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Chapter 1. Introduction

1.1 Overview

Economic constraints on the design of bridges usually necessitate the use of as few
girders as possible across the bridge width. The girders are typically uniformly spaced
transversely with the deck extending past the fascia girders, thereby resulting in an overhang.
Almost every concrete or steel girder bridge incorporates overhangs. A typical overhang on a
prestressed concrete girder is shown in Figure 1.1. The width of overhangs is usually
proportioned such that the same girder sections can be used for the interior and fascia girders.
Although many transportation departments throughout the United States provide guidelines on
overhang geometry, those guidelines are generally based upon rules of thumb and lack
justification based upon research.

Overhang

Fascia Girder

Figure 1.1: Overhang in Typical Concrete Girder Bridge

Overhang construction often produces torsional loads on the girder system that are not
usually considered in the design of the bridge. Very limited bracing is provided for prestressed
concrete girder systems during construction, and these bracing systems are based upon typical
details that do not consider the specific loading for a given application. In many situations, the
bracing detail that is actually used does not match the standard bracing detail on the plans, which
results in a relatively flexible system.

Although steel girder systems do provide significant bracing to prevent lateral torsional
buckling, they are not typically designed for the torque load as a result of overhang construction.
The major overhang loads during construction include the concrete on the overhang and the
bridge deck finishing screed. The concrete in the overhang has a relatively large eccentricity with
respect to the fascia girder compared to the construction load coming from the interior portion of
the girder, thereby leading to a net torque on the fascia girder. The bridge deck finishing screed



wheels are typically positioned near the edge of the overhang, which produces another
significant eccentric load.

The torsional loading from the overhang has led to problems in both concrete and steel
girder bridges during construction. The main issue with concrete girder bridges is that the
overhang load can generate excessive torsional rotation in the fascia girder. This excessive
rotation can cause potential problems of construction safety and maintenance. Specifically,
overturning failures of the fascia girder in a concrete bridge can occur during construction. The
potential maintenance issues can also occur if the girder rotations lead to shifts in the deck steel
reinforcement that might compromise the concrete cover. The reduced concrete cover can lead to
long-term corrosion in the deck steel as well as premature deck cracking. For steel girder
bridges, the torque from the overhang can lead to both global and local stability issues. Most
global stability issues with the overhangs occur in bridge widening projects. The widening is
often isolated from the original construction to permit vertical deflections during deck casting.
However, the widening often consists of a two- or three-girder system with a large length-to-
width ratio. From a lateral-torsional buckling perspective, the girders are susceptible to a system
buckling mode that is relatively insensitive to the spacing between intermediate cross-frames.
The low resistance to lateral torsional buckling, coupled with the torque from the overhang
brackets, has led to systems that may have been dangerously close to failure. In addition to the
global stability issues, a number of potential problems are related to the local stability of the
girder webs. In many instances the overhang brackets exert large concentrated forces on the
webs of the steel girders. The forces from the overhang bracket can distort the web, thereby
leading to local instabilities or large web imperfections that get locked into the girders once the
deck cures.

The Texas Department of Transportation (TxDOT) funded a research investigation
entitled “Impact of Overhang Construction on Girder Design” (TxDOT Project 0-5706) to
improve the understanding of the impact of overhang construction on the behavior of concrete
and steel girder bridges. In this report, the overhang geometry that creates critical conditions is
identified, and design methodologies and recommendations for overhang construction are
formulated.

The remainder of this chapter provides a discussion of scope of the research as well as
providing a brief outline of the remainder of this report.

1.2 Scope

The results presented in this report were part of TxXDOT Research Study 0-5706, “Impact
of Overhang Construction on Girder Design.” The research project included field monitoring,
laboratory testing, and parametric finite element analyses. Three bridges were monitored as part
of the field testing during construction. The bridges include a concrete I-beam bridge, a straight
steel I-girder bridge with skew supports, and a curved steel I-girder bridge. Results from the field
tests are presented and discussed by Fasl (2008). The field test data is used in this report for
validation of finite element analytical (FEA) models. In addition to the field tests, laboratory
tests on key elements of the concrete girder systems were necessary for validation of the FEA
models. The validated FEA models were used to conduct parametric investigations to improve
the understanding of the general behavior of concrete and steel girder systems. Although the
computational models provide accurate means of evaluating the behavior and safety of overhang
construction in bridges, extensive three-dimensional FEA modeling is not practical for general
bridge design. As a result, simple design solutions that can be used to evaluate girder safety are



necessary. Therefore, closed-form solutions for lateral rotation of the concrete girder under
unbalanced overhang loads are derived and used to develop a design methodology for overhang
construction. Hand solutions for proportioning the geometry for steel girder systems are also
formulated.

1.3 Organization

This report consists of nine chapters. Following this introductory chapter, Chapter 2
provides background information on the impact of overhang construction on girder design. The
fundamentals of overturning for a concrete girder and the theory of global buckling of a steel
twin-girder system are introduced. The chapter also provides a summary of a review of the
literature on overhang tests, FEA modeling, and overhang design guidelines along with case
studies of bridges that experienced problems during construction. In Chapter 3, laboratory tests
on the structural behavior of key elements of prestressed concrete girders are described, and
results are provided and discussed. In Chapter 4, the finite element models for the concrete and
steel bridges that were monitored in the field are discussed. Results from the field data are used
to validate the models. Results from the parametric finite analyses are presented in Chapter 5.
The FEA results are used to identify critical overhang geometry for a wide range of concrete
girder system parameters, and also to investigate the effects of the girder system parameters on
the rotational response of the fascia girder. A rigid-body model for concrete girder systems,
suitable for design, is developed in Chapter 6. The accuracy of the model is validated with FEA
solutions. In addition, a design methodology is developed for determining the required bracing
for a concrete girder system, and design examples are provided. Chapter 7 provides a summary
of an FEA investigation on the global lateral torsional behavior of a twin-girder system under
torsion due to eccentric loads, such as the unbalanced loading that may result from overhang
construction. Results from both eigenvalue buckling analyses and large-displacement analyses
are used to develop a design methodology to proportion the girder geometry to minimize
torsional effects on steel girder systems used in bridge widenings. A summary of the study on the
effects of overhang construction on the local stability of girder webs is provided in Chapter 8.
Finally, a summary of the important findings and recommendations from the study is provided in
Chapter 9.






Chapter 2. Background

2.1 Overhang Construction

2.1.1 Definition of Overhang

Although the definition for an overhang may be slightly different for designers, an
overhang in this research project is defined as the portion of the concrete deck that extends from
the centerline of the fascia girder to the edge of the deck. This definition applies to both concrete
girder systems and steel girder systems. In accordance with 7xDOT LRFD Bridge Design
Manual (2008), the maximum width of the overhang in Texas bridges measured from the edge of
the slab to the face of the beam top flange (or steel beam flange quarter point) is the lesser of
3.92 ft. (3 ft. 11 in.) or 1.3 times the depth of the girder. The typical overhang width in Texas
bridges is approximately 3 ft. (Figure 2.1).

Overhang

Figure 2.1: Bridge Deck Overhang

2.1.2 Overhang Bracket

A formwork system such as the one shown in Figure 2.2 is used for supporting and
shaping the fresh concrete on the overhang. A variety of shapes and sizes of overhang brackets
are available for use on both steel and concrete beams in various sizes by overhang bracket
manufactures. The height of overhang brackets can be adjusted for mounting the brackets to steel
beams, precast concrete beams and concrete box beams with the appropriate hanger devices. For
example, Dayton Superior Overhang Brackets accommodate a vertical leg adjustment range of
40 to 70 in. Although regular overhang brackets permit overhang widths of up to 4 ft, Meadow
Burke’s heavy-duty overhang brackets can be custom made for an overhang width of up to 14 ft.

Embedded hangers are inserted in the top flange of the concrete girder as shown in Figure
2.3(a). Figure 2.3(b) shows the overhang brackets that support plywood formwork in the
overhang of the girder system. The overhang brackets are attached to the fascia girder through
the embedded hanger by using a 2-in. coil rod threaded through the hanger and the overhang
bracket. The overhang formwork system consists of plywood sheathing and timber joists
supported on bridge overhang brackets as shown in Figure 2.3(b).



Figure 2.2: Overhang Brackets

The overhang formwork system also provides space for rails for the bridge deck finishing
screed as well as a safety railing and a work platform for construction workers. The finishing
screed that spans the width of the bridge is a truss system that has a paving carriage. The
finishing screed moves along the screed rail, striking off the surface of the fresh concrete at the
specified grade. The work platform is a pathway where construction workers can move around
during deck placement.

{2) Top View of Overthang Fonnwork System (b} Owerhang Braclkets on Concrete Girder
Figure 2.3: Overhang Formwork and Overhang Bracket

2.1.3 Construction Loads

Several types of construction loads are applied to the fascia girder through overhang
brackets. Figure 2.4 shows a bridge during concrete deck placement. Typical construction loads
include fresh concrete, the bridge deck finishing screed, and overhang formwork, as well as the
construction personnel. These loads produce torsional moment on the fascia girder. The center of
gravity of the fresh concrete on the overhang has an eccentricity with respect to the center of the
fascia girder, thereby resulting in torsional moment on the edge girder. Because the screed rail is
usually located at the edge of the deck, the finishing screed becomes another source of the
torsional moment. An additional source of torsional load is construction personnel that walk on
the edge of the overhang to avoid freshly placed concrete. Although the load from the overhang
formwork is often small compared to weight of precast panels that span between adjacent
girders, the overhang formwork can also produce torsional moment on the fascia girder.



Figure 2.4: Bridge Deck Finishing Screed in Operation

2.1.4 Balanced and Unbalanced L oads

Eccentric construction loads can be torsionally balanced or unbalanced. A torsionally
balanced condition can be understood in the context of the single-girder level and the girder-
system level.

In the single-girder level, if the sum of the torsional moments about the center of gravity
of a particular girder is zero, the loads are torsionally balanced with respect to the girder and the
girder is free from torsional moment. In the girder-system level, if the sum of the torsional
moments about the shear center of the entire girder system is zero, the loads are torsionally
balanced with respect to the girder system and the girder system is free from torsional moment.

Because most bridges have overhangs on both exterior girders, the overhang construction
loads on the bridge cross section are often symmetric, which makes the loads torsionally
balanced at the girder system level. However, for a bridge widening, the overhang is not
symmetric, and the girder system is usually torsionally unbalanced, producing torsion on the
girder system. Figure 2.5 shows how a typical steel twin I-girder system, often used for bridge
widening, may be subjected to unbalanced loads. The unbalanced load results because some of
the fresh concrete load on the interior overhang is transferred to the existing structure, while on
the exterior overhang the entire fresh concrete load is applied to the twin-girder system.
Therefore, the loads are torsionally unbalanced for the twin-girder system.
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Figure 2.5: Steel Twin I-Girder System Subject to Unbalanced Loads

2.2 Bracing for Concrete Girder Systems

The bracing conditions for prestressed concrete girder systems have changed significantly
over the past three decades. In the past, twist was restrained using either concrete or steel
diaphragms spaced along the girder length as shown in Figures 2.6(a) and 2.6(b). Such bridges
were most likely constructed in the 1970s, using removable forms for both the overhang and the
interior bridge deck. A cast-in-place concrete diaphragm was used at the middle of the simply
supported girders, while a smaller concrete diaphragm was used at the support above the
abutment. In addition to restraining girder twist, the concrete diaphragms also provided lateral
bracing against wind loads during construction.
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Figure 2.6: Bracing for Concrete Girder System

Cast-in-place diaphragms were expensive and took a large amount of time to form and
cast. As a result, simpler types of diaphragms were commonly used. While precast concrete
diaphragms were sometimes used, many applications utilized steel channel diaphragms such as
those shown in Figure 2.6(b). The diaphragms were bolted to an angle that was bolted to the
webs of the concrete girders.

In recent years, permanent diaphragms are rarely used on prestressed concrete bridges.
As shown in Figure 2.6(c) and (d), temporary lateral bracing is usually provided during
construction with the use of 4-in. square timbers combined with top bracing bars placed on top of
the concrete panel. This change in construction practices can be seen in Figure 2.7, which shows
a bridge widening at the Parmer Lane overpass at Texas Loop | in Austin, Texas in 2009. The
bridge was widened by adding four girders to the existing structure. This construction illustrates
the historical advancement in bracing for concrete girder systems that occurred over time within
the same bridge. While plywood forms historically were used to form bridge decks, conventional
forming techniques consist of stay-in-place (SIP) forms that remain on the finished bridge. The
bridge widening in Figure 2.7 utilized two types of SIP forms including precast panels between
the four added girders and metal deck forms connecting the widening to the existing bridge. The
existing bridge, probably constructed more than 20 years earlier, has steel diaphragms
permanently placed between beams while the widened portion of the bridge has timber bracing
that is temporally placed during construction.



Widening

Figure 2.7: Advancement in Bracing for Concrete Girder System

The timbers used to brace the prestressed concrete girders can transmit lateral wind loads
between adjacent girders, because the timbers serve as compression members. However, they are
limited in their ability to restrain girder twist during construction as they are not positively
connected to the concrete girders. As a result, many of the timbers may become dislodged during
deck construction, and become ineffective as shown in Figure 2.8. This loss of effectiveness is
also investigated in this research project.

Dislodged Timber Diagonals

Figure 2.8: Effect of Twist on Timber Blocking

2.3 Fundamentals of Overturning for Concrete Girder

The fundamentals of overturning of a two-dimensional rigid body with self-weight will
be discussed to provide an understanding of the relationship between overturning moment and
restoring moment. The discussion of a body with pure torque will be followed by the description
of a body with eccentric load.

10



2.3.1 Body on Rigid Support under Pure Torque

Figure 2.9 shows a body with a self-weight, W,,,,, that rests on a pin support at 4 and a
roller support at B. The body is subjected to pure torque T and self-weight of the body acting at
the center of gravity of the body (CG). At the moment of overturning, the rotational equilibrium
of the applied torque T and the self-weight W,,,, about Point A gives the overturning moment
capacity of the body.

A B

| |
[ b |

Figure 2.9: Body on Rigid Support Subjected to Pure Torque

Equation (2.1) indicates that the overturning moment capacity T is a function of the self-
weight and the moment arm of the self-weight, b/2. Equation (2.1) also shows that the restoring
moment increases with either larger self-weight or increased beam width.

_ Wymb
T=— 2.1
2.3.2 Body on Rigid Support under Eccentric Load

Figure 2.10 shows a body with a self-weight W,,,, that rests on a pin support at 4 and a
roller support at B. The body is subjected to an eccentric load F, and to the self-weight acting at
the center of gravity of the body (CG).

11
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Figure 2.10: Body on Rigid Support Subjected to Eccentric Load

At the moment of overturning, rotational equilibrium of the eccentric load F and the self-
weight Wp,,, about Point A gives the overturning capacity of the body as shown in Equation
(2.2). The overturning capacity F of the body is a function of the eccentricity of the applied load
as well as the self-weight and the width of the body, b.

Wymb
F=Gem) 22)

As with the body with pure torque, the self-weight of the body is the only source for
restoring moment, and more self-weight or larger moment arm of the self-weight results in more
restoring moment.

A graph of Equation (2.2) is represented in nondimensional fashion in Figure 2.11.
Several interesting facts can be observed from the graph. For a body with eccentric loads,
increases in eccentricity of the applied load lead to dramatic decreases in the value of the load
required to produce overturning. This means that even a relatively small load with a large
eccentricity is capable of overturning the body. Another fact is that when the eccentricity of the
applied load approaches b/2, the overturning load becomes theoretically infinite, indicating that
the body subjected to a load with an small eccentricity is not susceptible to instability. The last
fact is obvious from intuition as there is no overturning if the eccentricity of the load is less than
or equal to b /2.

12
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Figure 2.11: Effects of Eccentricity on Overturning Capacity

2.4 Global Buckling of Steel Twin-Girder System

Global buckling behavior has recently been studied (Yura et al. 2008). The terms “global
bucking” and “system buckling” are used interchangeably. Systems composed of only a few
girders are particularly susceptible to this type of buckling. Yura et al. (2008) developed the
closed form solution for elastic global buckling of twin girder systems interconnected with cross
frames. Details are provided in the Appendix A. Figure 2.12 shows the original configuration of
the cross-section of a twin-girder system as well as the deformed configuration of the system
during system buckling.

13
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Figure 2.12: Cross-Sectional View of Twin-Girder System in System Buckling Mode

The girder system consists of doubly symmetric I-girders with a spacing of S. The
constant moments M; and M, are applied to the twin girders, respectively. For the deformed
configuration of the cross-section in the figure, only the internal shear forces associated with the
rotation of the entire cross-section about the shear center are depicted for clarity. The simplifying
assumption that the two girders are continuously braced by internal cross-frames with infinite
stiffness leads to the assumption that the cross-section of the girder system remains rigid during
system buckling. Although the stiff internal cross-frames can restrain the relative displacement
or rotation between the two girders, they cannot prevent the displacement and rotation of the
entire cross-section of the girder system. During the system buckling, the entire cross-section
experiences vertical and lateral displacements, and rotation about its shear center. The system
buckling capacity of a twin-girder system with doubly symmetric I-sections can be expressed as

m2E?[,(1,d? + 1,S2
(M; + M) = ZT“ EL,GJ + Y(ZLZ +15?)
where, L= span length, E= modulus of elasticity, G= shear modulus, I,= moment of inertia about
strong axis, I,= moment of inertia about weak axis, /= torsional constant, d= distance between
flange centroids, and S= girder spacing. The summation of the two external moments applied on

(2.3)
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each girder of a twin-girder system is limited by the system buckling capacity of Equation (2.3)
in order to prevent system-mode instability of the girder system. It should be also noted that
Equation (2.3) is the upper limit on the system buckling capacity of a twin-girder system because
the solution relies on an unconservative assumption that the two girders are continuously braced
by rigid cross-frames.

2.5 Literature Review

A review of literature on overhang research in concrete and steel bridges as well as FEA
modeling was conducted. A summary of research on bearing pads in regard to the support
conditions of bridge girders is also included. This section presents a summary of the literature.

2.5.1 Overhang-Related Laboratory Studies

Most work on overhang construction has focused on concrete girder systems. The
overhang brackets are installed on the fascia girder by the hangers connected to the top of the
girder and embedded in the concrete deck. Tests on bracket hangers were conducted at North
Carolina State University (Ariyasajjakorn, 2006) and the hanger types included standard
falsework hangers manufactured by Dayton/Richmond and Meadow/Burke. The two hanger
types that were tested did not reach the ultimate strength provided by the manufacturer.

Tests on overhang forming systems were conducted at The University of Texas at Austin
(Clifton, 2008). The Texas Department of Transportation (TxDOT) introduced a new series of
prestressed girders called the Texas I-girders (Tx girders) that have relatively wide and thin top
flanges, and the performance and behavior of the commercially available overhang forming
system for the Tx girders were investigated. Based upon the test results, a new concept was
developed to use a precast overhang as an alternate solution to create the finished bridge deck
overhang.

Another TxDOT-sponsored study on precast overhangs in concrete girders was
conducted by Trejo et al. (2008). In that study, the precast overhang replaced the conventional
overhang constructed by using an overhang forming system.

2.5.2 Bearing Pad Studies

The support condition of the girders has a significant impact on the torsional response of
steel and concrete girder systems. As a result, previous investigations on bridge bearings played
an important part in both experimental and computational studies on the torsional behavior of
bridge girders. DuPont (1984) provided updated engineering data on neoprene bearings and
specifically reported data on compressive stress-strain behavior in compression for loads up to
2000 psi on bearings of shape factors up to 20, shear modulus vs. compressive load, and
properties of steel- and fabric-reinforced bearings. The shape factor for bearing pads is defined

by S = %, where L, W and h,; are the length and width of the bearing pad and the

thickness of the elastomer layer, respectively.

Arditzoglou, Yura, and Haines (1995) tested various sizes of bonded natural rubber pads
in compression, tension, shear, and combined compression and shear. They obtained load-
deformation relationships and calculated mechanical properties of the compressive modulus,
tensile modulus, and shear modulus of various rubber pads.

The role of several factors on the elastomeric bearing performance was considered by
Muscarella and Yura (1995). They analyzed the effect of elastomer hardness, shape factor,
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reinforcing shim orientation, degree of taper and compressive stress level on the bearing
performance and developed a simple design procedure. Their research included experiments on
shear, compressive, and rotational stiffness; shear and compression fatigue loading; and tests to
determine compressive stress limits.

A simple and cost-effective test method for evaluating the shear modulus of full-size
elastomeric bridge bearings was developed by Topkaya (1999), and was found to give good
estimates of shear modulus for laminated bearings.

Roeder (2000) developed a report on cotton-duck pads (CDP) consisting of thin layers of
elastomer interlayed with layers of cotton-duck fabric. The main goal of that work was to
evaluate the validity of existing tests that claim to represent the true behavior expected in bridge
bearings. The report contained the compressive stress-strain curves of steel-reinforced
elastomeric bearing pads with numerous shape factors.

Under NCHRP Project 10-51, Yura et al. (2001) investigated the effectiveness of existing
testing requirements for bridge bearings of AASHTO and state DOTs, and recommended
specifications for the acceptance testing of elastomeric bearings. Full-scale bearings were tested
in shear as part of the laboratory investigation, and the results from the tests illustrated the shear
behavior of the bearing pad.

Stanton et al. (2006) studied on steel-reinforced elastomeric bearings. The ability of the
bearings to accommodate the loads and rotations without excessive damage was evaluated by
testing and analysis of the bearings. Their recommendations for the AASHTO LRFD Bridge
Design Specifications (2004) included the removal of the absolute limit on compressive stress,
and the elimination of the “no-uplift” provisions, which were causing difficulties for designers.

2.5.3 Overhang Design Guidelines

2.5.3.1 Departments of Transportation (DOT)

Many State Departments of Transportation (DOTs) in the United States provide
guidelines for the design of overhangs in concrete and steel bridges. These guidelines are
generally based upon rules of thumb, rather than in-depth research on the behavior of girders
subjected to overhang loads.

Many DOTs specify separate overhang limits for concrete and steel bridges. For example,
the South Carolina DOT requires that the overhang width limits for both prestressed concrete
girders and steel girders are a function of the girder depth as shown in Table 2.1.

Table2.1: Slab Overhang Limits

Beam Type Beam Depth (D) Maximum Overhang Limit
D <54 in. 42 in.
Concrete Beam 54in. <D <63 in. 48 in.
63 in. <D 54 in.
D <36 in. D (Beam Depth) in.
Steel Beam 36in. <D <48 in. 42 in.
48 in.<D 45 in.
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The guidelines vary widely from state to state. The LRFD Bridge Design Manual (2008) from
the Texas Department of Transportation (TxDOT) provides specific overhang width limits based
on the depth and spacing of the girder in the following way.

e Typical Overhang is 3.0 ft. measured from the center line of the beam to the
edge of the slab.

e Maximum overhang measured from edge of slab to face of beam top flange
(or steel beam flange quarter point) is the lesser of 3.917 ft. or 1.3 times the
depth of beam, which prevents excessive torsion on fascia beams during slab
placement. At span ends, reduce the limit from 3.917 ft. to 3.083 ft. to
account for reduced wheel load distribution.

e Minimum overhang is 0.5 ft. measured from edge of slab to face of beam top
flange to allow sufficient room for the slab drip bead.

