௗ Eccentricity of half of finishing equipment weight: = ݓ௢௛ 
                 = 36 in.           ܮ௪௞ Eccentricity of weight of workers: = ݓ௢௛ + 1 × 12 
                 = 36+1*12 = 48 in.           ܮ௙௪ Eccentricity of weight of overhang formwork: = ܮ௜ௗ + (2 × 12 + ௢௛ݓ −  ௜ௗ)/2ܮ
                 = 6+(2*12+36-6)/2 = 33 in.           ܨ = ௢௛ܨ + ௦ௗܨ + ௪௞ܨ + ݁ ௙௪ = (15+6.35+1.25+2.7) = 25.3 kipsܨ = ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢி೚೓ାிೞ೏ାிೢೖାி೑ೢ , 

 = (15*21+6.35*36+1.25*48+2.7*33)/ (15+6.35+1.25+2.7) = 27.38 in.  
 

Step 2: Check for Rupture of R-bar ௜ܹௗ, Half of Weight of Interior Deck = ߱௖ݐ௦ݏ)ܮ௕௦ −  ௜ௗ)/2ܮ2
               = 0.15*(8/12)(60)(6.88-2*6/12)/2 = 17.64 kips ܮ௜ௗ, Half of Top Flange Width = 6 in. ݓ௕, Bearing Width = 14 in. ݇௕, total vertical stiffness of bearing per width = 2*34.7 = 69.4 ቀ௞௜௣/௜௡.௜௡. ቁ kୱ୲, Total Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.) = 5*39  
             = 195 kip/in. ݇௪ௗ, Total Wood Blocking Stiffness = (# of Wood Blockings)*(11025/(5.38*12) kip/in.)      
               = 5*(11025/(5.38*12)) = 853.86 kip/in. 
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭  = 5*3 = 15 kips ݀௕௥, Bracing Moment Arm = 28 in. ߠ஻௥௒, Beam Rotation at Rupture of R-bar = 

௞ೞ೟ା௞ೢ೏௞ೞ೟௞ೢ೏ௗ್ೝ P୫ୟ୶(180/ߨ) 

           = (195+853.86)/(195*853.86*28)*15*180/π = 0.193 degree ߠ , Beam Rotation for Given Overhang Width: =  (ி௘ିௐ೔೏௅೔೏)ቆೖ್ೢయ್భమ ାೖೞ೟ೖೢ೏೏್ೝమೖೞ೟శೖೢ೏ ቇ  (ߨ/180)

= (25.3*27.38-17.64*6)/(69.4*143/12+195*853.86*282/(195+853.86))*(180/π) 
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= 0.239 degree  
Check 0.239 degree ≥ ߠ஻௥௒(=0.193) degree, NG! 
Increase the number of top bracing bars by trial and error 
 

Step 3: Recheck for Rupture of R-bar by Increased Number of Top Bracing Bars 
Try 7 for the number of top bracing bars (increase 5 to 7). 

 kୱ୲, Total Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.) = 7*39  
             = 273 kip/in. ݇௪ௗ, Total Wood Blocking Stiffness = 853.86 kip/in. (same as in the previous step) 
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶୭  = 7*3 = 21 kips ߠ஻௥௒, Beam Rotation at Rupture of R-bar = 

௞ೞ೟ା௞ೢ೏௞ೞ೟௞ೢ೏ௗ್ೝ P୫ୟ୶(180/ߨ) 

           = (273+853.86)/(273*853.86*28)*21*180/π = 0.208 degree ߠ, Beam Rotation for Given Overhang Width: =  (ி௘ିௐ೔೏௅೔೏)ቆೖ್ೢయ್భమ ାೖೞ೟ೖೢ೏೏್ೝమೖೞ೟శೖೢ೏ ቇ  (ߨ/180)

= (25.3*27.38-17.64*6)/(69.4*143/12+273*853.86*282/(273+853.86))*(180/π) 
= 0.189 degree  
Check 0.189 degree ≤ ߠ஻௥௒(=0.208) degree, OK! 
 

Step 4: Summarize Final Design 
Use 7 top bracing bars in stiff connection for overhang of 3 ft.  
Keep 5 wood blockings. 
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Appendix E: Stability of Webs 

This section contains the additions graphs of effects of the stiffener spacing on the 
structural behavior of the web of the girder subjected to the overhang loads (Figures E.1–E.5). 
The FEA girder models for the graphs in this section had no imperfection in the web. The 
overhang bracket was positioned at midheight of the web, and the stiffener spacing considered 
included 10 ft. and 30 ft.  
 

 
Figure E.1 Effect of Stiffener Spacing for Type D56 with Overhang Width of 3 ft. 
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Figure E.2 Effect of Stiffener Spacing for Type D38 with Overhang Width of 3 ft. 

 

 
Figure E.3 Effect of Stiffener Spacing for Type D75 with Overhang Width of 4 ft. 
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Figure E.4 Effect of Stiffener Spacing for Type D56 with Overhang Width of 4 ft. 

 

 
Figure E.5 Effect of Stiffener Spacing for Type D
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