TxDOT is currently in the process of phasing out the conventional prestressed concrete I-
Beams, and replacing with new types of wide-flanged prestressed concrete I-Girders. Table 2.2
shows the typical slab overhang dimensions of these new concrete I-Girders, which are measured
from the girder centerline to the edge of slab.

Table 2.2: Slab Overhang Dimensions of TXDOT Prestressed Concrete |-Girders

Slab Overhang Dimensions, Slab Edgeto CL Exterior Girder
Maximum Over hang
Girder Type Typical _ Minimum Width
Overhang Width | Overhang Width At Span At
Ends Midspan

Tx28 3 ft 2 ft 4 ft 4 ft
Tx34 3 ft 2 ft 4 ft 4.67 ft
Tx40, Tx46 and Tx54 3 ft 2 ft 4 ft 4.75 ft

Tx62 an dTx70 3 ft 2.25 ft 4.25 ft 5 ft

2.5.3.2 Other Guidelines

The Steel Design Handbook (2006) from the National Steel Bridge Alliance (NSBA)
states that the forces in the exterior and interior girders will be reasonably balanced when the
deck overhang is around 30% to 32% of the girder spacing. The handbook warns that too large or
small overhang widths will lead to large unbalanced torsional moment in the exterior girder.

The American Institute of Steel Construction (AISC) developed a report to discuss the
influence of the construction overhang loads on the fascia girders in steel bridges (Grubb, 1990).
The report provided a method to determine the stresses in the top and bottom flanges of the steel
I-girder due to the construction overhang load. The torque from the overhang load is modeled as
a horizontal couple acting on the fascia girder and calculated from statics. The top and bottom
flanges between two adjacent cross-frames in the same girder are isolated from the girder and are
considered as a fixed-end single-span beam subjected to one component of the horizontal couple.
The internal stresses and deflections in the flange are calculated from Euler beam theory.
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The AASHTO LRFD Bridge Specification (2007) addresses construction overhang loads
on the fascia girders in steel bridges. The specification states (C6.10.3.4):

The applied torsional moments bend the exterior girder top flanges outward. The
resulting flange lateral bending stresses tend to be largest at the brace points at one or
both ends of the unbraced length. The lateral bending stress in the top flange is
tensile at the brace points on the side of the flange opposite from the brackets. These
lateral bending stresses should be considered in the design of the flanges.

The horizontal components of the reactions on the cantilever-forming brackets are
often transmitted directly onto the exterior girder web. The girder web may exhibit
significant plate bending deformations due to these loads. The effect of these
deformations on the vertical deflections at the outside edge of the deck should be
considered. The effect of the reactions from the brackets on the cross-frame forces
should also be considered.

Excessive deformation of the web or top flange may lead to excessive deflection of
the bracket supports causing the deck finish to be problematic.

2.5.4 Computer Design Tool

A cooperative research program (K-TRAN) was established among the Kansas DOT, the
University of Kansas (KU), and Kansas State University to study steel bridge behavior. That
research group created a computer design tool, Torsional Analysis for Exterior Girder (TAEG),
to aid in evaluating and designing a contractor’s falsework system. TAEG evaluates stresses and
deflections of the girder flanges; forces in the brackets, diaphragms, and cross frames; and the
effects of tension tie rods and timber compression struts on temporary supports. A key
assumption in TAEG is the use of rigid lateral torsional supports at the ends of the bridge. The
program also assumes that the geometry of the brackets will be as specified by the engineer. In
addition, the program does not consider global or local stability of the girder with regards to the
overhang.

2.5.5 FEA modeling

2.5.5.1 Bearing Pads

FEA studies on bearing pads using commercial software have used solid elements and
line elements approaches. Solid element models, which define the bearing pads using solid
elements, are general and consider the bearing as a non-homogeneous continuum. The steel
laminates are modeled as an elastoplastic material and the rubber layers as a nonlinear elastic
incompressible material. The term incompressible material indicates that the material deforms
without changing in volume. The line element approach represents the bearing pads by a series
of line elements. This approach models the bearing as a combination of horizontal (parallel to
width of the supported beam) and vertical (parallel to depth of the supported beam) springs to
simulate the lateral restraining effect and the vertical deflection. Even though both models can
represent the structural behavior of the bearing pads successfully to a certain degree, the line-
element model is preferable as it is more practical for the modeling of the entire bridge.

Two other reports, one by Yura et al. (2001) and the other by Yazdani et al. (2000),
proved important to understanding bearing pad behavior. Yura et al. (2001) conducted
experimental research in four main areas: shear modulus, aging, creep, and effects of low

18



temperature. They also undertook theoretical studies on the effect of misaligned steel laminates
on the stresses and deformation within the elastomeric bearing by using the solid-element
modeling approach.

Yazdani et al. (2000) used the solid-element model approach to validate the AASHTO
bearing stiffness specifications and incorporated the line-element approach to represent a
computational model with line-elements for elastomeric bearing pads into the FEA model for a
bridge. They modeled bearing pads using Link10 truss elements in ANSYS, which address
“compression-only” and “tension-only” behavior and represent the “lift-off” phenomenon of
girders from bearing pads effectively and easily.

2.5.5.2 Concrete Beams

Another focus of the FEA literature review was the modeling of structural members. Both
Abendroth et al. (1991) and Johnson (2006) found that prestressed beams can be represented by
solid elements. Johnson used the ANSYS 3D reinforced concrete element SOLID65 to model a
concrete beam.

2.5.5.3 Plate Girders, Stiffening Elements, and End Diaphragms

Plate girders, stiffening elements, and end diaphragms are frequently modeled using shell
elements. Shell elements can undergo both out-of-plane bending and in-plane membrane
deformations. Each node has six degrees of freedom: three translations and three rotations. Stress
results are available at the four corner nodes while displacements are given for all eight nodes.
The shell element allows for offsettting of the locations of nodes within the element, which
facilitates the representation of thickness changes for flanges and webs. Although end
diaphragms can be modeled by shell elements, they can also be represented by line elements
(truss elements and beam elements). Wang (2002) used truss elements to model cross frames and
lateral struts spanning between adjacent girders. Truss elements have two nodes with three
translational degrees of freedom per node. Truss elements cannot model bending or torsional
deformations.

2.6 Case Studies

Some Texas bridges have recently experienced problems as a result of overhang
construction. These bridges were part of the motivation for this TxDOT-sponsored research
investigation, which included a steel twin-girder bridge and two concrete girder bridges. The
steel twin-girder bridge was a widening project in Houston, Texas that had a problem with the
system-mode deformations during construction. The two concrete girder bridges were
constructed in Hutto, Texas and had excessive rotations in the fascia girders during construction.

Global stability can be a major concern in bridge widening projects in which a few
girders are added to an existing bridge. The widening may sometimes be isolated from the
existing bridge so that the added girder system is free to displace vertically during casting of the
concrete slab. Isolating the widening from the existing bridge avoids large brace forces that are
likely to develop if intermediate cross frames were used between the existing bridge and the
widening. The geometry of the addition often has a relatively large span-to-width ratio. Although
intermediate cross-frames are employed along the girder length, systems with a large span-to-
width ratio are susceptible to the “system-buckling mode” discussed in Section 2.4, which is
relatively insensitive to the spacing or size of the intermediate cross-frames (Yura et al. 2008).
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Figure 2.13 shows the steel twin-girder system used in the bridge-widening project that
experienced problems with system buckling during construction of the concrete bridge deck. In
this case, the system buckling mode was also affected by the combined unbalanced overhang
load. The twin girders had a 166-ft simple span with a 5.1 ft. spacing between the two girders.
Two end diaphragms and eleven intermediate cross-frames were used between the two girders.
The cross-frames consisted of L4x4x3/8 angles with an area of 2.86 in>. An 8-in. reinforced
concrete deck with a 2-in. concrete haunch was cast on top of the girders. The concrete deck of
the twin-girder bridge, which was not connected to the existing bridge deck was 11.13 ft wide.
Because the overhang brackets were utilized only for the exterior girder of the twin-girder
bridge, the fresh concrete deck load resulted in an unbalanced load that created a torque for the
girder system and amplified the system buckling mode. Although eleven intermediate cross-
frames were used, the girder system suffered a significant twist (clockwise along the girder
length in Figure 2.13(a)). The twist of the girders is indicated in Figure 2.13(b) by the 10-in.
offset of the bottom flange measured from a plumb line from the top flange.

Plumb Line

Existing Bridge _ Widening

Bottom Flange

(a) Twin-Girder System (b) At Midspan

Figure 2.13: Twin-Girder Widening with Excessive Girder Rotation

The two concrete bridges with excessive rotations in the fascia girders were located at the
west side of the intersection of State Highways 79 and 130. The bridges used prestressed
concrete girders spaced 6.9 ft on-center with a span of approximately 65 ft. The girders
AASHTO Type B beams that are 34 in. deep with top and bottom flange widths of 12 and 18 in.,
respectively. The overhang width from the center of the fascia girder to the edge of the deck was
3 ft. The bearing pad for Type B beams was 8 by 16 in. with a thickness of 2.5 in. Beam bracing
was installed in accordance with the TxDOT MEBR (C) Standards, Minimum Erection &
Bracing Requirements.

According to the field investigation of the bridges in November 2006 as shown in Figure
2.14, both bridges experienced significant rotations in the fascia girders that were locked into the
bridge. The rotations in the fascia girders were about the same along the girder length, and
ranged from approximately 2 to 3 degrees. Figure 2.15 shows the typical example of the lift-off
of the fascia girder from the elastomeric bearing pad from the bridges due to that rotation.

20



Figure 2.14: Rotation Measurement at Hutto Bridges

SRR
Figure 2.15: Lift-off of Fascia Girder from Bearing Pad

21



22



Chapter 3. Experimental Program

3.1 Overview

As outlined in Chapter 1, this research investigation included field monitoring,
computational studies, and experimental testing. While the field studies from concrete bridges
provided valuable data for the FEA models for the concrete bridges, uncertainties in the
modeling of key elements in concrete girder systems necessitated laboratory tests. Three
different types of laboratory tests were conducted at the Phil M. Ferguson Structural Engineering
Laboratory at The University of Texas at Austin: R-bar tests, beam overturning tests, and a test
of girder and deck panel system. In this chapter, the experimental programs and test results are
discussed in detail.

3.2 R-bar Testing

3.2.1 Introduction

An R-bar is embedded into a prestressed concrete girder to connect the concrete deck and
a prestressed concrete girder, thereby allowing the deck and the girder to act compositely after
the concrete cures. During construction, the R-bar connects the top bracing bar and a prestressed
concrete girder. However, the strength and lateral stiffness of typical R-bar connection were not
known, nor was the structural behavior of an R-bar completely understood. The structural
behavior of an R-bar was investigated by conducting load tests on R-bars. The test focused on
the structural behavior of an R-bar subjected to lateral load from the bracing bar. The test
provided measurements of both the lateral stiffness and capacity of the connection between the
R-bar and bracing bar.

Figure 3.1 shows the dimensions of the cross section of the Tx I-Girder 46 and the
configuration of the R-bar used in the test. The specified yield strength of the #4 R-bar is
typically 60 ksi. As shown in Figure 3.1, the R-bar is embedded into the beam, and the top
portion of the R-bar extends from the top surface of the beam. The average distance from the top
surface of the girder to the top of the R-bars used in the test was 5.5 in.
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Figure 3.1: Dimensions of Tx46 and R-bar
3.2.2 Test Setup

The test setup for the R-bar experiments was fabricated and installed on the Texas I-
Girder 46, which is 46 in. deep as shown in Figure 3.2. The test setup consisted of a steel frame
composed of steel plates. Bolts on the side of the frame were tensioned to clamp the frame to the
top flange of the concrete girder. A piece of #5 reinforcing bar was used to simulate the bracing
bar and was welded at the top of the #4 R-bar to match the typical connection configuration used
In practice.
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Figure 3.2: Test Setup for R-bar Testing

Load was applied with a hydraulic center-hole actuator that was anchored with a chuck
for a reinforcing bar.
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3.2.3 Instrumentation

Figure 3.3 shows a load cell and a linear transducer (string potentiometer) used in the
test. The Interface load cell had a capacity of 25 kips, and was used to measure the force that
developed in the top bracing bar that was attached to the R-bar. The load cell was placed
between the hydraulic center-hole actuator and the chuck as shown in Figure 3.3. The string
potentiometer from AMETEK was used to measure the lateral deformation of the R-bar. The
string potentiometer was fixed to a wood support that was attached to the girder using clamps. A
clamp was also used to connect the steel wire from the string potentiometer to the top of the R-
bar. Based upon the measurement of the applied force and the lateral deformation, the stiffness
characteristics of the R-bar were evaluated.

Figure 3.3: Load Cell and Linear Motion Transducer in Place

3.2.4 Test Reaults

Identical tests were conducted on two R-bars. Figure 3.4 shows the relationship of the
applied load and lateral deformation of the two R-bars. The R-bars exhibited linear-elastic
behavior until the elastic limit of the material was reached. After that, the material behavior
became nonlinear and the yield plateau was observed. Both R-bars exhibited good ductility with
maximum lateral deformations ranging from 1.4 to 1.5 inches. From the graph, the average
lateral stiffness and capacity of the R-bars for the two tests were 15.5 kips/in. and 2.2 Kkips,
respectively. If Young’s modulus of 29,000 ksi and the design yield stress of 60 ksi are used for
a typical top bracing bar of a length of 7.3 ft that is attached to a R-bar, the axial stiffness and
capacity of a top #5 bracing bar are 102.2 kips/in. and 18.6 kips, respectively. Because the top
bracing bar and the R-bar are connected in a series, it can be concluded that the stiffness and
capacity of the top bracing are generally governed by the R-bar. Figure 3.5 shows the
deformations that occurred during the testing of the R-bars. No visible crack in the concrete or

26



pullout of a R-bar was observed in either of the two R-bars tested. Therefore, in treating the R-
bar as a flexural element extending from the concrete girder, it is reasonable to assume a fixed
condition at the concrete interface for the R-bar at the bracing load levels that are typically
encountered in practice.
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Figure 3.5: Permanent Deformation of R-bar after Removal of Load
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3.3 Beam Overturning Test

3.3.1 Introduction

The field investigation on the Hutto concrete bridge showed that most of the beam
rotation about the longitudinal axis was due to rigid-body rotation on the elastomeric bearing
pads. Many previous studies on elastomeric bearing pads have focused on the shear and sliding
performance of the bearings. Data on the rotational performance of the bearings were not
available. There are several factors with nonlinear performance in the rotational behavior of the
beams on the elastomeric pads. The nonlinearities include material nonlinearity in the bearing
pads, contact nonlinearity between a beam and a bearing pad, and geometric nonlinearities in the
torsional load. In order to clarify complexity from these nonlinearities, it was essential to conduct
an experimental investigation on a beam that is subjected to overturning force. The beam
overturning test was aimed at improving the understanding of the overturning mechanism of a
beam that rotates about its longitudinal axis while resting on bearing pads. The data from the
beam overturning test provided valuable validation data for the analytic model and FEA models
for elastomeric bearing pads.

To conduct the beam overturning test, a prestressed concrete beam was supported on
elastomeric bearing pads at each end and an eccentric overturning force applied at midspan was
used to simulate load from the overhang. Two shapes of bearing pads were considered in the
tests because the TxDOT bearing standards currently include rectangular shapes and circular
shapes.

3.3.2 Specimen

ATxDOT Type C beam was used in the tests as depicted in Figure 3.6. The span length
of the beam was 55.5 ft. and the design beam weight was 29.2 kips. Figure 3.7 shows the
dimensions of the rectangular and circular elastomeric bearing pads that were tested. The
rectangular bearing pad of C1 type was 7 in. long, 16 in. wide, and 2.86 in. thick.
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Figure 3.7: Dimensions of Elastomeric Bearing Pads Tested

The diameter and thickness of the circular bearing pad were 15 in. and 2.86 in.,
respectively. Both types of bearing pads were reinforced with seven steel shims that were 0.105
in. thick. For design purposes, the shear modulus of elastomeric bearing pads is generally the
most important property for the bearing pad. The common method to estimate the shear modulus
of elastomeric bearing pads is to measure the hardness of the bearing pad, because the hardness
of the bearing pad is loosely related to its shear modulus and it is easy and quick to measure

29



using a durometer. Figure 3.8 shows the measurement of the hardness of the bearing pads, and
the hardness of the pads was slightly below 50. The shear modulus for the hardnesses from 45 to
55 ranges from approximately 0.077 to 0.11 ksi (Muscarella and Yura, 1995). The shear modulus
of bearing pads can affect the rotational stiffness of the bearing pad and also the ultimate
overturning load that a beam can sustain.

Figure 3.8: Measurement of Hardness of Bearing Pad

3.3.3 Test Setup

The steel frame shown in Figure 3.9 was used to apply an eccentric force to overturn the
beam. The steel frame was constructed by using back-to-back channels with a 4.25-in. gap
between them. Figure 3.10 shows the steel frame installed on the beam.

A Torsion from Eccentric Load at Midspan

Elastomeric Bearing Pad / / Concrete Beam
—/»
LA Concrete Block——>
55.5 ft |

Figure 3.9: Elevation View of Beam Tested
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Figure 3.10: Moment Connection at Midspan (Section A-A)

The steel rods were pretensioned to ensure that the steel frame transferred the eccentric
overturning force to the beam. A hydraulic actuator was used to apply a vertical force to the top
of the steel frame at a distance of 36.25 in. from the centroid. The center-hole actuator was
anchored to the reaction floor through the steel rod.

Figure 3.11 shows the safety measures taken in order to prevent the tested beam from
completely tipping over to the rigid floor during the test. Safety chains were connected between
the column and the top of the beam at each support. Concrete blocks were also placed close to
the bottom flange of the beam at support.

Figure 3.11: Safety Measures to Prevent Beam from Tipping Over
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3.3.4 Instrumentation

Figure 3.12 shows locations of a load cell and string potentiometers in place. A 50-kip
load cell (Strainsense Enterprises, Inc.) measured the vertical force applied to the steel frame.
The load cell was placed between the hydraulic actuator and the steel plate. A 1" x 1" piece of
lumber with a length of 66 in. was used at each support to amplify the torsional deformations for
data monitoring purposes. The AMETEK string potentiometers were used to monitor the
readings of vertical movement of both ends of the 1" x 1" piece of lumber. Girder twist was
calculated based upon the differences in the vertical displacements of the string potentiometers
and their horizontal spacing.

(a) Instruments in Place (b) Load Cell

Figure 3.12: Locations of Load Cell and String Potentiometers

3.3.5 Overturning Test Results

Figure 3.13 shows the overturning test results for the rectangular and circular elastomeric
bearing pads. The applied vertical load is graphed versus the rigid body twist that was measured
at the supports. The curve for the rectangular bearing pad was relatively linear for small load
levels. For further increase in load, the reduction in stiffness can be seen as the slope of the curve
decreased. The maximum overturning force was 4.93 kips corresponding to a beam rotation of
2.2 degrees, which represents the tipping load for the beam. The beam did not actually tip over at
this point because its displacement was controlled by the stroke of the hydraulic actuator. If the
applied force had been gravity load, the beam would have tipped over at the maximum measured
resistance of 4.93 kips. The beam rotation of 2.2 degrees at the tipping load is similar to the
beam rotation measured at the Hutto concrete bridge. While similar trends in behavior were
observed for the test results for the circular elastomeric bearing pad, there were slight
differences. Although the initial stiffness of the circular bearing was slightly larger than that of
the rectangular bearing, the stiffness of the circular bearing dropped more quickly with
increasing rotation. The tipping force of 4.02 kips at a rotation of 1.22 degrees was also smaller
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for the circular bearing. The theoretical overturning force for a beam on a rigid support of the
same width (16 in.) as the rectangular bearing pad is calculated as 8.27 kips. Therefore, the
overturning capacity of the beam on rectangular bearing pads was 60% of that on a rigid support.
The 40% reduction in the overturning force is caused by the compressibility of the bearing that
results in a smaller moment arm for the restoring force provided by the self-weight of the beam.
Figure 3.14 shows the rectangular and circular bearing pads.

Eccentric Load (kips)

5 | Rectangular Bearing

Circular Bearing

0 1 1 ] 1 1 1 ] )
0 0.5 1 15 2 25 3 35 4

Rigid Body Rotation (deg.)

Figure 3.13: Overturning Load and Rigid Body Rotation of Beam

{a) Rectangular Bearing Pad {(b) Circular Bearing Pad

Figure 3.14: Rectangular and Circular Bearing Pad
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3.4 Test on Girder and Deck Panel System

3.4.1 Introduction

The TxDOT standard drawing shows that a top bracing bar should be connected to an R-
bar at a distance of 1.5 in. up from the top surface of a concrete beam as shown in Figure 3.15.
However, because 4 in. thick prestressed concrete panel are typically used with concrete girders,
actual field applications do not match the TxDOT standard detail. Instead the bracing bars are
usually placed over the top of the prestressed panels and then bent down and connected to the R-
bar as shown in Figure 3.16. The pictures shown in Figure 3.16 were the ones of the bridge that
was monitored in the field studies on SH 130 as discussed in Fasl (2008). Instead of connecting
to the R-bar at 1.5 in. from the bottom, in practice the bracing bars are often welded near the top
of the R-bar. There are a number of uncertainties in the behavior of the actual geometry that is
frequently used in practice. This necessitated laboratory testing on the full system. To study this
behavior, tests on the full deck system were conducted using three different bracing bar details as
shown in Figure 3.17. The detail shown in Figure 3.17(a) matches the TxDOT standard drawing
with the (unbent) bracing bar connection to the R-bar at 1.5 in. from the bottom.

R-bar

X Top Bracing Bar
s / N
o N

/ 4" x 4" Timber

Figure 3.15: TxDOT Standard Drawing for Girder Bracing
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Figure 3.16: Top Bracing Connection Details in Practice

The detail shown in Figure 3.17(b) is consistent with the actual geometries witnessed in
practice, in which the bracing bar passes over the top of the concrete panel and is bent to connect
to the top of the R-bar. In addition, the detail shown in Figure 3.17(c) was also tested to
determine if the stiffness was improved by extending the bracing bar, thereby allowing two
connection points to the R-bar. In addition to welding the bracing bar near the top of the R-bar in
Figure 3.17(c), extending the bar also allows it to be connected to the R-bar approximately 1.5
inches from the top of the beam. Another difference between the two details shown in Figure
3.17(b) and Figure 3.17(c) is the “kink” of the bracing bar with the larger angle required in
Figure 3.17(c). The average kink angle that was measured in the Airport concrete bridge was
approximately 14 degrees. The respective kink angles of the bracing bars shown in Figure
3.17(b) and Figure 3.17(c) are approximately 30 degrees and 50 degrees.

In addition to investigating the effect of the bracing bar detail, another major reason for
the tests was to improve the understanding of interaction between the various components of the
girder and deck panel system. The deck panels used for the forming system are supported on a
flexible bearing strip as shown in Figure 3.18. The various components of the system can have
significant effects on the interaction between the deck panel, the bracing bar, the R-bar, and the
compressible insulation. This lack of understanding of this interaction leads to uncertainty about
top bracing behavior.

The goal of the test on the girder and deck panel system is to investigate the effects of
different connection configurations on the structural behavior of top bracing. The three different
connection configurations used in the test were shown in Figure 3.17(a), (b), and (c) and are
referred to as Horizontal (Standard), Inclined Top, and Inclined Bottom, respectively. As noted
above, the connection shown in Figure 3.17(a) matches the TxDOT standard. The connection
configuration of the Inclined Top is a realistic representation of the actual connection
configurations that are widely found in practice. The connection configuration of the Inclined
Bottom is a variation of the Inclined Top and was expected to be stiffer and stronger than the
Inclined Top.
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Figure 3.17: Connection Configurations for Top Bracing
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3.4.2 Specimen

The girder and deck panel system consisted of a concrete beam, a styrofoam support strip
(insulation), a concrete panel, and a top bracing bar attached to an R-bar as shown in Figure 3.18.
The beam was an AASHTO Type C beam with #4 R-bars. The styrofoam support strip was 1.5-
in. wide, 2-in. thick, and 48-in. long. A #5 piece of reinforcing steel was used for the top bracing
bar. For the connection configurations of the Inclined Top and the Inclined Bottom, the
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styrofoam was placed between top of the beam and the concrete panel. A top bracing bar was
placed on top of the concrete panel, bent around the edge of the panel, and welded to the top of
the R-bar. For the Standard connection configuration, a straight top bracing bar was horizontally
connected to an R-bar at a distance of 1.5 in. from the top surface of the beam without a
styrofoam and a concrete panel as shown in Figure 3.17(a).

Figure 3.18: Top Bracing Bar, Concrete Deck Panel and Styrofoam in Place

3.4.3 Test Setup

Figure 3.19 shows a schematic of the test setup used to study the behavior of the girder
and deck panel system. A picture of the actual test setup is shown in Figure 3.20. An hydraulic
actuator reacted laterally near the top of the beam to simulate the torsional load that would result
from the overhang load. The hydraulic actuator was attached to a steel buttress that was fixed to
the rigid floor, and a hemispherical head was mounted on the front of the actuator. The
hemispherical head transferred lateral force to the beam and accommodated rotation of the beam
during the test. The beam was forced to tip about its lower edge by using a pin support consisting
of a steel angle on the bottom edge of the concrete beam that reacted against the steel plates
anchored in the rigid floor as shown in Figure 3.20. The steel angle in this setting behaved as a
pin for the beam. The beam was restrained from twisting by the combination of the deck panel
and the bracing bar. The bracing bar was connected to the R-bar, and was anchored on the other
end by a buttress connected to the rigid floor.

3.4.4 | nstrumentation

A StrainSert load cell with a 50-kip capacity was used to measure the lateral force that
was applied to the beam. The load cell was placed between the hydraulic actuator and the
hemispherical head as shown in Figure 3.21(a). A 24-kip capacity Interface load cell was used to
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monitor the force in the bracing bar as indicated in Figure 3.21(b). The load cell was positioned
at the buttress that anchored the bracing bar. As shown in Figure 3.21(c), strain gauges were
installed in the inclined portion of the top bracing bar, and the small steel bracket was attached to
the top of the R-bar to measure the lateral deformation of the R-bar. Twist in the beam was
monitored using an inclinometer from Rieker Instrument as shown in as shown in Figure 3.21(d).
String potentiometers from AMETEK were also used to measure the lateral movement of the
beam. The readings of lateral movement of the beam were utilized to calculate rotation of the
beam and these rotation values were compared to the rotation readings from the inclinometer for
verification purposes.

styrofoam buttress
#4 R-bar
/hemisperfcal head [#5 bracing bar load cell
6" p/s concrete panel
P A |
"""""" 3.125" 3.825"
—>le—|
15" Y
h1.25" concrete
3 = |¥ black
40" load cell oc
28” 3-25 — )
buttress v 2
|le—| ||
|, |Peamtype C 1625" 15
7—’4;7- 77rr T 4 FI7FT7T77777 FTT77
l< | < sl
& 36.13" ' 56" 24" 1M 137

Figure 3.19: Schematic of Test Setup
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(a) Load Cell for Ram

String Pot Inclinometer

(c) Strain Gauges (d) String Potentiometers and Inclinometer
Figure 3.21: Instrumentation for Girder and Deck Panel System
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3.4.5 Test Results

A graph of force in the top bracing bar versus girder twist is shown in Figure 3.22 for the
three different bracing bar details that were tested. For the connection configurations of the
Inclined Top and the Inclined Bottom, the curves decreased in stiffness with rotation of the beam
and exhibited a plateau after a beam rotation of approximately 1 degree. For larger rotations
there was an increase in the slope of the curves that represents stiffening in the connections. The
connection to the top of the R-bar in the Inclined Bottom detail ruptured at a rotation of
approximately 2.25 degrees, as indicated by the sharp drop in the curve. Both details failed by
rupture of the R-bar. The Inclined Bottom bar had a higher yield plateau and a higher ultimate
strength than the Inclined Top detail. It was observed that these two connection configurations
possess good ductility as shown in Figure 3.22. In comparison, for the Standard detail, the curve
was significantly stiffer than the Inclined details. The Standard detail also failed by rupture of the
R-bar. Pictures of the ruptured R-bars are shown in Figure 3.23. The Standard detail did not
possess much ductility when compared to the Inclined details. However, the large deformations
in the R-bars would most likely not provide significant warning of the impending failure as the
construction workers on the bridge would likely be unaware of the deformations while placing
concrete.

Standard A

Force in Top Bar (kips)

. Inclined Bottom |

0 1 2 3 4

Beam Rotation (deg.)

Figure 3.22: Force in Top Bars and Beam Rotation

The behavior of the R-bars with lateral loading was discussed in Section 3.2 and graphed
in Figure 3.4. According to the results of the R-bar testing from Figure 3.4, the maximum force
the R-bar developed with a straight top bar connected to top of it was about 2 kips. This
maximum force was smaller than the values measured in the overall system graphed in Figure
3.22 due to the added stiffening the deck panels provide to the overall system. However, while
this indicates that interaction between the components in the girder and deck system does exist,
beneficial effects of such interaction may be conservatively ignored as the beneficial effects may
not be realized because the stiffness of the system may prove to control the behavior.
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Figure 3.23: Failures of Top Bracing

3.5 Summary of Laboratory Testing

In this chapter, details of the experimental program as well as a summary of the
experimental results were presented. The experimental programs included R-bar testing, the
beam overturning test, and the test on the girder and panel deck system. In Section 3.2, the
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structural behavior of an R-bar subjected to lateral force was investigated. The lateral stiffness
and capacity of an R-bar were found to be small compared to those of a top bracing bar. This
indicates that the lateral stiffness and capacity of top bracing were governed by an R-bar. In
Section 3.3, the beam overturning test provided a better understanding of the overturning
mechanism. The maximum rotation a Type C beam could sustain was less than 2.5 degrees. In
Section 3.4, the effects of three different connection configurations on the structural behavior of
top bracing were studied and uncertainty about interaction between all the components in a
girder and deck system was clarified. While the Standard connection configuration possessed
more stiffness and capacity for small rotation, the other two connection configurations behaved
flexibly and possessed good ductility. The results from the laboratory testing provided valuable
validation data for the finite element model that is discussed in the next chapter.
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Chapter 4. Finite Element Mod€

4.1 Introduction

Field data or the testing of selective specimens provided valuable data that was used to
validate the accuracy of finite element analytical (FEA) models so that extensive parametric
testing could be conducted to improve the understanding of the basic behavior. Although
physical testing was used to improve the understanding of structural behavior, computational
models also played an important role in understanding general behavior. These models allowed
extensive studies of the structural system that would otherwise need to be gained by much more
detailed testing programs, which is not generally feasible.

The three-dimensional program ANSY'S (2009) was used for the finite element analysis.
This chapter provides an overview of the finite element models along with comparisons of the
FEA results with data from the field and laboratory tests.

Data from the laboratory tests as well as field data from Airport concrete bridge and the
Lubbock steel bridge were used to validate the FEA models. In addition, measurements from the
Hutto concrete bridge that had excessive rotation in the fascia girder were also used to
investigate the cause of the excessive rotation in the fascia girder as well as provide a better
understanding of the behavior of the girder system with slab placement bracing during
construction.

This chapter is divided into seven sections. Following this introductory section, the
following two sections provide an overview of the finite element models as well as the modeling
techniques for key elements in the bridge system. The subsequent three sections provide
comparisons between the FEA models and results from the field studies that were used to
validate the model. The final section of the chapter provides a summary of the chapter.

4.2 Elementsfor FEA models

As summarized in Table 4.1, several different types of elements were used to model the
concrete and steel girders in the study. In this section, a brief overview of those elements is
provided. Modeling techniques are discussed later.

Table4.1: ANSY S Element Typesfor FEA modeling

Element Type | Structural Component Note
Solid65 Prestressed Concrete Beam 3-D reinforced concrete solid
Solid45 Connection Plate for Bearing Pad | 3-D structural solid
Top Bracing Bar
Link8 Strut 3-D truss element
Cross Frame
Link10 Timber Blocking Tension or compression only line
Vertical Reaction of Bearing Pad | element
Beam189 R-bar 3-D quadratic finite strain beam
Combinl4 Shear Force of Bearing Pad 3-D line element
Connection Plate for R-bar .
Shell63 Stiffeners for Girder Elastic shell
Shell99 Plates for Girder Elastic shell
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The Solid65 element was used to model the prestressed concrete beams. The element is
defined by eight nodes, each with three translational degrees of freedom. The element can be
used for 3-D modeling of solids with reinforcing bars. The reinforcing bar is created in the
element simply by defining the volume ratio of reinforcing bars to total element. Up to three
different volume ratios can be defined in any of the three element axes to accommodate concrete
reinforcing bars placed perpendicularly to each other inside the concrete. The reinforcing-bar
capability was utilized to represent the prestressing strands that run along the girder length. The
modulus of elasticity, Poisson’s ratio, and unit density that were used for the concrete were 5500
ksi, 0.2, and 0.15 kcf, respectively.

The Link8 element was used in both the concrete and steel girder models. The Link8 is a
truss element that is defined by two nodes, each with three translational degrees of freedom. In
the concrete girder systems, the Link8 element was used to model the top bracing bar that is
connected to the R-bar of adjacent girders. In the steel girder systems, the truss element was used
to model the struts and cross-frame bracing members. The modulus of elasticity that was used for
steel was 29,000 ksi.

Another truss element type that was used was the Link10 element, which is also a 3-D
line element defined by two nodes, each with three translational degrees of freedom. The element
has the unique feature of a bilinear stiffness matrix, and can be used for applications with
uniaxial tension-only or compression-only behavior. This feature is very useful as a contact
element for axially loaded structural members. The Link10 element was used to model timber
blocking used as temporary bracing for prestressed concrete girders during construction. Several
Link10 elements were also used as a system to model the vertical reactions from the elastomeric
bearing pad, where the contact element capabilities were able to predict lift of the bearing. The
horizontal component of the reactions at the elastomeric bearing pads were modeled using the
Combinl4 spring element, which has longitudinal or torsional capability in 1-D, 2-D, or 3-D
applications. The longitudinal spring option is a uniaxial tension-compression element with up to
three translational degrees of freedom at each node.

The portion of the R-bars that extends from the top of concrete beams was modeled using
the three-dimensional beam element, Beam189. The beam element is defined by three nodes and
has six or seven degrees of freedom at each node. The degrees of freedom include three
translations in the x, y and z directions and rotations about the x, y and z directions. The seventh
degree of freedom can be activated to capture warping stiffness. The element is suitable for
analyzing slender to moderately stubby/thick beam structures and is based on Timoshenko beam
theory.

The mesh density that was used for the concrete beams and the bearing pads differed
because the bearing pad required a much more dense mesh. The mesh density transition was
provided using the Solid45 element. The element is defined by eight nodes and each node has
three translational degrees of freedom.

A transitioning element was also necessary at the interface between the R-bar and the
concrete beam in the model. The Beam89 element has the rotational degree of freedom that is
necessary to transfer the moment from the R-bar into the beam; however, the Solid65 element
that was used to model the concrete does not have the rotational degree of freedom. Therefore,
the Shell63 was used to provide the moment connection between the element type of Solid65 for
the concrete beam and the element type of Beam189 for the R-bar. The element Shell63 has six
degrees of freedom at each node that includes three translations in the nodal x, y and z directions
and three rotations about the nodal x, y and z-axes.
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Finally, the three-dimensional shell element, Shell99, was used to model the plate
element in the steel girder models. The shell element of Shell99 has a feature of offsetting the
nodes along the layer depth of the element. This node offsetting feature is useful for aligning the
top and bottom flanges in the girder whose thickness changes along the length of the girder.

While this subsection provided a brief overview of the basic elements that were used in
the various models, the following section explains some of the modeling techniques that were
used in the concrete and steel girder systems.

4.3 Key modeling techniques

4.3.1 Moment Connections

As discussed briefly in the previous section, the beam element (Beam189) that was used
to model the R-bar required a rotational DOF at the interface between the R-bar and the concrete
beam. Although the Beam189 element has this rotational DOF, the Solid65 element does not
possess the rotational DOF. Therefore, the Shell63 element was used as an interface between
Beam189 for the R-bar and the Solid65 for the concrete beam. The Beam189 elements for the R-
bar are embedded into the solid elements for the concrete beam and shares nodes with the solid
element as shown in Figure 4.1(a). The Shell63 elements were created by using the same nodes
that the Beam189 and the solid elements share inside the concrete beam. In Figure 4.1(b), the
rectangular area in light gray represents the elements of the Shell63 that ensure moment transfer
from the Beam189 to the solid element.

_—

Beam189 elements

Shell63 elements

(a) Beam189 elements for R-bar imbedded

in solid elements for concrete beam (b) Shell63 elements for moment connection

Figure 4.1: Moment Connection

4.3.2 Bearing Pad

4.3.2.1 Bearing Pad Model

Elastomeric bearing pads are difficult to model due to the variable stiffness in the vertical
and lateral directions as well as the variable nature of the interface with the beams that rest on the
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pads. The pads do not have a positive connection with the beams that they support but instead are
dependent on the direct contact between the beams and the pads from gravity load. Depending on
the compression in the pad from the gravity load and the in-plane or out-of-plane rotation of the
beam, the beam can lift off of the pad. Therefore, the model of the bearing pad must include the
ability to have variable stiffness in the different translational directions and also capture the
potential lift-off of the beam from contact with the pad. The resulting system consisted of a
series of spring elements to represent a bearing pad. The model included a combination of
horizontal (parallel to the bottom surface of the concrete beam) and vertical (perpendicular to the
bottom surface of the concrete beam) springs to simulate the lateral restraining effect and the
vertical deflection of the pad. The Link10 element for the vertical springs becomes active in
compression and inactive in tension. Upon the lift-off of the beam, the bearing pad loses some of
the contact with the beam, and the portion of the bearing pad that lost contact with the beam is
free from compression force. While active elements represent the portion in compression of the
bearing, inactive elements represent the portion of the bearing pad that lost contact. The front
view and side view of the vertical line elements for the bearing pad are depicted in Figure 4.2(a)
and (b), respectively.

Solid65 Element for
Mesh Transition

Y

Spring Elements for
Bearing

(a) Front View (b) Side View
Figure 4.2: Modeling of Bearing Pad

For the horizontal line elements for the bearing pad, one end of the line element was
horizontally attached to the bottom center of the concrete beam and the other end was fixed.
Although this discrete model for the bearing pad considers the material properties of the bearing
pad as linear, the model can simulate the behavior of the pad successfully because construction
loads are small compared to service loads, and the bearing pads behave linearly for small loads
based on the bearing pad test results. The linear discrete model for the bearing pad
conservatively ignores the strain-stiffening effects of the bearing pads for higher load levels.
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4.3.2.2 Validation of Bearing Pad Model

The validation of the bearing pad model is discussed in this sub-section. The validation is
performed by comparing the data from the beam overturning test and the results from a FEA
beam model with the bearing pad model.

The beam overturning test, discussed in detail in Chapter 3, enabled a better
understanding of the nonlinear behavior of a beam on elastomeric bearing pads, and also
provided the validation data for the analytic model and FEA models for elastomeric bearing
pads.

Figure 4.3 shows a FEA beam model that was developed for the AASHTO type C beam
with a span length of 55.5 ft and a design beam weight of 29.2 kips. Its modulus of elasticity,
Poisson’s ratio, and unit weight were 5500 ksi, 0.2, and 0.15 kcf, respectively. A load with an
eccentricity of 36.25 in. was applied at midspan of the beam. The self-weight of the beam was
applied in the form of gravity load and the eccentric load was applied gradually at a horizontal
distance of 36.25 in. from the centroidal axis of the girder, using truss elements. The beam was
supported at each end on rectangular bearing pads measuring 7-in. long, 16-in. wide, and 2.86-in.
thick. The vertical stiffness and lateral stiffness for the bearing pads were 513.8 k/in and 4.06
k/in., respectively. The procedure to determine both vertical stiffness and lateral stiffness for a
bearing pad is given in Appendix B. The bearing model described in the last section was
incorporated into the FEA beam model. For the boundary conditions for the bearing model, the
degree of freedom in the vertical direction of the bottom node of the Link10 element was fixed,
and the other two degrees of freedom were coupled with the corresponding degrees of freedom
of the top node of the same element. These boundary conditions allow the Link10 element to
maintain the initial vertical direction throughout rotation of the beam, thereby preventing the
Link10 element from applying the horizontal reactions to the beam. The horizontal component of
the reactions at the elastomeric bearing pads was provided by the horizontal spring elements for
the bearing pad. For the horizontal spring elements, one end of the element was horizontally
attached to the bottom center of the concrete beam and the other end was fixed. The horizontal
spring elements were placed both parallel and perpendicular to the beam length. A geometrically
nonlinear analysis was conducted for the beam model using the Newton-Raphson method in the
finite element analysis.

Figure 4.4 shows a comparison of the FEA results and the test data for rectangular
bearing pads. As shown in the figure, the FEA model captured well the nonlinear behavior in
rotational stiffness of the bearing pad that was observed from the testing data. In addition, the
curve for the FEA results approached zero rotational-stiffness with rotation of the beam, which is
consistent with the testing data. Although the maximum overturning force that the FEA model
predicted was slightly larger than that from the testing data, relatively good agreement between
the FEA results and the test data was achieved.
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Figure 4.4: Comparison of FEA Results and Test Data for Rectangular Bearing Pads

4.3.2.3 Verification of Mesh Fineness

Before finite element models for full bridge girder systems were developed, the mesh
fineness was verified. Preliminary studies of the characteristics of rotational behavior of bearing
pads showed that the width of the bearing pad plays an important role in the rotational behavior
of the bearing pad. Thus, a set of bearing pad models was arranged with the Link10 element
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spacing in the bearing width-direction equal to 0.5, 1, 2, and 4 in., and the element spacing in the
bearing length-direction fixed to 1 in.

Nonlinear large-displacement analyses were performed on all four models, and the results
for different element spacings were compared to identify the relation between mesh fineness and
solution.

Figure 4.5 shows the results for the 4 different element spacings. While the curves with
element spacings of 2 and 4 inches exhibited relatively poor agreement, the curves with element
spacings of 0.5 and 1 in. showed good agreement with each other. Although the results indicated
that the element spacings up to 1 inch were capable of achieving good accuracy, to be
conservative the element spacings in both the width and length directions were chosen as 0.5
inch for the bearing pad models.
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Figure 4.5: Mesh Fineness Verification for Bearing Pad Models

4.3.3 Simulation of Overhang L oad

Figure 4.6 shows the overhang brackets in place. To simplify FE models, construction
overhang load was applied using the statically equivalent configuration of the load as depicted in
Figure 4.7. The equivalent overhang load system consists of a vertical load and a horizontal-
force couple. The vertical load of the equivalent overhang load system is the same in magnitude
as the original construction overhang load, and is positioned at the edge of the fascia girder. The
horizontal-force couple is determined by multiplying the original construction overhang load
with the distance of the load resultant from the edge of the top flange of the girder. Each
component of the horizontal-force couple was calculated by dividing the force couple by the
dimension of b as shown in Figure 4.7.
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Figure 4.6: Overhang Brackets in Place
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(a) Overhang Load (b) Equivalent Overhang Load System

Figure 4.7: Simulation of Overhang Load

4.4 FEA model for Airport concrete bridge

4.4.1 Description of FEA model

As a field investigation, a prestressed concrete girder bridge that was constructed at the
interchange between State Highways 71 and 130 was chosen for instrumentation and was
monitored during construction. As shown in Figure 4.8, the concrete bridge with a span length of
120 ft and a width of 50 ft consisted of seven prestressed concrete girders spaced 7.25 feet on-
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center. The girders were American Association of State Highway and Transportation Officials
(AASHTO) Type IV beams that are 54 in. deep with respective top and bottom flange widths of
20 and 26 in. The overhang width from the center of the fascia girder to the edge of the deck was
3 ft, which is within the range of typical overhang widths for concrete girder bridges.

For interior portions of the concrete slab in the bridge, the 8-inch concrete deck consisted
of 4-inch thick precast concrete deck panels and a 4-inch thick cast-in-place portion of the deck
that was supported by the concrete panel. This construction method is widely used throughout
the state of Texas. The weight of both precast concrete deck panel and fresh concrete between
the girders reacts on the edge of the top flange of the girder.

Figure 4.8: Field Measurement Span of the Airport Concrete Bridge

The overhangs are typically supported by plywood formwork as shown in Figure 4.6. The
overhang bracket is usually connected to the top flange of the fascia girder with a tension tie that
was welded to an insert at the top of the girder, and the bottom of the bracket reacts on the
bottom flange of the girder. The construction load that acts on the plywood formwork in the
overhang is transferred to the fascia girder through the overhang brackets, and creates the
overturning moment for the fascia girder.

To counterbalance the overturning moment for the fascia girder, the top bracing bar was
used together with timber blocking placed between the girders. The size of the top bracing bar is
often a #5 bar that is welded to the top of the R-bar (usually a #4). The young’s modulus and the
specified yield strength of the bars were assumed to be 29,000 ksi and 60 ksi, respectively.
Figure 4.9 shows the connections between the top bracing bar and the R-bar. The precast
concrete panel raises the elevation of the top bracing bar higher than the top of the R-bar, which
therefore requires the bar to be bent at the edge of the panel which leads to a kink angle in the
top bar. The measurements of the kink angle in the Airport concrete bridge ranged from 0 to 31.8
degrees with an average of 13.5 degrees. This kink angle was conservatively ignored in the FEA
modeling.
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Figure 4.9: Top Bracing Connection

Temporary bracing in the form of 4-by-4 in. timbers was used on the bridge during
construction. Two diagonals were connected at the middle to form an “X.” Five Xs were used in
the exterior bays while three Xs were used on the interior bays. Young’s modulus and the area of
the timber blocking were considered as 700 ksi and 12.25 in?, respectively. Although Young’s
modulus for the timbers varies depending on the type of wood, the 700 ksi value used was a
conservative value taken from National Design Specification for Wood Construction (American
Wood Council, 2005).

The elastomeric bearing pads that were used with the AASHTO Type IV girders were 9
by 22 inch with a thickness of 2.5 inch. The pad contained five steel shims of 0.105 inch thick
with six elastomeric layers. The thicknesses of the elastomeric layers were 0.25 for the interior
spaces and 0.375 inches for the exterior layers. As described in the previous section, the pad was
modeled by using a series of linear springs.

Figure 4.10 shows the three-dimensional finite element model for the Airport Concrete
Bridge. The FEA model was developed by using the ANSYS elements described in the previous
section. Although the TxDOT Bridge Design Manual (2008) requires a minimum of five top
bracing bars for the AASHTO Type IV girder with a span of 120 ft., the actual number of top
bracing bars used in the Airport concrete bridge was nine as shown in Figure 4.10.
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.\K"ﬁ.,__. '
(c) Isometric View of FEA Model

(a) Top View of FEA Model

(b) Cross-Section View of FEA Model
Figure 4.10: FEA model for the Airport Concrete Bridge

In addition to the required bracing of the top bracing bars and the timber blocking,
additional sources of restraint that were found in

the Airport concrete bridge included the plywood forming systems both at the thickened
ends of the bridge and at a few interior locations of the fascia girder as shown in Figure 4.11.
The forming system at the ends of the beams likely provided additional restraint to the girder
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system. In particular, this forming system at the thickened ends of the bridge probably provided
some restraint to the rigid-body rotation of the fascia girder at support. However, because these
sources of restraint are not generally reliable or designed for bracing, the additional restraint was
conservatively neglected in the FEA modeling.

Although the rotation of the fascia girder was expected to be small, a geometrically
nonlinear analysis was conducted for the Airport concrete bridge by using the Newton-Raphson
method in the finite element analysis. A linear analysis was also conducted and confirmed that
the analysis results from both analysis options were similar to each other.

(a)Formwork for Thickened Ends (b) Formwork for Drainage

Figure 4.11: Formworks for Thickened Ends and Drainage

4.4.2 Validation of FEA model for Airport Bridge

The FEA modeling techniques that were used for modeling of the Airport Concrete
Girder Bridge were validated by comparing FEA results and field data. Fasl (2008) included the
vertical deflections of the girders, the rotations about the longitudinal axis of the girder and the
axial forces in the top bracing bars. In particular, the field data used for comparisons with the
FEA results were the deformations that occurred during placement of the concrete deck. Vertical
deformations were taken using a laser distance meter with a precision of = 0.0625 in. The girder
deformation was obtained by comparing the measured distance from the ground to the bottom of
the girder before and after the concrete placement, at the location shown in Figure 4.12.
Rotations were recorded with a Crossbow Technology tilt sensor that has a resolution of 0.03
degrees. FEA results and the field measurements summarized in Tables 4.2 and 4.3. Reasonable
agreement was achieved between the FEA model and the field measurements.

Table 4.3 shows that, as expected, the rotations in the fascia girder were larger than those
in the first interior girder, as the fascia girder has overturning moment applied from the
overhang. Field measurements of rotation in the fascia girder and the first interior girder were
small, and rotations in the first interior girders were actually in the range of the resolution of the
tilt sensors that were used for measuring the rotations in the girders. This is consistent with the
FEA results. The FEA results also showed that the rotations in the first interior girder were very
close to zero.

In addition to girder deformations, strain gages were used to monitor the strains in the top
bracing bars at a number of locations along the length of the bridge. The resulting forces that
were calculated from these stresses were less than 1 kip, which was consistent with the
prediction the FEA model.
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Figure 4.12: Measurement Locations on West Side of the Airport Concrete Bridge

Table 4.2: Comparison of FEA Resultsand Field Data of Deflections of Girdersin the
Airport Concrete Bridge

Locations G1-2 G1-3 G1-4

Measurements (in.) 0.813 1.438 1.438
Fascia Girder

FEA (in.) 0.712 1.469 1.512

% Difference 14.1 21 4.9

Locations G2-2 G2-3 G2-4

Measurements (in.) 0.563 1.167 1.250
First Interior Girder

FEA (in.) 0.606 1.253 1.290

% Difference 7.2 6.9 3.1

Table 4.3: Comparison of FEA Resultsand Field Data of Rotations of Girdersin the
Airport Concrete Bridge

Locations G1-1 G1-2 G1-3 G1-4
Fascia Girder Measurements (deg.) 0.05 0.1 0.1 0.11
FEA (deg.) 0.089 0.099 0.107 0.106
Locations G2-1 G2-2 G2-3 G2-4
First Interior Girder Measurements (deg.) 0.040 0.03 0.03 0.03
FEA(deg.) 0.005 0.007 0.008 0.007
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4.5 FEA model for Hutto Concrete bridge

4.5.1 Description of FEA Model for Hutto Concrete Bridge

While the Airport Concrete Bridge addressed in the previous section had small rotations,
the Hutto Bridge exemplified a bridge that had large rotations. Confidence in the FEA model
would result if good agreement could be achieved between the FEA model and measured girder
deformations from the bridge.

The finite element model of the bridge was developed using plans from the bridge plus
additional information provided by TxDOT engineers familiar with the bridge construction.

The concrete bridge, located on the west side of the intersection of State Highways 79
and 130, has a span of 64.6 ft and a width of 60.5 ft. It consisted of 9 AASHTO Type B girders
34-in. deep with a top and bottom flange widths of 16 and 18 in., respectively. The overhang
width from the center of the fascia girder to the edge of the deck was 3 ft. The bearing pads for
the Type B beams were 8 by 16 in. with a thickness of 2.5 inch.

TxDOT reported that the Hutto Concrete Bridge experienced excessive rotation in the
fascia girder during construction. Field investigation by the research team found that the
completed bridge had a locked-in rotation of the fascia girder ranging from 2.3 to 2.8 degrees.

" |

Figure 4.13: Hutto Concrete Bridge

In the course of FEA modeling, one difficulty associated with the Hutto concrete bridge
was that the actual bracing conditions for the bridge were unknown, and knowledge of the exact
construction loading information was also insufficient. However, the researchers were able to
obtain additional information from TxDOT engineers. In accordance with their
recommendations, the minimum required amount of bracing for deck concrete placement as
specified by the TxDOT standard drawing was used in the FEA modeling and the worst load
scenario was assumed for the construction loading. The total construction load included fresh
concrete load, construction equipment weight of 6.417 kips per fascia girder, concrete forming
system weight of 0.045 k/f per fascia girder. Although the construction equipment was not on the
finished bridge, because the concrete can begin to set up and gain stiffness within a few hours,
part of this load can contribute to the deformations that would be locked into the bridge. Figure
4.14 shows the FEA model of the Hutto concrete bridge with minimum required bracing.
According to TxDOT personnel, the standard bracing drawing MEBR (C)-1 (the old version of
the current standard bracing drawing) was probably used for the Hutto concrete bridge. The
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minimum bracing required for Type B beams with a span length of 64.6 ft consisted of 3 top
bracing bars and 3 pairs of diagonal timber blockings as shown in the Figure 4.14.

(a) Top View of FEA Model

(b) Cross-Section View of FEA Model
Figure 4.14: FEA Model of Hutto Concrete Bridge

4.5.2 Discussion of Analysis Results

The Hutto Bridge provided valuable information about potential problems in the current
bracing requirement and construction protocol due to the problems that happened during
construction. The comparison of the FEA solution and the field measurements provides the
opportunity to validate the modeling techniques. Comparisons of the FEA solution and the field
measurements are made in this sub-section and probable reasons for excessive rotation of the
fascia girder are provided.

4.5.2.1 Rotation of Fascia Girder of Hutto Concrete Bridge

Figure 4.15 shows a graph of the rotation of the fascia girder at the support and also at
midspan obtained from the FEA solution during the application of the full construction load. The
predicted rotations of the girder from the FEA solution at the full construction load were 2.12
and 2.34 degrees at the end and mid-span of the girder, respectively. These values are in
reasonable agreement with the corresponding measured values of 2.3 degrees and 2.80 degrees.
Girder twist was dominated by rigid-body rotation, similar to what was observed in the field. In
looking at the curve of the twist as the construction load was applied to the FEA model, the
fascia girder behaves approximately linearly for up to about 30% of the construction load, and
starts losing rotational stiffness with further increase in construction load. The sources of
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stability from overturning include the girder self-weight, the construction load on the interior
side of the girder, and the bracing bar connected to the R-bar. As the construction load
approaches its full magnitude, the overturning moment approaches the maximum possible
restoring moment in magnitude, which is very close to instability. In the case of the Hutto
Bridge, the problem was further complicated because the girder lifted off the bearing, shifting the
point about which the girder twists and increases the eccentricity of the overturning forces while
decreasing the eccentricity of the restoring forces. This leads to a reduction in the rotational
stiffness of the girder system. Because the girders were dominated by rigid-body rotation, the
field measurements and the FEA solutions also verified that treating the girders as torsionally
rigid is a reasonable assumption. This assumption will be used in Chapter 6 when an analytical
model is developed to provide a hand solution to predict girder twist.

1  Beam End Rotation
09

08
0.7
06 F
05
04
03 F
02

Mid-Span Rotation

Construction Load (x100%)

01

0 1 1 1 1 1 )
0 0.5 1 1.5 2 2.5 3

Fascia Girder Rotation (degrees)
Figure 4.15: Lateral Rotation of Fascia Girders with Construction Load

4.5.2.2 Forces in Top Bracing Bars

Figure 4.16 shows the distribution of the forces in top bracing bars across the girder
system for the full construction load level from the FEA solution. The bay number is represented
along the x-axis while the force in the top bar is graphed on the y-axis. The top bracing bar used
to restrain the lateral rotation of the girder was a #5 bar with an area of 0.31 in’, a specified yield
strength of 60 ksi, and an axial capacity of 18.6 kips.

The axial capacity of the bar is the maximum design value that the #5 bar can provide
with proper connection at ends of the bar. However, the predicted forces in the top bracing bars
at the full construction load level were smaller than 1.5 kips, which is less than 10% of the axial
capacity of the top bracing bar. The small force in the bar relative to the capacity is likely due to
the flexible R-bar connection that dominates the stiffness of the bracing bar and R-bar system. In
addition, according to the FEA results, the diagonal timber blocking had zero compression force
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at the full construction load level. This indicates that the diagonal timber blockings were
probably dislodged during lateral rotation of the girder, there becoming ineffective.
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Figure 4.16: Force Distribution in Top Bracing across Hutto Concrete Bridge
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4.6 FEA Model for Lubbock Steel Bridge

4.6.1 Description of FEA model

The steel plate girder bridge monitored during construction supports an overpass of 19"
Street over US 82 Highway in Lubbock, Texas. Figure 4.17 shows the steel bridge under
construction. The steel bridge is two-span continuous with an overall span length of 289.5 ft, a
first span length of 150.5 ft, and an overall width of 41 feet. The bridge consists of six steel plate
girders and has a skew of about 60 degrees. The doubly symmetric steel plate girders were 54-
inches deep with 18-inch wide flanges. The girders were spaced 8.2 ft. on center. The overhang
width from the center of the fascia girder to the edge of the deck was 3 ft, which is within the
typical range of overhang widths for steel plate girder bridges.

Figure 4.18 shows the 3-D finite element model for the Lubbock steel bridge. Element
types Shell99 and Shell63 were used to model the steel plates and stiffeners in the girder,
respectively. The Shell99 element permits offsetting the nodes at the top surface, mid-surface
and bottom surface of the element. This feature is useful for aligning the top and bottom flanges
in the girder whose thickness changes along the length of the girder. Cross-frames, struts, and
end diaphragms were modeled by using Link8 truss elements.

At the overhangs, plywood forms were supported on overhang brackets. The overhang
load applied to the plywood form was simulated using the equivalent overhang load system
explained in the previous section. Between girders, the permanent metal deck form (PMDF)
provided formwork for an 8.5-inch thick concrete deck. Although this permanent metal deck
form contributes to restraining the lateral movements of the girders, it was ignored in the FEA
model.

Figure 4.17: Lubbock Steel Plate Girder Bridge under Construction
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Figure 4.18: FEA Model of Lubbock Steel Bridge

The steel bridges with concrete deck on top of girder systems were monitored during
casting of the concrete bridge deck. The data recorded included girder deflections, girder
rotations, strains in the girders and cross frames, and plate deformations on the fascia girder from
the overhang brackets reacting on the web plates (Fasl, 2008).

The girders were supported at the ends with Fabreeka bearing pads (Figure 4.19), which
are relatively rigid and allow expansion and contraction by sliding. The rigid nature of the pads
can be seen in the picture by the gap that resulted from a slightly uneven surface on the concrete
abutment. For simplification, the bearing pads were represented by simple supports. Specifically,
the girder was fixed at one end, and allowed to displace in the axial direction at the other end.
The nodes at the flange-to-web intersection at supports were constrained with a pin or a roller.
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Fabreeka Bearing Pad

Figure 4.19: Fabreeka Bearing Pad in Place

Only concrete deck load during construction was applied at the top flanges of the girders,
because the field measurements used in the comparisons with the FEA results were the ones that
occurred during placement of the concrete deck. Girder self-weight was not included in the finite
element analysis. A second-order analysis was conducted, including geometric nonlinearities
using the Newton-Raphson method.

4.6.2 Validation of FEA model

Figure 4.20 shows the measurement locations for the vertical deflections in the girders in
the Lubbock Bridge, and Table 4.4 summarizes the comparison of FEA results and field data of
the vertical deflections in the girders. The vertical deflection in the girder is a difference in the
vertical distance from the bottom of the girder to the ground before and after the deck pouring
measured using a laser distance meter with a precision of =£0.0625 in. The percentage differences
in deflection in Table 4.4 were less than 13% except for the location G1-4. The deflection
difference at the location of G1-4 was 0.1 inch, which is small compared to the precision of the
laser distance meter. Therefore, the accuracy of the laser distance meter most likely led to the
relatively large error for the relatively small girder deflection. In general, the FEA results had
good agreement with the field measurements.
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Figure 4.20: Measurement Locations for Deflections in Girders

Table 4.4: Comparison of FEA Resultsand Field Data of Deflections of Girdersin the
Lubbock Steel Bridge

Location G6-1 | G6-2 | G6-3 | G6-4 | G5-4 | G4-4 | G3-4 | G24 | G14
Measurements (in.) 1.5 256 |3.06 [293 |256 |219 |1.81 1.16 | 0.38
FEA (in.) 141 | 257 |318 |3.09 |283 |25 205 |1.28 |0.28
% Difference -6.2 |03 3.6 5.3 9.4 125 | 11.8 |94 -35.7

In addition to vertical deformations, girder twists were measured using Crossbow
rotational transducers with a resolution of 0.03 degrees. The measurement locations are shown in
Figure 4.21. Table 4.5 summarizes the comparison of FEA results and field data of the rotations.

The rotation measurements of the girder were for the fresh concrete load only. The
percentage differences between the measurements and the FEA solutions ranged from 0% to
84.3%; the very large percentage difference was at a point with extremely small rotations where
the resolution of the sensor significantly affected accuracy. Many of the percentage differences
were less than 20%, and in many of these readings the sensor resolution also most likely had a
significant impact on the accuracy.
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Figure 4.21: Measurement Locations for Rotation of Girders

Table4.5: Comparison of FEA Resultsand Field Data of Rotations of Girdersin the

Lubbock Steel Bridge

Locations TS-G6-1 | TS-G6-2 | TS-G6-3 | TS-G6-4 | TS-G5-1 | TS-G5-2 | TS-G5-3 | TS-G5-4
Measurements (deg.) 0.409 0.423 -0.156 -0.159 0.439 0.448 -0.088 -0.261
FEA (deg.) 0.506 0.423 -0.134 -0.182 0.511 0.438 -0.119 -0.185
% Difference 19.2 0 -16.3 12.6 14.2 2.3 26.2 -40.9
Locations TS-G4-1 | TS-G4-2 | TS-G4-3 | TS-G4-4 | TS-G3-1 | TS-G3-2 | TS-G3-3 | TS-G3-4
Measurements (deg.) 0.445 0.287 -0.074 -0.143 0.616 0.487 -0.014 -0.142
FEA (deg.) 0.519 0.411 -0.114 -0.187 0.575 0.526 -0.088 -0.16

% Difference 14.3 30.1 35.1 23.5 7.1 75 84.3 11.5

The locations where the girder stresses were measured are shown
comparisons of the measurements and the FEA solutions during placement of the concrete bridge
deck are given in Table 4.6. The stress measurements in the girder were for the fresh concrete
load only. The average percentage difference was 9.5% with a maximum percentage difference

0f 26.2%.

In summary, good agreement was achieved between the FEA results and the field data in

terms of deflection, rotation, and stress.
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Figure 4.22: Measurement Locations for Stresses in Girders

Table 4.6: Comparison of FEA Resultsand Field Data for Stressesin Girdersin the
Lubbock Steel Bridge

Locations G6-1-W1 G6-1-W2 G6-1-W3 G6-1-L G6-1-R G6-2-W1 G6-2-W2
Measurements (ksi) | -7.1 -2.2 2.7 7.7 10.5 -4.8 -1.8

FEA (ksi) -7.3 -2.1 3 8.4 8.5 -5.1 -1.5

% Difference 2.4 -5.4 10.6 8.8 -23.5 5 -23.7
Locations G6-2-W3 G6-2-L G6-2-R G5-L G5-R G4-L G4-R
Measurements (ksi) | 1.5 4.8 5.1 6.5 6.2 6.4 6.2

FEA (ksi) 2 6 5.6 7.3 6.8 7.2 6.7

% Difference 26.2 19.6 9.6 10.9 8.1 10.2 6.7

4.7 Closing Remarks

Details of the elements and the key modeling techniques that were used in the finite
element models were discussed in this chapter. Finite element models were developed for both
concrete and steel bridges and the FEA results were compared to field data from three bridges.
The field data provided valuable data for validating the accuracy of the FEA modeling
techniques. The comparisons with the field data provided confidence in the modeling techniques
for concrete and steel bridge systems so that parametric investigations could be carried out.
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Chapter 5. Parametric Study on Concrete Girder Systems

5.1 Introduction

Although the state of Texas has typically used conventional AASHTO I-beams for
prestressed concrete systems, a new suite of girders has been recently introduced, referred to as
Tx I-girders. For a given depth, the Tx I-girders are generally heavier than many of the
conventional prestressed girders. The TxDOT bridge manual uses the term “beam” for
conventional I-beams, and the term “girder” for the Tx I-girders. To avoid confusion about the
terms of a beam and a girder in this report, both terms used in this study have the same meaning
of a flexural member in a concrete bridge, and the terms are used interchangeably.

Although the laboratory tests and field monitoring provided valuable data for improving
the understanding of the behavior of concrete girder systems, the finite element models that were
generated provided a uniquely valuable tool for studying the basic performance of a wider array
of problems. Therefore, parametric finite element analyses were conducted to identify critical
overhang geometries for a wide range of concrete girder systems and to investigate effects of the
girder system parameters on the rotational response of the fascia girder. The girder system
parameters used in the parametric study included beam type, overhang width, top bracing
connection type, span length, and top bracing distribution pattern. The parametric FEA models
for the concrete girder systems subjected to overhang load were based upon the FEA models that
were developed based upon comparisons with the laboratory test results and the field data. The
input files were developed using the ANSYS Parametric Design Language (APDL) to facilitate
modifications to the problem geometry.

This chapter provides a discussion of the results of parametric FEA studies that were
conducted over a wide range of girder system parameters. The next section of the chapter
outlines the scope of the parametric study, followed by a section that highlights the main
considerations for FEA modeling. The remaining sections provide a discussion of the results of
parametric investigations, and lastly a summary of the findings is provided.

5.2 Scope of Parametric Study

5.2.1 Parametersand Their Ranges

The basic parameters that were considered and their ranges for the bridge girder systems
are summarized in Table 5.1. While a total of six independent parameters required significant
computational effort, all the parameters were worthy of investigation. Although TxDOT has
plans to stop producing the conventional I-beams and replace them with Tx I-girders, the types
of beams considered included all of the five conventional I-beams and the seven Texas I-girders.
Cross-sectional dimensions and properties for conventional I-beams and Tx I-girders are
provided in Table 5.2 and Figure 5.1, and in Table 5.3 and Figure 5.2, respectively. Comparison
of the shape of the conventional girders with the new cross-sections shows that both the top
flange and bottom flange of conventional I-beams are significantly narrower than those of Tx I-
girders. While for conventional I-beams, the width of the bottom flange of the beam becomes
large with depth of the beam, for Tx I-girders, the width of the bottom flange of the girder
remains constant for all the girder depths. As expected, a beam of larger depth has a larger
weight per unit length for both conventional I-beams and Tx I-girders. For each girder depth, the
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weight per unit length of the conventional I-beams (with the exception of the Beam VI) is
smaller than that of their Tx I-girder counterparts.

Although the span lengths in Table 5.1 range from 30 ft to 120 ft, small beams such as
Beam Types A and B, and Tx28 and Tx34 are practically suitable for short spans; large beams
such as Beam Type VI and Tx70 are practically suitable for long spans. Three different span
lengths were applied to each of the beam/girder types. The three different span lengths included
60 ft, and lower and upper values. The lower and upper values for the span length were
determined based on the girder type. For example, for Beam Type C considered as a shallow
beam, the span lengths of 30 ft, 60 ft, and 90 ft were applied, while for Beam Type VI, the span
lengths of 40 ft, 60 ft, and 120 ft were used. The parameter of girder spacing was considered to
see the effects on the rotational response of the fascia girder, and the values for girder spacing in
the table are representative of values used in practice. The overhang width was a key variable in
the parametric study and ranged from 1 ft to 5 ft, which spreads across the practical range. Table
5.4 summarizes the overhang width limits. The overhang width limits for I-beams were
calculated in accordance with the rules for the overhang width limits in the TxDOT Bridge
Design Manual (2008).

Tableb5.1: Parametersand Their Ranges

Par ameter Range

Beam Type 5 conventional I-beams, 7 Texas [-Girders
Span Length 30, 40, 60, 70, 80, 90, 100, 120 ft

Girder Spacing 6.7,7.7 and 8.7 ft

Overhang Width 1 to 5 ft by increment of 0.1 ft
Connection Type flexible connection, stiff connection
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Table5.2: Dimensions of Conventional |-Beams

Beam Type

A

B

D

E

F

G H J K A\ Yt Yb Area 1 Weight
Unit in. [in. |in. | in. | in. in. | in. in. in. in. in. in. in. in.? in.* plf
A 1216 |5 28 5 11 3 4 3 5 6 15.39 12.61 275.4 22,658 287
B 12118 |6 34 53/4 114 [ 23/4|5% 23/4 |53/4]61/2 | 19.07 14.93 360.3 43,177 375
C 14122 |7 40 721116 [312]6 31217127 22.91 17.09 494.9 82,602 516
v 20126 |8 54 |9 23 6 8 6 9 8 29.25 24.75 788.4 260,403 821
VI See Figure 5.1 for beam dimensions 35.06 36.4 1,084.40 732,586 1,130
_I ,42
50
7 l’\ H
Y
42~
D (727
D

Types A, B, C & IV Beams

Type VI Beam

Figure 5.1: Cross Sections of Conventional I-Beams
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Table5.3; Dimensions of Texas|-Girders

Beam Type D B Yt Yb AREA Iy Iy Weight
Unit in. in. in. in. in.? in.* in.* plf
Tx28 28 6 15.02 12.98 585 52,772 40,559 610
Tx34 34 12 18.49 15.51 627 88,355 40731 653
Tx40 40 18 21.9 18.1 669 134,990 40,902 697
Tx46 46 22 25.09 20.1 761 198,089 46,478 793
Tx54 54 30 30.49 23.51 817 299,740 46,707 851
Tx62 62 371/2 33.72 28.28 910 463,072 57,351 948
Tx70 70 45172 38.09 31.91 966 628,747 57,579 1,006
Foy
312
36 412
e — +—
Yi
Yi
B B — 1
D
?34'_ Yo ?34'_ Yo
834 ] s34 ]
- _a_—

Types Tx28, Tx34 & Tx40 Types Tx46 & Tx54 Types Tx62 & Tx70

Figure 5.2: Cross Sections of Texas I-Girders
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Table5.4: Overhang Width Limitsby TxDOT Bridge Design Manual

Beam/girder type Over hang width limits (ft)
A 1-3.53
B 1-4.42
I-beams C 1.08-4.5
1\ 1.33-4.75
VI 2.25-5.67
Tx28 2-4
Tx34 2-4.67
Tx40 2-4.75
I-girders Tx46 2-4.75
Tx54 2-4.75
Tx62 2.25-5
Tx70 2.25-5

Overhang width limits for I-girders were as specified in the I-Girder Standard Drawings
(TxDOT, 2007).

The lower limits of the overhang width for the Tx I-girders are larger than those for the
conventional I-beams. In addition, the upper limits of the overhang width for the Tx I-girders are
usually larger than those for the conventional I-beams. This indicates that Tx I-girders are
allowed to accommodate larger overhang width compared to conventional I-beams. The
connection type for the top bracing bars included two types of connections that are referred to as
the flexible connection and the stiff connection. The flexible connection is representative of the
actual connection configuration typically used in practice for top bracing bar while the stiff
connection is the connection configuration specified by the TxDOT Standard drawings. The
flexible connection is used because the widespread use of precast concrete panels makes it
difficult to implement stiff connection. As shown in Figure 5.3, the top bracing bar is attached to
top of the R-bar for the flexible connection, while the top bracing bar is attached to the R-bar at a
distance of 1.5 in. from the top surface of the concrete beam for the stiff connection. In the FE
models for the parametric study, horizontal timber blocking was placed at the top corner of the
bottom flange of the beam. The horizontal timber blocking combined with the top bracing bars
provides restoring moments to the fascia beam. Although diagonal timber blocking is specified
in the exterior bays of a girder system by the TxDOT standard drawings, they were
conservatively ignored in the parametric study on girder systems as the validation studies
showed that the blocking is ineffective at reducing girder twist and often has members with little
or no force. Figure 5.4 demonstrates the thickened ends in concrete deck at bent before deck
pouring.
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(a) Flexible Connection (b) Stiff Connection

Figure 5.3: Schematic for Flexible Connection and Stiff Connection

The last parameter considered in Parameters and Their Ranges was the distribution of the
top bracing bars. Although the TxDOT standard drawings specify top bracing to be distributed
along the length of the girder (Figure 5.5 (a)), the effectiveness of the concept of end bracing
where top bracing is concentrated at either end of the girder system (Figure 5.5 (b)) was
investigated. Horizontal timber blocking was distributed at a uniform spacing along the length of
the girder for both distributed top bracing and end top bracing. Figure 5.4 shows the formwork at
the thickened ends of the concrete deck at the bent before deck pouring. At the thickened end
typically 3 to 4 ft long, wooden formwork is used in place of concrete panels to support the fresh
concrete in Figure 5.4. These thickened ends provide good conditions to implement the stiff
connection if such a detail results in improved behavior for some conditions. In Figure 5.4, R-
bars that can be used for top bracing connection in the thickened end are about 10. This large
number of R-bars results in several possibilities for improving the behavior of the girder system.
Providing stiffer connections at the ends of the sections also makes practical sense based upon
the previous results that showed that significant rigid body rotation occurs in the beams.
Restraining twist at the ends therefore is a logical solution to the problem.
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(a) Distributed Bracing (b) End Bracing
Figure 5.5: Plan View of Girder Systems with Distributed and End Bracings

73



5.2.2 Other Conditions

Although the focus of a parametrical investigation is often on the variables, an important
aspect of such an investigation is the constraints of the problems. This section therefore provides
an overview of some of the system parameters that were held constant, including the amount of
bracing and the construction load. These parameters were fixed because minimum bracing was
used and the worst construction load scenario was considered.

The TxDOT standard drawings state that in exterior bays, the maximum bracing spacing
for Beam Types A, B, and Tx28, Tx34 is 15 ft and the bracing spacing for all other prestressed
girder systems is 30 ft. In addition, the first interior bracing must be located at a distance of 4 ft
from the end of the beam. Table 5.5 summarizes the minimum bracing spacing in accordance to
the TxDOT standard drawings, and was used in the parametric study. In the table, Beam Types
A, B, and Tx28, Tx34 are classified as Bracing Group A, while all others are classified as
Bracing Group B. The fact that more bracing is required for Bracing Group A, which includes
small beams, looks reasonable because shallow beams generally possess smaller restoring
moment capacity than large beams. The adequacy of the current minimum bracing requirements
is a major focal point of this parametric investigation. Although the minimum bracing specified
in the TxDOT standard drawings is allowed for bridge girder systems during construction, the
actual bracing amount used in practice was observed to be more than the minimum requirements
in the bridges the research team was involved with on this investigation. For example, the
number of top bracing bars actually used in the Airport Concrete Bridge was nine, and almost
twice the required minimum number. Similar practices were observed at other concrete bridge
construction sites.

Table5.5: Minimum Bracing Spacing for Exterior Bays

Bcgac'”g Span (ft) 3040 |50 [60|70 |80 |90 |100 |110 |120

roup

A Bracing 118 |105]13]|103 |12 [13.7 115|128 |14
Spacing (ft)

B Bracing 11|16 |21 |26|155 |18 |205 |23 |255 |28
Spacing (ft)

The total construction load considered in the parametric study included the self-weights
of the beams, the fresh concrete deck, the overhang formwork, construction equipment, and the
weight of the construction personnel. While the beams, fresh concrete, and overhang formwork
have reasonably well established unit weights, the weights of the construction equipment and the
construction personnel are highly variable. The author visited websites of major construction
equipment manufactures and collected data sheets about weights of construction equipment. The
manufacturers included Bid-Well and Dayton Superior, the respective manufacturers of the
finishing screed and the overhang brackets. Additional information about weights of construction
equipment was collected from design handbooks. These design handbooks included the design
handbook from MeadowBurke (2007) and the steel bridge design handbook from National Steel
Bridge Alliance (2006). When the effective weight of a screed is calculated, there are a couple of
considerations. Because the paving carriage in a screed that levels fresh concrete keeps moving
back and forth in operation, the paving carriage applies unequal loads to the rails supporting the
screed. An imbalance load factor of 1.5 was multiplied to the weight of the screed to account for
the imbalance load, and then half of this effective screed weight was conservatively distributed
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to each rail. From the survey, the half of the effective screed weight calculated this way ranged
from 3.9 to 5.7 kips, and the maximum value of 5.7 kips was used in the parametric study. Also,
a weight of the construction personnel of 1.2 kips per girder was used as a point load at the
midspan of each fascia girder.

5.3 FE Modeling

Figure 5.6 depicts a typical FE model of a concrete girder system that was used in the
parametric study. A top bracing bar was connected to the R-bar, and a timber blocking was
placed between the girders. The diagonal timber blocking was conservatively ignored because
field measurements and early computational studies showed that the diagonal timbers had very
small forces and don’t play an important role in preventing rotation of the girder about the
longitudinal axis of the girder. Bearing pads were modeled as a series of compression-only linear
spring elements, and the linear spring elements were spread uniformly at the bottom of the girder
over the same area as actually occupied by the bearing pad. As the term “compression-only”
implies, the linear spring element for the bearing pad is active in compression and inactive in
tension. The horizontal timber blocking members were also modeled with the same compression-
only linear spring elements as for the bearing pad.
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Figure 5.6: Finite Element Model for Parametric Analyses

Solid elements were used to model concrete girders and linear material properties were
assumed for the concrete. R-bars were modeled using a beam element based on Timoshenko
beam theory, and linear elastic-perfectly plastic material model. The top bracing bar that
connects to the R-bars was modeled with a truss element.



Several key assumptions for the FEA modeling were used in the parametric study. First,
as discussed in the Chapter 3, a top bracing bar, a concrete panel, the Styrofoam panel support,
and a girder can interact with each other during rotation of the girder, leading to increases in the
stiffness and capacity of the top bracing. Because the beneficial effects of this interaction are not
well understood, the interaction among system components was conservatively ignored
throughout the parametric study. A second key assumption for the FEA modeling was about the
concrete formwork in the thickened ends at each end of the bridge as shown in Figure 5.4. The
concrete formwork is attached to the girder at top through steel rods and is believed to provide
some restraint to the girder in a certain degree. This potential bracing force was also
conservatively ignored, because the concrete formwork is a non-bracing member for the girder
system and the potential bracing force from the concrete formwork is not generally reliable.
Third, while self-weights such as beam self-weight and concrete panel weight are sequentially
followed by construction load during actual construction, the loads are applied simultaneously in
the parametric analyses. Finally, large-displacement analysis that would produce more accurate
results was not used throughout the parametric analyses, because the girder rotation of interest
was relatively small.

5.4 Relationship of Beam Rotation & Overhang Width

This section focuses on FEA results demonstrating the effect of the stiffness of the
connection between the bracing bar and the R-bar. Two connections were considered: 1) a
flexible connection where the bracing bar frames in to the top of the R-bar, and 2) a stiff
connection were the bracing bar connects 1.5 inches from the bottom of the R-bar. The girder
systems consisted of four girders with a span length of 60 ft and a girder spacing of 7.7 ft.
Although longer span lengths were considered in the parametric studies, the results for a span
length of 60 ft are presented because the shorter span is generally more critical because the girder
weight is less. The minimum top bracing specified by the TxDOT standard drawings was used,
along with horizontal timber blocking. The bracing bars and blocking were evenly distributed
along the length. The girder rotations at midspan are graphed as a function of the overhang width
in Figure 5.7 and Figure 5.8 for beams with the flexible connection. Figure 5.7 shows the
behavior for the conventional Beam Types while Figure 5.8 shows the behavior for the Tx
Girders. Beam Type VI had relatively small girder rotations for overhang sizes up to 5 feet.
Beam Type IV had reasonable performance for overhang widths less than 3 feet. The other
conventional I-beams of Beam Types A, B, and C, however, experienced a problematic beam
rotation even for a typical overhang width of 3 ft. Compared to Beam Types IV and VI, these
beams are considered as relatively shallow, with a narrow top flange width and small matching
bearing width. These factors are directly related to the rotational response of the girder systems
and are worthy of further explanation. The self-weight of the beams plays an important role in
the rotational response as the self-weight provides a restoring moment. Therefore, smaller beams
will generally have smaller rotational response because they have a lower self weight. Additional
restoring moments come from the deck weight on the interior side of the fascia girder where the
deck panel reacts on the inside of the top flange. Therefore, a wider top flange will usually result
in a larger moment arm for the restoring force from the interior deck. The width of the bottom
flange also is important to the rotational restraint because the flange width is related to the size of
the elastomeric bearing. The smaller girders have narrower flange widths and smaller weights.
As a result, these girders often have significantly lower rotational resistance compared to larger
girder sizes. Figure 5.8 shows rotational response of Tx I-girders with flexible connection. All
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the Tx I-girders showed good rotational response for a typical overhang width of 3 ft. For Tx I-
girders, smaller girders experienced more girder rotation, and this is consistent with results of the
conventional I-beams.
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Figure 5.7: Rotational Response of Conventional I-Beams with Flexible Connection
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Figure 5.8: Rotational Response of Texas I-Girders with Flexible Connection
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The behavior of the girders with the flexible connection was often controlled by the
connection stiffness. For girder systems with stiff connection, the connection strength becomes
more important as rupture of the R-bar can occur with rotation of the fascia girder. Based on the
test results from Chapter 3, the stiff connection failed at smaller rotations in the fascia girder.
The failure in the R-bars from these tests occurred at a value of 4.82 kips. Figure 5.9 and Figure
5.10 demonstrate the rotational response of both conventional I-beams and Tx I-girders for stiff
connection, respectively. The curves for the different girder systems were limited by a maximum
bracing bar force of 3 kips, which corresponded to the design value for the maximum bar force
of 4.82 kips observed from the laboratory test results. All the beam rotations for maximum
overhang widths are less than 0.5 degree. As shown in Figure 5.9, only the Beam Types IV and
VI were able to have overhang widths larger than 3.0 feet. Beam Types A, B and C all would
experience strength problems with the R-bar connection for overhang widths less than 3 ft,
which is a typical size. In comparison, in Figure 5.10, all the Tx I-girders showed good
performance for a typical overhang width of 3 ft.

Comparisons of results for flexible and stiff connection were made for a beam system of
Beam Type VI in Figure 5.11 and a girder system of Tx70 in Figure 5.12, respectively. Results
for the other beam/girder types are compared in Appendix C. The results from Figure 5.11 and
Figure 5.12 are representative of the other beam and girder types. These two sections were
selected for comparison because they represent the largest of the respective conventional I-beams
and the Tx I-girders. For the same amount of top bracing, flexible connection allows the girder
system larger overhang width than stiff connection. This is because flexible connection with high
ductility allows the beam larger ultimate rotation than stiff connection, and restoring moment
from the bearing pad increases with rotation of the beam. Although the stiff connections were
limited by the connection force in the top bracing, the beams with stiff connection did behave
much better from the perspective of overall girder rotation compared to the beams with the
flexible connections.
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Figure 5.9: Rotational Response of Conventional I-Beams with Stiff Connection
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Figure 5.10: Rotational Response of Texas I-Girders with Stiff Connection
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Figure 5.11: Comparison for Flexible and Stiff Connections for Beam VI
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Figure 5.12: Comparison for Flexible and Stiff Connections for Tx 70

5.5 Effects of Top Bracing Distribution

Another parameter studied was the distribution of the bracing. Two bracing distributions
were considered: bracing distributed along the length and end bracing only. For the case of the
distributed bracing, the top bracing bars were uniformly distributed along the girder length, while
for the end bracing, the top bracing bars were concentrated at each end of the girder. Similar to
the results presented in the last section, the girder systems consisted of four girders with a span
length of 60 ft and a girder spacing of 7.7 ft. The beam sections were divided into Group A and
Group B based upon the number of required braces per span. Group A includes the conventional
I-beam types A and B, and the Texas I-girder types Tx28 and Tx34, while Group B includes the
other conventional I-beam types and the Texas I-girder types. Group A and Group B have five
and three braces, respectively, for a span length of 60 ft. In Figure 5.13 and Figure 5.14, the stiff
connection was used for all of the bracing systems and the curves for rotation versus overhang
width were limited by the design capacity of the stiff connection based on the specified yield
strength of the reinforcing bar.

As shown in Figure 5.13 and Figure 5.14, while the girder systems with the concentrated
top bracing experienced larger rotation of the fascia beam than the counterparts with distributed
bracing, the difference in rotation of the fascia beam was generally small. In addition, the girder
systems with concentrated top bracing generally had larger critical overhang widths than their
counterparts with distributed bracing. This indicates that end bracing is a viable alternative to
distributed bracing currently required by the TxDOT standard drawings. This alternative is
attractive because the stiff connection can be used near the ends of the beams, where the deck
panels cannot be used.
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5.6 Effects of Beam Spacing

As mentioned in the previous section, the weight of the concrete deck on the interior
sides of the fascia beams provide a restoring moment against the overturning effects of the
overhang. Specifically, the interior deck weight reacts on the edge of the top flange of the beam
and has an eccentricity with respect to the centroid of the beam. The interior deck weight with an
eccentricity provides restoring moment to the fascia girder. For a given deck thickness, the line
weight density of the interior deck is a function of a girder spacing only, and is linearly
proportional to a girder spacing. Therefore, larger girder spacing provides more restoring
moment to the fascia girder.

Effects of the beam spacing of the girder systems were investigated on rotational
response of the girder system, and FEA results from the study are presented in this section.
Figure 5.15 and Figure 5.16 show the rotational response of girder systems of Beam VI and
Tx70, respectively, and both figures represent the typical rotational response of girder systems of
the other beams/girders. All the girder systems studied consisted of 4 girders (beams) with a span
length of 60 ft and with a minimum top bracing that employed the flexible connection. The
required minimum number of top braces for girder systems of Beam VI and Tx70 with a span
length of 60 ft was three, and this top bracing along with horizontal timber blocking was
uniformly distributed along the girder length. The rotational response curves in each graph
compare the results for beam spacings of 6.7 ft and 8.7 ft.

The rotational response of girder systems of Beam VI and Tx70 in Figure 5.15 and Figure
5.16 demonstrate that the larger girder spacing can improve the rotational behavior of the girder
systems. From Figure 5.15, for a given overhang width, the girder system with a beam spacing of
6.7 ft experienced larger beam rotation than the counterpart with a beam spacing of 8.7 ft. This
trend was true for the entire range of overhang width considered. Similar behavior was observed
for the girder systems of Tx70 in Figure 5.16.
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Figure 5.15: Effects of Girder Spacing for Conventional I-Beams
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Figure 5.16: Effects of Girder Spacing for Texas I-Girders

5.7 Effects of Beam Type

Given TxDOT’s new line of prestressed girder shapes, an important parameter was the
new shapes versus the conventional ones. Although all of the different conventional beams and
the new Tx girder shapes were considered, the behavior of only two conventional shapes and two
new shapes will be discussed. The trends were generally the same for the other shapes. The
girder systems considered had a span of 60 ft and a girder spacing of 7.7 ft. The minimum
bracing along with horizontal timber blocking as specified by the TxDOT standard drawings was
used with the flexible connection. The bracing was distributed along the length of the girders.
Group 1 in the comparison consists of the smaller beams while Group 2 consists of the larger
beams. Breaking the beams up into two groups is also logical because Group 1 includes Beam
Types A and B, and Tx28 and Tx34, which have different minimum bracing requirements
compared to the Group 2 beams. The required minimum bracing amount for the Group 1 beams
is larger than that for the Group 2 beams. Therefore, in order for comparison to make sense,
comparisons were conducted for the beams/girders that belong to the same bracing group
category. Figure 5.17 and Figure 5.18 compare results for the beams/girders with Group 1 and
Group 2, respectively.

Figure 5.17 shows that larger beams and girders have better structural performance. This
is because larger beams/girders have a wider top flange, a wider bearing pad, and a larger beam
self-weight, and these factors are directly related to the restoring moment capacity of the fascia
girder of the girder system as explained before. Tx I-girders generally have a wider top flange, a
wider bearing pad, and a larger beam self-weight than their conventional I-beam counterparts.
Therefore, from a rotational stability perspective, Tx I-girders generally behave better than their
conventional I-beam counterparts, as is verified in Figure 5.17 and Figure 5.18. The general
exception to this is the Beam VI curve, which does show larger permissible overhang widths
than the Tx 70 girder.
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Figure 5.18: Effects of Beam Type of Large Beams

However, Beam VI has the widest top flange, the largest beam self-weight, and the
widest matching bearing pad.

&5



5.8 Closing Remarks

The results from the parametric FEA studies were presented in this chapter along with a
discussion of the general comparisons. Several important findings were obtained and are
summarized here as follows.

While conventional beams of Beam Types IV and VI showed good rotational response
for a typical overhang width of 3 ft, the other conventional beams of Beam Types A, B, and C
experienced problematic beam rotations. In comparison, all of the Tx I-girders showed good
rotational response for a typical overhang width of 3 ft.

Investigations were made with conventional bracing layouts where the top bracing bars
are distributed along the length as well as the alternative bracing layouts where the bracing bars
are concentrated at the ends of the beam. The advantage of focusing the bracing at the ends of
the section is that stiffer connections are possible as the bracing bars can connect lower on the R-
bars. Although the girder systems with concentrated top bracing experienced larger rotation of
the fascia beam than the counterparts with distributed bracing, the difference in rotation of the
fascia beam was generally small. Therefore, the method of end bracing can provide a good
alternate for the distributed bracing that is currently required by TxDOT standard drawing.

For a given deck thickness, the line weight density of the interior deck is a function of a
girder spacing only, and is linearly proportional to a girder spacing. Therefore, larger girder
spacing provides more restoring moment to the fascia girder of the girder system. Lastly, larger
beams/girders have better structural performance due to the wider top flange, the wider bearing
pad and the larger beam self-weight.
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Chapter 6. Rigid Body Model for Concrete Girder Systems and
Design M ethodology

6.1 Introduction

Field data and the parametric FE analyses show that the girders in a concrete girder
system can be reasonably approximated as torsionally rigid for construction load levels. The
assumption of torsional rigidity greatly simplifies the evaluation of behavior of the girder
subjected to construction overhang loads. In this chapter, a rigid-body model is developed and a
simple design equation for overhang construction is derived based on the rigid-body model. Key
assumptions include modeling the girder as torsionally rigid and modeling the bearing pad as a
compression-only elastic foundation.

The purpose of the rigid-body model is to develop a simple design equation for overhang
construction, and to provide a bracing design methodology. Following the identification of
overturning and restoring forces on girder systems, a rigid-body model for a stand-alone beam on
elastomeric bearing pads is developed and verified using the laboratory data from the beam
overturning test. The next section discusses a rigid-body model for a beam with lateral bracing
followed by the validation of the rigid-body model with lateral bracing using results from the FE
model. The remaining sections discuss an overhang design equation and a recommended design
procedure. Last, a summary of the chapter is presented.

6.2 Identification of Overturning and Restoring Forces on Girder Systems

Figure 6.1 shows overturning forces and restoring forces for a fascia beam during
construction. The forces quantities indicated on the figure are defined in Table 6.1. All forces
shown acting on the left side of the fascia beam tend to overturn the beam while the beam self-
weight, the slab haunch, and an interior deck provide a restoring moment to the beam. The
overturning forces include weights of the concrete on the overhang, the finishing equipment, and
construction personnel.

87



Fuk Lk
J-‘sd
Fsd
wa
Ffw Wld
l FOh LOh le
A 4 v A
__
CG
(Center of Gravity of Beam)
/4
K Wb.ﬁ
| |
| Woh |

Figure 6.1: Overturning and Restoring Forces and their Eccentricities

In addition to defining the basic force quantities acting on the fascia girder, Figure 6.1
also summarizes all of the definitions of general system. The overturning forces can be replaced
by their resultant force and effective eccentricity.

F= FOh + FSd + ka + FfW (61)

The effective eccentricity of the resultant force can be determined in the following way.

o FonLon + FsqLsa + FyrLwik + FrwlLpw
Fon + Foq + Fupe + Fryy (6.2)

The resultant force of all of overturning forces and the effective eccentricity depend on
the overhang width as shown in Table 6.1. As expected, a larger overhang width leads to the
larger overhang resultant force and a larger eccentricity.
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Table 6.1: Definition of System Parameters

Type Parameter | Definition Unit
w, unit weight of concrete kip/in3
Wrw unit weight of overhang formwork kip/in.?
ts slab thickness (8 in. typical) in.
General Shs Beam spacing in.
Npm number of beams of bridge unitless
Wprq | net width of bridge (=(Npy, — 1)sp5 ) in.
L span of beam in.
Worn width of overhang in.
L Eccentricity of half of interior deck weight .

, ud (= half of top flange of beam) -
Restoring- W, Weight of beam ki
Force bm 15 ‘P
Related Wy, weight of slab haunch (= w.2L;4(ts + 2)L) kip

elate — - -
W half of 1r}ter1(?r deck weight between fascia beam ki
wd and first interior (= w t,L(sps — 2L;q)/2) P
L Eccentricity of net overhang weight in
on (= Lig + Wop — Lig)/2) '
Eccentricity of half of finishing equipment weight .
Lgq _ in.
(_ Woh)
L Eccentricity of weight of workers in
wk =Ewy+1Xx12) ]
Overturning- L Eccentricity of weight of overhang formwork in
Force w (ELig+@Xx12+wop —Liy)/2) '
Related F Half of work bridge weight ki
wb | (=23.5/1000 /12 * wy,4/2) P
F,p weight of net overhang (= w t;(Wy, — Lig)L) kip
Feq half of finishing equipment weight (=5.7 + F,,,;) kip
Foi Weight of workers (= 1.25) kip
P weight of overhang formwork ki
M| (= wpe(2 X 12 + wop — Lig)L) P

6.3 First-Order Analysis of Stand-alone Beam on Elastomeric Bearing Pads

The presence of the elastomeric bearing adds complexity on many levels to the problem
of evaluating the torsional behavior of the fascia girder. Although the bearing compresses under
gravity load, moment applied as a result of the overhang causes the axial compression of the
bearing to vary over the width of the beam. Large eccentricity of applied load can actually cause
the beam to lift off the bearing, creating a gap between the bearing and beam similar to that
shown in Figure 6.2 from the Hutto Concrete Bridge. The variation in compressibility of the

bearing complicates the problem as the bearing reactions affect the overturning calculations.

&9




N i e 0

7 - il A i
Figure 6.2: Lift-off of Fascia Beam at Hutto Concrete Bridge

Figure 6.3 depicts a simplified free body of a fascia beam with an overhang. The effects
of the bracing bar and blocking are not included now, but are considered later. Developing a
solution based upon only the girder and bearing pad is valuable because the solution can be
compared with the test results from the laboratory tipping tests before the effects of the bracing
bars and R-bars are incorporated into the model.

The elastomeric bearing is represented by the series of springs at the base of the beam
over the bearing width, w;,. The overhang forces have been summarized in a single resultant, F,
acting at an effective eccentricity e. In this simplified free body, the beam weight is the only
restoring force shown. The effects of the additional stabilizing forces are considered later in the
chapter.

The rigid-body movement of the beam from gravity load and overturning effects is
depicted in Figure 6.4(a). The free body of the beam system is sketched in Figure 6.4(b)
assuming that the beam is in full contact with the bearing. A first-order analysis is considered in
this section so that the forces are shown on the undeformed structure. Second-order effects are
considered in the next section.
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Figure 6.3: Rigid-body Model for Stand-alone Beam on Elastomeric Bearing Pads
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(a) Rigid Body Movement (b) Free Body Diagram

Figure 6.4: Free-body diagram of Stand-alone Beam during Full Contact

The eccentrically applied load, F and the beam self-weight, W;,,, must be in equilibrium
with the resistance from the elastomeric bearing pad in the vertical direction. For the bearing

pad, k,, is defined as the compressive stiffness of the bearing per width of the bearing, resulting
kip/in.

in a unit of , and A represents the downward movement of the Point O of the beam. The

in.
vertical equilibrium results in the following expression:

F + Wym = kpwpA (6.3)

Moment equilibrium of all of the forces can be taken about the Point O. The eccentricity
of the beam self-weight is zero because the first-order analysis is considered in this section and
the beam self-weight passes through the Point O.

_Wb kbwge
er—?< 5 > (6.4)

Simplifying Equation (6.4) produces the following expression:

kag
F==""0 (6.5)
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This equation describes the relationship between the eccentrically applied load and the
rotation of the beam when the bearing is in full contact (beam does not lift off the bearing).

As overturning effects increase, the beam may reach a particular state where it separates
from the elastomeric bearing pad. The eccentric load and the rotation of the beam at the initiation
of separation of the beam from the elastomeric bearing pad are defined as the “lift-off load” and
the “lift-off rotation,” respectively. Lift-off will occur first at Point B in the figure. At the instant
of lift-off, the displacement of the Point B is zero. The bearing deformation at Point B will
consist of the axial deformation of the bearing due to the full gravity load minus the relaxation
due to the overturning effect of the beam rotating through the angle 8. Therefore, setting the
condition of zero displacement at Point B yields the following expression:

Wy, + F,) 6F.e — 0
kab kbwg B (66)
where F; is the eccentric load at the moment of the initiation of the lift-off of the beam.
Solving Equation (6.6) for £, the lift-off load becomes

F o= WpmWp
L —(6e —wp) (6.7)

Substituting Equation (6.7) into Equation (6.5), the lift-off rotation becomes

Wy 1
fow; (1 22 (6.8)

0,

After the beam lifts off the bearing pad, the beam experiences separation from the
bearing pad and loses some of the resistance from the bearing pad. Figure 6.5(a) depicts the
rigid-body movement of the beam after lift-off. Only the portion of the bearing in contact with
the beam exerts force on the bottom of the beam, as shown in Figure 6.5(b).
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(e + hB)

(a) Rigid Body Movement (b) Free Body Diagram
Figure 6.5: Free-body diagram of Stand-alone Beam during Partial Loss of Contact

As during the full contact of the beam, the eccentrically applied load, F and the beam
self-weight, W,,,,, must be in equilibrium with the resistance from the elastomeric bearing pads in
the vertical direction:

2

F _ kb Wp A
+Wbm_79 7+5 (6.9)

The moment equilibrium of all the forces can be taken about the Point O.

A
Fxe=(F+Wy) (%—@) (6.10)

Substituting Equation (6.10) into Equation (6.9) and solving for 6 produces the following
expression:

1 (Wpm + F)?
ky, (F(2e —wp) — Wywp)?

58
=35 6.11)
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Combining Equations (6.5) and (6.11), the rotation of the beam can be expressed as a
function of the eccentric load applied to the beam.

/ 12e \
Tyw? F ,for F < F

0 =| I (6.12)

8 1 (W + F)3
- — ,for F > F,
9 ky (F(2e —wp) — Wypwy,)?

The derivations in this section were based upon a first-order analysis. The effect of a
change in geometry of load on the problem is considered in the next section.

6.4 Second-Order Analysis of Stand-alone Beam on Elastomeric Bearing Pads

The key difference between the second-order analysis and the first-order analysis of the
rigid-body model is that the second-order analysis considers equilibrium in the deformed
configuration. The second-order analysis requires taking equilibrium of all of forces in the
deformed position of the body and accounts for effects of change in geometry of all of forces
involved in equilibrium. With rotation of the beam, the eccentricity of the applied load increases
and the beam self-weight creates eccentricity with respect to the center of gravity of the beam
from the undeformed position. The increase in eccentricity of the forces reduces the overturning
capacity of the beam and also decreases the rotational stiffness of the beam system. The problem
solution begins with the assumption that the bearing is in full contact with the beam. Figure
6.5(a) depicts the beam in the deformed position. Because the second order effects are
considered in this section, the free body of the beam in this case includes the effects of the
changes in geometry as shown in Figure 6.5(b).
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(e + hB)

(b) Rigid Body Movement (b) Free Body Diagram
Figure 6.6: Free-body diagram of Stand-alone Beam during Full Contact

The eccentrically applied load, F and the beam self-weight, W},,,, must be in equilibrium
with the resistance from the elastomeric bearing pads in the vertical direction. For the bearing

pad, k; is defined as the compressive stiffness of the bearing per width of the bearing, resulting
kip/in.

in a unit of , and A represents the downward movement of the Point, O, of the beam.

Vertical equilibrfum yields the same result from the first order analysis.

Moment equilibrium of all of the forces can be taken about the Point O, which produces the
following expression:

Wp kbwgg
F(e + ho) + Wypd 0 = <\ (6.14)

Simplifying Equation (6.14) produces the following expression for the rigid-body rotation:
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Fe

6 =
kab3

12

(6.15)

— Fh — Wyd,

This equation describes the relationship between the eccentrically applied load and the
rotation of the beam while the beam is still in full contact with the bearing.

As with the first-order analysis, the lift-off load and lift-off rotation can be obtained by
using the kinematic condition that when the beam separates from the bearing at Point B, the
displacement of the bearing at B becomes zero.

Wbm+FL Fle ﬁ:

— 0

Ly Wbmdc)
where F; is the eccentric load at the moment of the lift-off of the beam.

Solving Equation (6.16) for F;, the lift-off load becomes

Fy

e Wp

1
— _ P
= ((h+dc)Wbm+kbwb & 12))

(6.17)

3

2
e w kyw
+ \/((h + AWy + ey (5= 1—5)) + 4h Wy, ( = Wbmdc>

Equation (6.17) can be substituted into Equation (6.15), and solving for the lift-off rotation
produces the following expression:

F,e
0, L

= 3

b — Fih = Wypd, (6.18)

After the beam lifts off the bearing pads, it separates from the bearing pads and loses
some of the resistance from the bearing pads. The resulting deformations and free-body diagram
are shown in Figure 6.7. As when the bearing is in full contact with the beam, the eccentrically
applied load F and the beam self-weight W,,,,, must be in vertical equilibrium with the resistance
from the elastomeric bearing pads in the vertical direction, which produces the following
expression:

F _kb Wb A 2
+Wbm_79 7+§ (619)

Rotational moment equilibrium of forces about the Point O produces the following condition:
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Wy A
3

Fe +h0) + Wind 0 = Wym + F) (2 = ) (620)

Substituting Equation (6.20) into Equation (6.19), and solving for the relationship between F and
0, results in the following expression:

k
(F + Wyp)3 = Ebe{(6e + 6h0 — 3w,)F + 6W,,,d .0 — 3W,,,wp}? (6.21)

Combining Equations (6.15) and (6.21), the rotation of the beam can be expressed as a function
of the eccentric load applied to the beam:

Fe
0

,for 0 <6,

- kbwg
1z~ Fh=Wnde (6.22)

k
Wy + F)3 = 3”9{(6e + 6h0 — 3w,)F + 6W,,,d.0 — 3W,wp )2 , for 6 =6,

| I
(e + hB)

(wy — A/8) 1/8

(a) Rigid Body Movement (b) Free Body Diagram

Figure 6.7: Free-Body Diagram of Rigid Body during Partial Loss of Contact
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6.5 Comparison of Closed-Form Solutions for Stand-alone Beam with
Overturning Test Results

The support conditions for the overturning test of Chapter 3 match the stand-alone beams
in the previous section for which expressions were developed for the tipping load and resulting
twist. The span length and the eccentricity of the applied load were 55.5 ft and 36.25 in.,
respectively. The applied eccentric load versus the rigid-body rotation from the test results is
graphed in Figure 6.8, along with the results from the first-order and second-order analytic
solutions developed in the last two sections. The results of second-order analysis of the rigid-
body model show good agreement with those of the overturning test over the entire range of
rigid-body rotations. In addition, the second-order analytic solution of the rigid-body model
captures the descending branch of the curve of the overturning test results well. This indicates
that the second-order analysis of the rigid-body model clearly shows geometric effects of the
loads on rotation of the beam. While the solution of first-order analysis of the rigid-body model
does not capture the descending branch of the curve of the overturning test results, the results of
first-order analysis of the rigid-body model show good agreement with those of the overturning
test for small rotation that is in the typical design range. In design the main area of interest is
when the beam becomes unstable and starts to tip. Therefore, the first order solution provides
reasonable estimates of when the beam becomes unstable and is simpler than the second order
solution. Therefore, Equation (6.12) from the first-order analysis of the rigid-body model is used
in the next section to develop a rigid-body model with lateral bracing.

2nd-QOrder Analysis
8 F of Rigid Body Mdel
1st-Order Analysis

7 L ofRigid Body Mdel

Eccentric Load (kips)

Testing

1 1 1 J

0 1 2 3 4

Rigid Body Rotation (degrees)

Figure 6.8: Test Results versus Rigid-Body Solutions
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6.6 Development of Rigid-body Model for Concrete Girder Systems

Figure 6.9 shows a depiction of the rigid body of a rectangular shape that represents the
concrete beam with the support conditions and bracing represented by the appropriate springs.
The beam sits on compression-only elastomeric bearing pad while braced at top and at a distance
dp from the bottom of the rigid body. The shape of the beam is represented by a rectangle for
simplicity. The force F with an eccentricity of e acts to overturn the beam while the beam self-
weight, Wp,,, the weight of the slab haunch on top of the beam, and the half weight of the
interior concrete deck, W;; provide the restoring moment to the beam.

Wsh
I e Lig Wig
F
) B 3 Kt
Wbm
h - ® dbr
CG .
wd
D"
dc ‘
k dp

| |
Wn

Figure 6.9: Rigid Body with Bracing on Compression-Only Elastic Foundation

The vertical stiffness of the elastomeric bearing per unit width is represented by the
springs of stiffness kj,, while the lateral bearing stiffness is represented by the spring with
stiffness kj;. The lateral stiffness of the combined bracing bar and the R-bar is represented by the
spring with stiffness kg, while the stiffness of the wood blocking is represented by the spring
with stiffness k4. Vertically, the elastomeric bearing pad acts as a series of independent
compression-only springs. The wood blocking at a height of dj, from the bottom of the rigid body
is also treated as a compression-only spring. The top bracing, consisting of a R-bar and a top
bracing bar attached on top of that R-bar is idealized as a spring, which behaves linear-perfectly
plastic or behaves linearly up to the rupture of the R-bar depending on the connection type. The
flexible connection generally fails by yielding while the stiff connection generally fails by
rupture of the R-bar. The flexible connection is chosen for the initial derivation for the rigid-
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body model; at the end of the section, however, the governing equation for a girder system with
stiff connection is presented.

With rotation of the rigid body, several events can occur: yielding of the top bracing; lift-
off of the rigid body at the edge of the bearing pad; or a rotational limit of the girder. In terms of
girder rotation, there are multiple limit states that may control the behavior. A serviceability limit
rotation of 0.5 degrees was selected. Although this limit was somewhat arbitrary, it is also less
than the tipping rotation witnessed in the lab and also the 2~3 degree rigid-body rotation
measured in the Hutto Bridge. Another limit that was imposed on the rotation is lift-off of the
rigid body up to the first interior quarter point on the bearing pad.

Under load, the rigid body undergoes the downward and lateral movements, and rotation
as shown in Figure 6.10. The center of rotation can be located anywhere, but is chosen as the
bottom center of the rigid body, the Point O for convenience. As shown in Table 6.2, the primary
kinematic variables are Ay, A,, and 6, whose signs are positive to the right, downward and
counterclockwise, respectively. The displacements of the points of interest on the rigid body can
be expressed in terms of Ay, A, and 6 as indicated in Table 6.2.

E

>

CG
De
eD" oD’
A, Q B
AL A B AL B d A
A O
A |
(a) translation (b) rotation

Figure 6.10: Translations and Rotation of Rigid Body
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Table 6.2: Displacements of Points of I nterest

point displacement
0o (Ah' Av)
D (A, —dpb,A, — Lp0)
E (A, —h8,A,)
Wh
B (8 — dpb, 4, - 7e)

With the first-order analysis, it is useful to sum the beam self-weight and the weight of
the slab haunch because both weights pass through the Point O and do not have eccentricity with
respect to the Point O.

Wo = Wym + Wsp (6.23)
In Figure 6.11, the applied load F and the beam self-weight, the slab haunch weight and

half of the interior deck weight must be in vertical equilibrium with the resistance from the
elastomeric bearing pads.
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Figure 6.11: Free-body diagram of Rigid Body with Bracing before Lift-off

The force in the top bracing, Fj, the force in timber blocking, Fj, and the shear force in
the elastomeric bearing pad, F,, satisfy equilibrium in the horizontal direction:

—Fp—Fp+F =0 (6.25)

The lateral forces at Points D, E, and O can be obtained by substituting the displacement
at each point into the constitutive relationship of each member:

Fp = ky,q(Ap — dp6), positive in compression (6.26)
Fg = kg (—Ap, + h0), positive in tension (6.27)
FO — kbl(Ah) =0 (628)

The lateral stiffness of the elastomeric bearing pad, kj;, is assumed to be equal to zero, as
it is very small compared to the stiffness of the wood blocking, k,,;, and the stiffness of the top
bracing, kg;. Therefore, the lateral force in the bearing is taken equal to zero (F, = 0).
Substituting Equations (6.26), (6.27), and (6.28) into (6.25), and solving for A, the horizontal
displacement, A, becomes
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A kgh+ kyqdp p
M ke ¥ kg (6.29)
Substituting Equation (6.29) into Equations (6.26), (6.27), and (6.28), the forces at Points D, E,
and O can be determined.

kwdkstdbr
Fp=——60
D= ko (6.30)
— kstkwddbr
E T et kg (6.31)
Fo=0 (6.32)

Rotation moment equilibrium of the forces acting on the rigid body about the Point O gives the
following.

Wy kbwge
Fe —Wi4Liq — Fgh + Fpdp — B\ 73 =0 (6.33)

Substituting Equations (6.25) through (6.28) and d, = h —dp into Equation (6.33) and
simplifying yield the following expression:

kpwi
Fe = WidLid + TQ + de(Ah - dDQ)dbr (634)

Substituting Equation (6.29) into Equation (6.34) produces the governing equation for the rigid-
body model that shows the relationship between the applied load and the rotation of the beam
before the top bracing yields and the beam lifts off.

kywi  kyk,qdz
Fe:Wide‘*‘( bWh | Fstlwa b)

12 ko + ke (6.35)
With rotation of the beam, the first event that occurs to the girder system is the yielding of the R-
bar. The governing equation for the girder system after the yielding of the top bracing can be
derived as before the yielding of the top bracing. The mathematical expressions that are affected
by yielding of the top bracing are the lateral forces in the top bracing and the timber blocking.
Therefore, instead of going through the entire derivation, it is convenient to modify the equation
of moment equilibrium to obtain the governing equation. For rotation between the yielding of the
top bracing and lift-off of the beam, force in the top bracing is conservatively limited to its
specified yield capacity.

Fg = Pyax (6.36)

Substituting Equation (6.36) and F, = 0 (k;; = 0) into Equation (6.25), the force in the timber
blocking, Fj, can be obtained as follows.
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FD = FE = Pmax (637)

Substituting Equations (6.36) and (6.37) into the equation of moment equilibrium of Equation
(6.33), the governing equation for the girder system for rotation between the yielding of the top
bracing and the lift-off of the beam can be obtained:

kag
12

Fe = WiyLig + Poaxdpr + 6 (6.38)

Additionally, it is useful to know the angles of rotation of the beam at the first yielding of the top
bracing and at lift-off. Substituting the ultimate capacity of the top bracing of Equation (6.36)
into Equation (6.31), the angle of rotation at the moment of yielding of top bracing can be
obtained and is defined as the bracing yield angle in the following way:

9 — kst + kwd 6.39
BrY kstkwddb max ( . )

Lift-off occurs when the vertical displacement of the right edge of the elastomeric bearing pad
becomes zero.

Ay ——0=0 (6.40)

Substituting Equation (6.24) and Equation (6.38) into Equation (6.40), and solving for the lift-off
force produces the following expression:

. W0Wb + VVid(Wb + 6Lid) + 6de7‘

L — (69 _ Wb) (641)
Substituting Equation (6.41) into Equation (6.38), the lift-off angle becomes
_ 12 (Woe + Wid(e + Lid) + Pmaxdbr)
L kbwg (66 _ Wb) (642)

After the beam lifts off, it experiences partial loss of contact with the elastomeric bearing pad.
The corresponding free-body diagram is shown in Figure 6.12. Similar to the case during the full
contact of the beam, the applied load, F, the beam self-weight and slab haunch weight, ¥}, and
half of the interior deck weight, W;; must be in vertical equilibrium with the resistance from the
elastomeric bearing pads in the vertical direction:

2

_ky o wp A,
F+W0+Wl-d—79 7+? (6.43)
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Figure 6.12: Free-body diagram of Rigid Body with Bracing after Lift-off

Moment equilibrium of forces about the Point O gives the following expression:

wp, A
Fe = Wiglig = Fgh + Fodp — (F + Wy + Wy (22 = 52) = 0 (6.44)

Substituting Equations (6.36), (6.37), and dj,, = h — dp into Equation (6.44), Equation (6.44)
becomes:

Wp Av
Fe = Wiglia + Praxdyr + (F + Wy + W) (20— %) (6.45)

Substituting Equation (6.45) into Equation (6.43), the governing equation for the girder system
rotation after the beam lifts off is obtained:
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g8 (F + W, + W;)?
9b ((=2e + wy)F +wy,(Wo + Wig) + 2L;gWig + 2dyPray)”

(6.46)

Combining Equations (6.35), (6.38) and (6.46), the complete governing equation for the girder
system is obtained, describing the relationship between the applied force and the rotation of the
beam.

kywi  Ksekyadp for @
Fe = W;,L; 0
€ iakia ( 12 * koo + ki < Opry
kw3 for Opyy
Fe = WigLig + Pnaxdpr + 12 0 <6 <06, (647
0 =
8 (F + W, + W,)3 for 6,
<@

2
9kb ((—26 + Wb)F + Wb(WO + Vvld) + 2LidVVid + Zdbrpmax)

Figure 6.13 shows the typical application of Equation (6.47) to an AASHTO Type VI
beam with a span length of 60 ft, a girder spacing of 7.7 ft, and a flexible bracing connection.
The curve shows the progression of limit states as the load is gradually increased. Initially, the
girder system behaves linearly until a top bracing bar yields. The girder system then loses some
rotational stiffness. As the load continues to increase, the girder system starts lifting off at the
edge of the bearing pad and continues to lose rotational stiffness due to the decrease in contact
area between the bearing pad and the beam. With additional load, the girder system experiences
lift-off at the first interior quarter point on the bearing pad and a rotation of 0.5 degree
sequentially in this case. However, the order of these two events can be reversed.

From a design perspective, the event where the beam lifts off at the first interior quarter
point on the bearing pad is of interest. The beam rotation and the corresponding applied force
will be determined. Quarter-point lift-off rotation is defined as the rotation in which the vertical
displacement of the first interior quarter point on the bearing pad becomes zero. At this rotation,
the following kinematic conditions can be established:

Wp
Ay -7 0=0 (6.48)

Substituting Equation (6.48) into Equation (6.45) and solving for Fpp;, the force required for the
beam to lift off at the first interior quarter point on the bearing pad is obtained.

4V|/idLid + 4’Pmaxdbr + Wy (WO + Wid)
4e —wy

Fopr =

(6.49)

Substituting Equation (6.49) into Equation (6.46), the angle corresponding to Fyp;,, quarter point
lift-off force can be obtained.
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g ., =
QPL 9ky

8

(Fopr, + Wy + Wig)’

2
((_23 + Wb)FQPL + Wb(WD + Vvtd) + ZLEdVVEd + Zdbrpmax)

(6.50)

So far, the governing equation for the girder system with the flexible connection has been
derived. The main difference between the flexible connection and the stiff connection is that the
flexible connection is linear elastic-perfectly plastic, while the stiff connection fails in rupture of
the R-bar. Because the derivation of the governing equation for a girder system with the stiff
connection is essentially the same as for that with flexible connection, the resulting governing
equations are given as follows:

(6.51)

(6.52)

Equations (6.51) and (6.52) are the governing equations for a girder system with a stiff
connection and the rotation at the moment of rupture of the R-bar, respectively. For girders with
a stiff connection, rupture of the R-bar typically governs the behavior.
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Figure 6.13: Applied Moment and Beam Rotation
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6.7 Validation of Rigid-body Model with Finite Element Analysis Results

The finite element model that was previously validated through comparisons with
laboratory tests and field measurements was used to examine the accuracy of the above rigid-
body equations for girder systems with lateral bracing. The first-order numerical solutions for the
rigid-body model for a girder system with lateral bracing (including flexible and stiff
connections) were obtained by using the governing equations for rigid-body models (Equations
(6.47) and (6.51)) that were developed in the previous section.

The first-order analyses of three-dimensional finite element models for girder systems
with lateral bracing were conducted. The finite element model consisted of 4 beams across the
width of the bridge, and had a span of 60 ft and a girder spacing of 7.7 ft. Girder systems for
finite element analysis were subjected to the construction loads explained in the previous section,
and had the minimum top bracing distributed uniformly along the beam length.

Figure 6.14 and Figure 6.15 depict graphs of beam rotation and overhang width for girder
systems with flexible and stiff connections, respectively. For a girder system with a given
overhang width, the beam rotation on the y axis represents the maximum rotation that the girder
system could experience for the full construction load. In general, the results from the rigid-body
model equations show good agreement with the FEA results. This indicates that the rigid-body
model equations can be used to determine the necessary amount of bracing for a girder system
with given overhang width, in order to prevent excessive rotation of the fascia beam.
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Figure 6.14: Beam Rotation and Overhang Width for Flexible Connection
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I - Stiff Connection
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6.8 Overhang Design Equation and Recommended Design Procedure

6.8.1 Summary of Overhang Design Equations

In the previous sections, the governing equations for a concrete girder system were
derived and also compared with FEA solutions. The equations had good agreement with the FEA
solutions, and can therefore be used for design. This section therefore provides recommendations
on the use of the expressions for design.

For girder systems with flexible connection, two criteria must be checked. First is that the
applied eccentric load must be less than or equal to the quarter-point lift-off force of Equation

(6.53).

HWiglig + Pmaxdpr + Wi (Wo + Wig)
Fopr = e —w, (6.53)
The second criterion is that the beam rotation for the applied load corresponding to a given
overhang width must be less than or equal to a beam rotation of 0.5 degrees. Since it is not
known whether the beam lifts off for the applied load corresponding to a given overhang width,
two separate beam rotation equations must be checked. Equations (6.54) and (6.55) give beam

rotations before and after lift-off of the beam, respectively.

12
& = i, Wba (Fe —Wiglig — Pmaxdbr)(180/7r[) (654)
g, = 8 (F + Wy + W;)3 (180/7)
L% ((—2e+ wy)F + wy(Wy + Win) + 2L,aWig + 2dpyPrax ) (6.55)
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For girder systems with a stiff connection, the governing behavior is rupture of R-bar. For
the range of the practical values of the system parameters, at the moment of rupture of the R-bar,
the girder is typically in full contact with the bearing pad. Therefore, the beam rotation of
Equation (6.56) for the applied load corresponding to a given overhang width must be less than
or equal to a beam rotation for rupture of the R-bar, Equation (6.57).

Fe —Wi,L;
9 = ( - id ld)z (180/7‘[)
(kab n kstkwddbr) (6.56)
12 kg + kya
_ kst + kwd

Brv kst kwd db

Prmax(180/m) (6.57)

6.8.2 Recommended Design Procedure

In this sub-section, overhang design procedures are developed. The design procedure for
girder systems with flexible connection is followed by the design procedure for girder systems
with stiff connection.

The standard design parameters and their values shall be given as in Table 6.3.

Table 6.3: Standard Design Parameters

Parameter Value Unit
Concrete Unit Weight w, 0.15 kip/ft3
Overhang Formwork Unit Weight w,, 0.01 kip/ft?
Top Bracing Stiffness per Single, kg 15.5 (flexible), 39 (stiff ) kip/in.
Capacity of Top Bracing per Single,Pyax 1.2 (flexible), 3 (stiff) Kip
Axial Rigidity of Wood Blocking per Single | 11,025 kip
Half of Screed Weight 5.7 kip
Work Bridge Weight per Length 0.02 kip/ft
Weight of Workers F, 1.25 kip

The system parameters and their definitions for a bridge girder system are listed in Table
6.4. These values are calculated by using the information on a given bridge girder system.
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Table6.4: Girder System Parameters

Parameter Definition Unit
tg slab thickness (8 in. typical) in.
Shs Beam spacing in.
Npm number of beams of bridge unitless
Whrd net width of bridge (=(Npy — 1) ) in.
L span of beam in.
: : : : kip/in.
k, total compressive stiffness of two bearing pads per width ( - )
Won width of overhang in.
L Eccentricity of half of interior deck weight :

id (= half of top flange of beam) -
Wym Weight of beam kip
Wsn weight of slab haunch (= w.2L;4(ts + 2)L) kip
W, half of interior deck weight between fascia beam and first K

id interior (= w t;L(sps — 2L;4)/2) p
L Eccentricity of net overhang weight in

on (=Lig + Wop —Lig)/2) '
Legy Eccentricity of half of finishing equipment weight (= w,;) in.
L Eccentricity of weight of workers :

wk (=wop + 1% 12) 1o
L Eccentricity of weight of overhang formwork in

i (= Lig + (2 X 12 + wop — Lig)/2) '
F Half of work bridge weight ki

wb (=23.5 /1000 /12 * w,, 4/2) P
F,;, weight of net overhang (= w.ts(w,,, — Lig)L) Kip
Fe4 half of finishing equipment weight (= 5.7 + F,,p) kip
F weight of overhang formwork ki

o (= 0w (2 X 12 + Wop = Lig)L) P

Flexible Connection

Step 1: Calculate effective eccentric force and its eccentricity

Step 1-A: Determine the following forces and dimensions.

F,,p, Half of Work Bridge Weight: = 23.5/1000/12*wy,.4/2

F,y, Weight of Net Overhang: = w.t;(wW,p, — Lig)L

F,4, Half of Finishing Equipment Weight: = 5.7+ F,,,;,

F,k, Weight of workers: = 1.25 kips

Ff,,, Weight of Overhang Formwork: = wg,, (2 X 12 + wy, — Lig)L
L,y Eccentricity of net overhang weight: = L;; + (Wop, — Lig)/2
L4 Eccentricity of half of finishing equipment weight: = w,,

L« Eccentricity of weight of workers: =w,;, + 1 X 12

L¢,, Eccentricity of weight of overhang formwork: = L;g + (2 X 12 + wyp, — Lig) /2
Step 1-B: Calculate effective eccentric force and its eccentricity.
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F = Fop + Fsq + Fyy + Fpy, = (26+6.22+1.25+5)
_ FonloptFsqlsa+FwikLlwik+FfwLrw
€= FontFsqtFyr+Frw
Step 2: Calculate quarter-point lift-off force and check it against with the effective eccentric
force.
Step 2-A: Determine the following items.
Wym, Weight of Beam
Wy, Weight of Slab Haunch
W4, Half of Weight of Interior Deck
Wo=WymWsn
Total Capacity of Top Bracing Bars: = (# of Top Braces)* Pgax
L;4, Half of Top Flange Width
wy,, Bearing Width
dp,, Bracing Moment Arm
Step 2-B: Calculate the quarter-point lift-off force.

e AW g Lig+4Pmaxdpr+wp(Wo+W;
Fypy, Quarter-Point Lift-off Force = i m:: br¥Wp(Wo+ Wig)
.

Step 2-C: Check if F (effective eccentric force) < Fypy (quarter-point lift-off force)

If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the
step 2.

Step 3: Check beam rotations

Step 3-A: Determine the compressive stiffness of bearing pads.

For a given bearing pad type, total compressive stiffness of two bearing pads for one fascia
girder is determined from Table B.2 in Appendix B.

. . Kip/in.
ky, total compressive stiffness (%/m)

Step 3-B: Calculate 6,.
61

of two bearing pads per width

= kw3 (Fe — WiaLia — Pmaxdbr)(180/n')
pWh

Step 3-C: Calculate 6,
8 (F+Wo+Wig)3
z % ((—26+Wb)F+Wb 70 +Wid)+2LidWid+2dberaX)2 (180/7-[) (degree)
Step 3-D: Check if (6;and 6,) < 0.5 degrees (serviceability limit angle).
If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the
step 2.
Step 4: Summarize Final Design.

Stiff Connection

Step 1: Calculate effective eccentric force and its eccentricity
Step 1-A: Determine the following forces and dimensions.

F,,p, Half of Work Bridge Weight: = 23.5/1000/12*wy,;.q/2

F,;, Weight of Net Overhang: = w.t;(w,, — Liz)L

Fsq4, Half of Finishing Equipment Weight: = 5.7+ F,,,;,

Fr, Weight of workers: = 1.25 kips

Fr,, Weight of overhang formwork: = wy,, (2 X 12 + wyp, — Lig)L
L, Eccentricity of net overhang weight: = L;; + (W, — Lig) /2
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L4 Eccentricity of half of finishing equipment weight: = w,,,
L« Eccentricity of weight of workers: =w,;, + 1 X 12
L¢,, Eccentricity of weight of overhang formwork: = L;g + (2 X 12 + w,p, — Lig) /2
Step 1-B: Calculate effective eccentric force and its eccentricity.
F = Fop + Fgq + Fyi + Fpy, = (26+6.22+1.25+5)
__ FonLontFsqLsa+FwikLlwk+FrwLfw
€= FontFsq+Fwr+Frw
Step 2: Check for rupture of R-bar.
Step 2-A: Determine the following items
W, 4, Half of Weight of Interior Deck
L;4, Half of Top Flange Width
w,,, Bearing Width

ky, total compressive stiffness (

Appendix B)

ks, Total Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.)

k.a, Total Wood Blocking Stiffness kip/in.

= (# of wood blockings)*(11025 kip)/(beam spacing - width of bottom flange of beam)

Total Capacity of Top Bracing Bars: = (# of Top Braces)* (3 kips)

dp,, Bracing Moment Arm

Step 2-B: Check if beam rotation at rupture of R-bar < ream rotation for a given overhang width

05,y, Beam Rotation at Rupture of R-bar = % P.x(180/1)

kip/in.

) of two bearing pads per width (from Table B.2 in

6 , Beam Rotation for Given Overhang Width: = — (Fge _WidLid)Z (180/m)
< b%h +kstkwddbr>
12 ksttkywa
Check if 05,y< 6.
If this is true, continue to the next step. Otherwise, increase the amount of bracing and repeat the
step 2.

Step 3: Summarize Final Design.

6.9 Closing Remarks

A rigid-body model for a stand-alone beam on bearing pads was developed. The solutions
for both the first order analysis and the second order analysis of the rigid-body model were
obtained and were verified with the data from the beam overturning test. The results of the
second-order analysis of the rigid-body model showed good agreement with those of the
overturning test over the entire range of rigid-body rotations. In addition, the second-order
analytic solution of the rigid-body model captured the descending branch of the curve of the
overturning test results well. Although the solution of first-order analysis of the rigid-body model
did not capture the descending branch of the curve of the overturning test results, the results of
first-order analysis of the rigid-body model showed good agreement with those of the
overturning test for the small rotation that is in the typical design range. Because in design the
main area of interest is when the beam becomes unstable and starts to tip, the first order solution
provides reasonable estimates of when the beam becomes unstable and is simpler than the second
order solution.

The solutions for the first-order analyses of the rigid-body model for a girder system with
lateral bracing including flexible and stiff connections were obtained and were verified with the
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results from the FEA model that was validated through comparisons with laboratory tests and
field measurements. Based on the solutions for the rigid-body model for a girder system with

lateral bracing, a simple design equation and a design methodology were developed to be used
for overhang bracing design.
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Chapter 7. System Buckling of Steel Girder Systems

7.1 Introduction

While most steel girder bridges consist of four or more girders, only two or three girders
are needed in applications such as pedestrian bridges or bridge widenings. Increased traffic
demands often require the addition of traffic lanes, which requires widening the bridge. In most
situations, the widening is completed by adding a few girders to the bridge. The widened deck
segment may not be connected to the original bridge in certain cases if the condition warrants
such a need. The resulting bridge addition typically is a two- or three-girder system with a
relatively large length-to-width ratio that makes these girders susceptible to a system mode of
buckling that is critical during construction of the bridge deck (Yura et al., 2008). Figure 7.1
shows the system buckling mode of a steel twin-girder system. In a system buckling mode, the
girder system behaves as a unit and the entire cross-section deflects vertically and laterally while
rotating about its shear center. The system mode of buckling is relatively insensitive to the
spacing between cross-frames, because the internal cross frames can restrain the relative
displacement or rotation between the two girders but cannot prevent the rotation of the entire
cross section of the system as shown in Figure 7.1.

The system buckling behavior is often made worse by the torsional load that results from
the gravity load from the bridge overhang. Figure 7.2 shows the plan and cross section of a twin
I-girder system subjected to an overhang load. Although the concrete deck overhangs on both the
interior and exterior sides of the widening, one end of the formwork on the interior side is
usually supported by the existing structure, which usually results in a significant reduction in the
torque on that side of the girders. The weight of the concrete on the exterior overhang is usually
supported by cantilever overhang brackets that react on the top flange and the girder web. The
unbalanced eccentric overhang loads result in torsion on the girder system.
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Figure 7.1: System Buckling Mode
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Figure 7.2: Twin I-Girder System under Overhang Loads

The eccentric load forces the girder system to twist, which can decrease the stability of
the girder system, possibly resulting in a dangerous situation during concrete placement.

Global lateral torsional buckling can also be an issue for steel box-girder bridges before
composite action is fully developed. The failure of the Marcy Pedestrian Bridge in 2002 is
attributed to overall lateral torsional buckling of the girder during placement of the concrete
bridge deck (Popp 2004). Although the girder had closely spaced internal K-frames, a top lateral
truss was not provided, which resulted in too low of a torsional stiffness and led to the collapse.
In addition to the box girder collapse, global lateral torsional buckling (also called system
buckling) has caused problems for I-girder systems. One such problem occurred during
placement of the concrete bridge deck for a twin I-girder system that was used for a bridge
widening in Texas. The twin I-girders had a 166 ft simple span with a spacing of 5.1 ft, resulting
in a large span-to-width ratio (Zhou, 2006). During placement of the concrete bridge deck, the
girders experienced a large torsional deformation, requiring the concrete deck to be removed so
that a retrofit could be developed for the bridge. The unbalanced torsion from the overhang
caused the bridge to twist towards the overhang.

Current design specifications for bridges (AASHTO, 2007) and buildings (AISC, 2005)
consider only the lateral torsional buckling of individual beams between brace points. Global
lateral buckling of a girder system is primarily a problem for systems with a relatively large
length/width ratio. Therefore, this mode can be problematic in systems with either closely spaced
girders or systems with only a few girders across the width. However, the torsional behavior of
these systems is not well understood, especially for cases subjected to combined bending and
torsion due to eccentric loads, such as in the case of unbalanced overhang construction.

The closed form solution for lateral torsional buckling of a simply supported girder
subjected to uniform moment was derived by Timoshenko (Timoshenko and Gere, 1961). The
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solution is widely used in bridge and building specifications as a design equation for lateral
torsional buckling of individual beams and considers the beam behavior for buckling between
brace points. Yura et al. (2008) derived Equation (7.1) for the global lateral buckling moment of
a twin girder system that had good agreement with FEA solutions (ANSY'S, 2008).

g

2 2
7 TE"I, 2 2
Mg :ZL—\/E]yGJ'FT(]yhO +1xS ) (71)
g

where, L,= span length, E= modulus of elasticity, G= shear modulus, I,= moment of inertia
about strong axis, I,= moment of inertia about weak axis, /= torsional constant, h,= distance

between flange centroids, and S= girder spacing. The closed form solution shown above is for
doubly symmetric I-sections with uniform moment but can be modified for various loading
conditions and for singly symmetric sections as outlined in Yura et al. (2008). However, the
solution was derived for bending caused by symmetric gravity loading and did not consider the
torsional loading that may result due to unbalanced overhang loads.

The purpose of the study on steel girder systems is to investigate the global lateral
torsional behavior of systems under torsion due to eccentric loads such as the unbalanced loading
that may result from overhang construction. Parametric investigations using FEA models
(ANSYS, 2008) were conducted to improve the understanding of the behavior of twin girder
systems in the global lateral-torsional buckling mode. The major parametric variables that were
considered included section type, girder spacing, span length, overhang width, and the magnitude
and shape of the girder imperfection. The analytic solution to nullify the torsion due to overhang
loads in the girder system was derived and checked against imperfections on the girder system.
The FEA results showed the effects of each parameter on the lateral torsional buckling behavior
of the twin girder system to improve the understanding of the behavior. Based upon the results,
rules for geometric proportioning were developed to minimize the unbalanced torsion on girder
systems used for widening applications. The chapter has been divided into five sections.
Following this introductory section, an overview of the finite element modeling techniques for
the system buckling mode is discussed. A derivation of the necessary geometry to eliminate the
unbalanced torsion is then provided. Finite element results are then presented to demonstrate the
system buckling behavior and the effectiveness of offsetting the unbalanced load. Finally, the
important findings are summarized.

7.2 FEA Modeling

The structural behavior of a twin girder system subjected to torque from unbalanced
overhang loads was studied by conducting parametric finite element analyses. Both eigenvalue
buckling analyses and large displacement analyses were carried out assuming linear elastic
materials, which is appropriate as the critical stage for buckling is usually during construction
when stresses are well below yield. The girder cross sections that were used in FEA models are
depicted in Figure 7.3.

Sections D60 and D70 are doubly symmetric with depths of 60 in. and 70 in.,
respectively. Section S70 has a single plane of symmetry through the web and a depth of 70
inches. Compared to D70, the section of D60 has about 29% less moment of inertia about the
strong axis and essentially the same weak axis moment of inertia.
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Figure 7.3: Cross Sections Studied

For singly-symmetric sections, the effective moment of inertia about the weak axis can be
calculated by the expression (Yura et al. 2008):

t
Iy,eff = yc + (E) Iyt (72)

where [, and I, are the respective moments of inertia of the compression and tension flanges
about an axis through the web, and ¢ and c¢ are the respective extreme fiber distances from the
neutral axis of the tension and compression flange. The section of S70 has about 16% more
effective moment of inertia about the weak axis than the section D70. Angles of L5x5x3/4 were
provided for the end cross-frames while angles of L4x4x3/4 were provided for intermediate
cross frames. Transverse web stiffeners with a thickness of 0.5 in. and a width of 90% of half of
the top flange width were also used at the supports and at the locations of intermediate cross
frames.

The finite element model of a typical girder system is shown in Figure 7.4. The cross-
sections of the girders and the transverse web stiffeners were modeled using eight-node shell
elements with an aspect ratio as close to unity as possible. The shell elements for the transverse
web stiffeners shared nodes with the web elements for the girders. The stiffeners did not offer
any warping restraint to the flanges as they were not attached to the flange nodes away from the
web intersection. The stiffness of the cross-frames was identical to tension-only systems because
one of the diagonals was omitted so that only three truss members were used. The cross frame
members framed into the girders at the node at the flange to web intersection. Two of the truss
elements were horizontal, linking the flanges of adjacent girders, and the other member was a
diagonal that linked the bottom web node of one girder to the top web node of the adjacent
girder. The girders were simply supported, and the section was free to warp at the supports.
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Top View Plan View
Figure 7.4: Finite Element Model of Girder System

The load of the fresh concrete was simulated by a uniformly distributed load applied
along the girder length at the nodes joining the top flange to the web. The torsion due to the
overhang load was simulated by applying lateral loads to the top and bottom flanges of the girder
in the horizontal direction to form a force couple. The self-weight of the girder system was
modeled as a vertical load applied at the centroid. In the large displacement analyses, the loads
were sequentially applied in the order of girder self-weight and the fresh concrete load because
the girder self-weight already exists before the fresh concrete load is applied to the girder. In
some cases, the girder self-weight was conservatively included in the weight of the fresh
concrete that was applied at the top flange, which is a critical condition for load height effects.

Table 7.1 lists the parameters and the ranges that were used in the parametric FEA
studies. The range of the girder spacing was taken between 5 to 10 ft and the girder span ranged
from 120 to 180 feet. Although practical values were chosen for the spans and girder spacing,
these common values produce large span to width ratios, which make the system mode of
buckling critical. The range of the overhang width was varied from 2 to 4 feet, which is
consistent with common practice where the most common overhang width is usually around 3 ft.
In many bridge widening projects, the widths of the overhang on the internal and external side
are equal; however, unequal overhang widths were considered to improve the distribution of
torsion on the bridge widening. In addition to torque due to the overhang load, the imperfection
of the girder system can amplify the torque as the eccentricity of the applied load may be
increased. A half-sine wave of three different kinds of imperfection shapes was utilized to study
these effects. The shapes of the imperfections are shown in Figure 7.5. The Case A imperfection
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consisted of the case of a lateral sweep of the top flange while the bottom flange remained
straight. Case C consisted of a pure lateral sweep of both flanges, and Case B has both flanges
with a lateral sweep; however, the top flange had a larger sweep. Wang and Helwig (2005)
showed that the Case A imperfection was critical in terms of resulting in the largest brace forces.

Table 7.1: Parametersand Their Ranges

Par ameter Range

Cross section two 'doubly symmetrlc sections and one singly symmetric
section (see Figure 7.3)

Span 120, 150, 180 ft

Girder Spacing 5,7.5,10 ft

Overhang Width 2,3,4 ft

Overhang Width Ratio equal overhang widths, unequal overhang widths

Cross-Frame Spacing 10, 30 ft

Load self-weight, fresh concrete load

Imperfection three different cases

| 0.72" |

|E 0'72”51 < N
0.52" 0.72
Case A Case B Case C

Figure 7.5: Imperfections Considered

7.3 Derivation of Self-Equilibrating Overhang Width

In a widening, the added girders are often isolated from the existing bridge girders to
allow the new girders to deflect during construction. Although the girders are not generally tied
back to the existing structure, the deck forms are often supported off the existing structure.
Therefore, although there is an overhang on both sides of the widening, only half of the interior
overhang load is supported by the widening with the formwork reaction applied at the tip of the
flange of the interior girder. The exterior overhang load is supported on cantilever overhang
brackets that apply torque on the exterior girder of the widening.

Figure 7.6 depicts the overhang loads on both sides of the twin girder system. The fresh concrete
load that is applied between girders is omitted from the figure for clarity because it does not
contribute to the torque about the shear center of the twin girder system.
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Figure 7.6: Cross-Section of Twin-Girder System under Overhang Loads

The self-weight of the twin girder system is also omitted for the same reason. The interior
overhang load, F;, corresponds to the half of the load on the interior overhang between the
existing bridge and the edge of top flange of the interior girder of the twin girder system. The
exterior overhang load that is applied at the top flange of the girder, F,, is the total weight of the
external overhang. Although some of the external overhang load is transmitted through friction
between the web and the cantilever bracket, this component was conservatively neglected
because most of the overhang bracket force is transmitted at the top of the girder. In addition to
the vertical overhang load of F,, the torque of F, is applied to the exterior girder through the
overhang brackets and is represented as T, in the figure.

Moment equilibrium of the overhang loads about the shear center of the twin girder
system can be established to develop an expression in terms of the interior overhang width and
the exterior overhang width to result in zero torque on the bridge widening system. Equation
(7.3) shows the resulting expression in which the interior overhang width has been expressed as a
function of the exterior overhang width, the top flange width, and the spacing of the twin girder
system for the condition of zero torque on the girder system in the widening.

2
W 4 we S w 1 wye
Wy =L {(We—Tf)(—g+—f)+—(We——fJ } (7.3)

2 Sg+Wf 2 2 2 2

Figure 7.7 illustrates the relationship of the interior overhang width and the exterior
overhang width of the twin girder system of Section D70 to eliminate the torque about the shear
center for the twin girder system. For most practical systems, the interior overhang width to
produce zero torque is in the range of 2 to 3 times the exterior overhang width.
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7.4 FEA Results of system Buckling

7.4.1 Global Lateral Buckling Moment of Twin Girder Systems

Before the effects of combined bending and torsion were studied with the FEA models,
results from the FEA analysis were compared with predictions from Equation (7.1) that was
presented in Yura et al. (2008). The first comparisons were made with uniform moment loading
as that is the loading the derivation was based upon. Parametric evaluations were conducted with
variables consisting of section type, span, girder spacing, and cross-frame spacing specified as in
Table 7.1. Table 7.2 lists comparisons of the FEA results and the predictions from Equation
(7.1). In the table, the minus values indicates that the prediction from Equation (7.1) is larger
than the value from the FEA results, and NA means that individual beam buckling governs rather
than global lateral buckling for given parametric conditions. As shown in the table, the results
from the FEA studies are in good agreement with the results from the solution by Yura et al.
(2008). For example, for the cross-frame spacing of 10 ft, the maximum difference between the
FEA results and the closed form solution for doubly symmetric sections of D60 and D70 was
less than 2%, while the maximum difference for the singly symmetric section of S70 was less
than 8%. For the cross-frame spacing of 30 ft, the maximum difference between the FEA results
and the closed form solution for all the sections considered was within 8%. These differences
result from the assumptions in the derivation of the closed form solution by Yura et al. (2008).
Such assumptions were that the cross-section of the twin girder system is maintained as rigid
along the entire length of the girder and the cross-section of each girder is doubly symmetric.
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Table 7.2: Comparisons of FEA results and Closed-Form Solutions

Span Seation Girde.r FEA (kips-ft) . M, (kip§-ft) Percentage Differe.nce
Length | Type Spacing | Cross-Frame Spacing (ft) (Equation Cross-Frame Spacing (ft)
() 10 ft. 30 ft. 7.1 10 ft. 30 ft.
5 ft. 5676 (k-ft) 5591 (k-ft) 5632 (k-ft) 0.8% -0.7%
D60 7.5 ft. 8290 (k-ft) 8023 (k-ft) 8289 (k-ft) 0.0% -3.2%
10 ft. 10830 (k-ft) | 10229 (k-ft) | 10976 (k-ft) -1.3% -6.8%
5 ft. 6673 (k-ft) 6564 (k-ft) 6647 (k-ft) 0.4% -1.2%
120 ft | D70 7.5 ft. 9772 (k-ft) 9435 (k-ft) 9816 (k-ft) -0.5% -3.9%
10 ft. 12766 (k-ft) | 12021 (k-ft) | 13016 (k-ft) -1.9% -7.6%
5 ft. 7206 (k-ft) 7013 (k-ft) 7039 (k-ft) 2.4% -0.4%
S70 7.5 ft. 10943 (k-ft) | NA 10502 (k-ft) 4.2% NA
10 ft. 14543 (k-ft) | NA 13976 (k-ft) 4.1% NA
5 ft. 3703 (k-ft) 3679 (k-ft) 3651 (k-ft) 1.4% 0.8%
D60 7.5 ft. 5394 (k-ft) 5321 (k-ft) 5336 (k-ft) 1.1% -0.3%
10 ft. 7079 (k-ft) 6912 (k-ft) 7049 (k-ft) 0.4% -1.9%
5 ft. 4347 (k-ft) 4317 (k-ft) 4295 (k-ft) 1.2% 0.5%
150 ft | D70 7.5 ft. 6363 (k-ft) 6270 (k-ft) 6310 (k-ft) 0.8% -0.6%
10 ft. 8359 (k-ft) 8151 (k-ft) 8351 (k-ft) 0.1% -2.4%
5 ft. 4707 (k-ft) 4659 (k-ft) 4524 (k-ft) 4.0% 3.0%
S70 7.5 ft. 7143 (k-ft) 6981 (k-ft) 6734 (k-ft) 6.1% 3.7%
10 ft. 9555 (k-ft) NA 8954 (k-ft) 6.7% NA
5 ft. 2618 (k-ft) 2609 (k-ft) 2575 (k-ft) 1.7% 1.3%
D60 7.5 ft. 3791 (k-ft) 3766 (k-ft) 3733 (k-ft) 1.6% 0.9%
10 ft. 4974 (k-ft) 4917 (k-ft) 4915 (k-ft) 1.2% 0.0%
5 ft. 3065 (k-ft) 3054 (k-ft) 3016 (k-ft) 1.6% 1.2%
180 ft | D70 7.5 ft. 4467 (k-ft) 4435 (k-ft) 4405 (k-ft) 1.4% 0.7%
10 ft. 5878 (k-ft) 5805 (k-ft) 5817 (k-ft) 1.0% -0.2%
5 ft. 3326 (k-ft) 3310 (k-ft) 3158 (k-ft) 5.3% 4.8%
S70 7.5 ft. 5023 (k-ft) 4970 (k-ft) 4687 (k-ft) 7.2% 6.0%
10 ft. 6725 (k-ft) 6601 (k-ft) 6226 (k-ft) 8.0% 6.0%

The effects of the cross frame spacing on the global lateral buckling moment was
investigated by using the parametric FE models subjected to uniform line load over the entire
parametric set in Table 7.1. For the full range of parameters in Table 7.1, the global buckling
moments were relatively insensitive to the cross frame spacing. For cross frame spacings of 10
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ft. and 30 ft. the solutions were within 8% of each other with the smaller spacing giving the
higher buckling capacity. This is consistent with the findings form Yura et al. (2008).

Figure 7.8 illustrates the global lateral buckling moment of the twin girder system versus
the span and section type for the case of a girder spacing of 5 ft and a uniform line load applied
at the top flange of the girder. As expected, the global lateral buckling capacity is smaller for
longer girder spans. The global buckling moment of section S70 is always greater than the other
two sections studied. The larger capacity of the S70 section relative to the doubly symmetric
sections is because the effective moment of inertia of section S70 about the weak axis is 16.4%
larger than those of sections D60 and D70. Figure 7.9 shows the global lateral buckling moment
of the twin girder system versus the girder spacing for the case of a 150 ft span and a uniform
line load at the top flange of the girder. The global lateral buckling moment of each section
increases linearly with girder spacing.
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Figure 7.8: Global Lateral Buckling Moment of Girder Systems with Respect to Section Type
and Span Length
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Figure 7.9: Effects of Girder Spacing on Global Lateral Buckling Moment

7.4.2 Large-Displacement Analyses

Large displacement analyses of twin girder systems subjected to gravity loads from girder
self-weight and fresh concrete were conducted on systems with the full range of the parametric
set in Table 7.1. For most of the graphs shown in this section, the overhang widths were 3 ft,
which is a relatively typical size. The impact of variable overhang widths is demonstrated later in
this section.

Figure 7.10 shows a graph of the fresh concrete load vs. mid-span twist of girder systems
of spans of 150 ft and 180 ft with a girder spacing of 7.5 ft. As would typically be found in
practice, the formwork for the overhang on the interior side is supported by both the existing
construction and the girders in the widening. The torsion results from the differences in
formwork support on the interior and exterior overhangs. The girder systems of span of 180 ft
showed excessive twist at mid-span before they reached even half of the full fresh concrete load.
Relatively large twist also occurred to the girder systems of span of 150 ft which would likely be
problematic during construction.

Figure 7.11 demonstrates how the girder spacing affects the torsional behavior of the twin
girder system. The girder systems had a span of 150 ft. The girder system with a spacing of 5 ft
became unstable at approximately 88% of the full fresh concrete load. The girders with the larger
spacing have higher system warping stiffness and therefore have smaller resulting twists.

In Figure 7.12, the twin girder systems consisted of section type D70 with a span of 150
ft, and girder spacing of 7.5 ft. The graphs show that that the torsional behavior of the girder
system is very sensitive to small changes in overhang width. With larger overhang widths, the
unbalanced torque increases and the girders experience larger twists.

To minimize the torsion due to the overhang loads, Equation (7.3) was developed for
proportioning the interior and exterior overhang widths such that moment equilibrium of the
externally applied loads about the shear center of the girder system is satisfied with zero net
torque on the girder.
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Figure 7.10: Behavior of Girder System under Torsion
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Figure 7.11: Effects of Girder Spacing on Torsional Behavior of Girder Systems
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Figure 7.12: Effects of Overhang Width on Torsional Behavior of Girder System

For the perfect girder system without imperfection, overhang loads of the self-
equilibrating overhang width would not cause torsion for the girder system. Therefore, the only
torque that would be on the girder would be the result of imperfections in the girder. Figure 7.13
shows the relationship of the applied load and net mid-span twist and illustrates the effects of
imperfections on the system behavior. The girder system of section D70 had a span of 120 ft
with a girder spacing of 5 ft and a cross-frame spacing of 30 ft. Based upon Equation (7.3), the
interior and exterior overhang widths are proportioned to 6.81 ft and 3 ft, respectively. The
imperfection of a half-sine wave with three different initial twists of the girder was applied to the
girder system. The imperfection of L,/500, where L, is the spacing between brace points, is often
used based upon typical codes of standard practice on erection tolerances (AISC 2005—Code of
Standard Practice reference). The imperfection magnitude of 0.72 in. at mid-span was based on
Lp/500, where L, was taken as 30 ft in Figure 7.13. The imperfections are shown in Figure 7.13.
The Case A imperfection consisted of a straight bottom flange along the girder length and a
lateral sweep of the top flange of L;/500, which was recommended as the critical imperfection
shape by Wang and Helwig (2005). The imperfection Case B was consistent with the primary
mode from the eigenvalue analysis of the twin girder system without imperfection and with the
same maximum value of L,/500 used in the other imperfections. The imperfection Case C
consisted of pure sweep of the system.

The FEA results showed that the Case A imperfection is the worst scenario among the
three considered because it causes the girder system to twist more than the other two, which is
consistent with the recommendations of Wang and Helwig (2005). However, for the
configuration of the girder system considered, all three cases cause the relatively small net mid-
span twists for the girder system with self-equilibrating overhangs. For example, the maximum
midspan twist of 0.25 degrees combined with the lateral deformation of the section produced a
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total lateral deformation of 1.67 inches at the maximum load. This deformation is approximately
twice the initial imperfection.

In Figure 7.14, the girder system with self-equilibrating overhang widths (exterior and
interior overhand widths of 3 ft and 6.81 ft, respectively) is compared with its counterpart with
equal overhang widths (3 ft for each overhang width). The girder system with self-equilibrating
overhang widths carried the higher fresh concrete load, because its interior overhang was wider
than that of the girder system with equal overhang widths as mentioned above. Both girder
systems consisted of section type D70 with a span of 120 ft, a girder spacing of 5 ft, a cross-
frame spacing of 30 ft, and Case A imperfection. Figure 7.14 illustrates that the girder system
with self-equilibrating widths underwent less twist that the girder system with equal-overhang
widths. This indicates that the elimination of the torsion due to the overhang loads by
proportioning the interior and exterior overhang widths leads to the better structural behavior of
the girder system. This also suggests that the concept of self-equilibrating overhang width can be
utilized for bridge widening projects to minimize the effects of the overhang load.
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Figure 7.13: Effects of Imperfections on Torsional Behavior of Girder System
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Figure 7.14: Effects of Proportioning of Overhang Widths

7.5 Closing Remarks

The instability of the twin girder system with combined flexure and torsion due to
unbalanced overhang loads was investigated. The parametric FEA studies were carried out on a
twin girder system to improve the understanding of the behavior. Both eigenvalue buckling
analyses and large displacement analyses were conducted considering the impact of several
variables. In addition, a closed form solution for self-equilibrating overhang width of the twin
girder system was derived and compared with the computational solutions. Based upon the
results, the following conclusions can be made:

The unbalanced eccentric ovehang load leads to a significant amount of lateral
displacment and twist of twin girder systems and should be taken into consideration for
design of systems in bridge widening applications or other cases with unbalanced
loading on girder systems.

For girder systems failing in the global system buckling mode, the spacing of
intermediate cross-frames does not have a significant impact on the buckling behavior
of girder systems with practical geometries.

The torsional resistance of the girders failing in the system mode of buckling can be
improved by increasing either I, or I, .5 of the girders.

The system mode of buckling becomes more critical for smaller girder spacings, larger
span to width ratios of the girders, and larger overhang widths.

Many of the twin girder systems considered in the study had insufficient capacities in
the global buckling mode for the fresh concrete load of a typical slab thickness.
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e Proportioning interior and exterior overhang widths to produce zero net torque on the
girder system will minimize the effects of the eccentric load due to the overhang loads.
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Chapter 8. Effect of Local Plate Bending on Stability of Webs of
Steel Girders

8.1 Introduction

As discussed in Chapter 2, slab overhangs are generally supported by overhang brackets
during construction. In steel girders, the overhang brackets connect to the top flange with a
hanger welded to the flange and then react on the web of the girder. The vertical shear from the
overhang is transmitted primarily through a vertical component of the hangar force; however,
some of the reaction also is transmitted through friction between the bracket and the web. The
overhang moment that is caused by the eccentric load is resisted by the force couple that
develops between the lateral component of the hangar force on the top flange and the portion
where the bracket reacts on the steel web. Ideally, these overhang brackets should be positioned
to react close to the bottom flange of the girder where the web plate is the stiffest. However, in
current practice, the layout of the overhang brackets as well as the determination of the bracket
reaction height from the bottom flange of the girder are often not specified by a designer but
instead are left up to a contractor. Although the brackets do permit some adjustment so that the
reaction points can be moved, the research team has found many cases where the overhang
brackets were not adjusted and instead installed with the same configuration used in previous
jobs. In many instances, the brackets react near the mid-depth of the web or may react on the
compression zone of the web. Figure 8.1 shows the overhang brackets installed on the fascia
girders at a transition bent. The same bracket depth used on the prestressed concrete girder was
also used on the steel girder, regardless of the fact that the steel girder has a much deeper section.
As a result, the bottom of the overhang brackets reacted at about the mid-depth of the steel
girder, which is a very flexible point of the web. As discussed in the earlier chapters, overhang
construction often causes an eccentric load, and consequently a torque, on the fascia girders.
Specifically, the bottom of the overhang bracket exerts a lateral load on the web of the fascia
girder. This lateral load can intensify imperfections in the web. The impact of the lateral force in
the web plate is not well understood with respect to the structural performance of the steel girder.

Figure 8.1: Overhang Brackets Reacting at the Mid-Depth of Steel Girder Web
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The purpose of this portion of the study is to investigate the impact of the bracket
reaction force on the structural performance of the web. Parametric finite element analyses were
conducted to improve the understanding of the structural behavior of the web subjected to
overhang loads. The major factors that dominate lateral deformations of the web are identified
and the design recommendations are provided for the geometry of the overhang bracket. Based
upon the FEA investigation the impact of the overhang bracket reaction on the structural
behavior of the fascia girder is evaluated.

8.2 Background

To determine the effect of the bracket reaction on the girder web, a clear understanding of
the overhang load transfer mechanism is necessary. During the concrete deck placement, the
fascia girder is subjected to the overhang load as depicted in Figure 8.2.

Fresh Concrete

™

Overhang Bracket

Figure 8.2: Eccentric Load from Fresh Concrete on Overhang

The overhang load, which is eccentric with respect to the center of the fascia girder, is
transferred to the fascia girder through the overhang bracket. The overhang load comes from
several sources including the weight of the formwork, fresh concrete, and the finishing
equipment that is supported on the screed rail near the edge of the overhang. Although sources
such as the construction personnel and finishing equipment do apply load through the overhang
bracket, this load does not generally lead to force in the majority of the brackets as the concrete
sets up. As a result these forces do not lead to web deformation that might get locked into the
composite girder. Therefore, the primary force that is considered as leading to lateral force on the
web will be the fresh concrete load. The overhang bracket usually reacts on the web, thereby
resulting in the lateral deformation in the web. The overhang load in the net overhang width,
which is defined as the distance from the edge of the top flange to the edge of the concrete deck,
can be expressed as

Fon = wc(Woh - Wf)ts (8.1)
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where w, is the fresh concrete density, w,, is the overhang width from center of the fascia
girder to the edge of concrete deck, wy is half of the top flange width, and ¢, is the deck
thickness. Equation (2.1) indicates that the eccentric load is linearly proportional to the net

overhang width.

The fresh concrete load in the net overhang, F,, that is depicted in Figure 8.3(a)
produces the torque, T,;, that is obtained by multiplying F,,with its moment arm with respect to
the flange edge, (Woh — Wf)/Z.

Ton = Fon(Won — wy)/2 (8.2)
Substitution of Equation (2.1) into Equation (8.2) gives the following expression:

2
Ton = a)cts(woh - Wf) /2 (8.3)

Wy (Woh - Wf)/2

* T Fon
1 Fnh
) Y > A
H,, T
hnh hoh
\4 h _y
Hoh
(a) Eccentric Overhang Load (b) Equivalent Overhang Load System

Figure 8.3: Bracket Reaction Force

The eccentric overhang load, F,;,, can be replaced with the equivalent overhang load
system as shown in Figure 8.3(b). The equivalent overhang load system in Figure 8.3(b) consists
of the vertical component, F,;,, and a force couple, H,,h,,. Equating a force couple,H,,h,p,
with Equation (8.3) , the component of the force couple, H,;,, becomes

(Woh - Wf)z

Hop = wets 2h,,
0

(8.4)

For a given concrete weight density and a given deck thickness, the bracket reaction
force, H,y, 1s quadratically proportional to the net overhang width and inversely proportional to
the vertical dimension of the overhang bracket. Therefore, larger net overhang width will lead to
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larger bracket reaction force. In addition, the bracket reaction force becomes theoretically infinite
as the vertical dimension of the overhang bracket approaches the top flange. Therefore, as
expected, larger vertical dimensions of overhang brackets are more effective for minimizing the
bracket reaction force.

8.3 FEA Modeling

The structural behavior of the web in the girder subjected to the torque from the overhang
was studied by using finite-element modeling techniques as described in Chapter 3 (ANSYS
2009). The large displacement analyses were conducted with an assumption of linear elastic
materials, which is appropriate because the stresses in the web due to torque from the overhang
are well below yield. The girder cross section that were used in FEA models are shown in Figure
8.4. All sections are doubly symmetric, and all dimensions of each section are identical with each
other except for the depth of the web. The depths of the web of Sections D38, D56, and D75 are
37.5 in., 56.25 in., and 75 in., respectively. As shown in Table 8.1, the web slenderness ratios are
within the practical range of the web slenderness commonly used in bridge construction and
were proportioned to study the effects of the web slenderness on the web behavior. The
slenderness ratios of Sections D56 and D75 are 1.5 times and 2 times as large as that of D38,
respectively. The webs of Sections D38, D56, and D75 are classified as compact, non-compact
and slender, respectively, in accordance with AASHTO/LRFD (2007). The flanges, which are
the same for all the sections, have a flange slenderness of eight, and are classified as compact in
accordance with AASHTO/LRFD (2007).
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Figure 8.4: Cross-Sections Studied
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The three dimensional finite element model of a typical girder is shown in Figure 8.5.
Transverse web stiffeners that are depicted in light blue in the figure were used both at the
supports and along the length of the girder. The stiffeners have a thickness of 0.5 in. and a width
equal to 90% of half of the flange width. Eight-node shell elements were used to model the cross
sections of the girder and the transverse web stiffeners. The transverse web stiffeners did not
provide any warping restraint to the top and bottom flanges of the girder because they were
detached from the flange nodes. The lateral bracing was provided at both top and bottom flanges
at every 5 feet to prevent the lateral-torsional buckling of the girder during the analysis. The FEA
girder model was simply supported, and the section was free to warp at the supports.

Figure 8.5: Finite Element Model for Steel Fascia Girder

The girder self-weight was applied by using the gravitational acceleration, and the
concrete deck load was applied to the top flange of the girder. The fresh concrete deck load
included the loads in the overhang, in the slab haunch and in the interior deck for a girder
spacing of 5 ft. The equivalent load system that was explained in the previous section was
utilized to simulate the torque due to the overhang load, which forms a force couple in the
horizontal direction parallel to the flange plane. The one component of the force couple was
applied to the top flange of the girder and the other component of the force couple was applied to
the web where the overhang bracket reacts.

Table 8.2 summarizes the parameters and their ranges that were used in the parametric
FEA studies. AASHTO/Standard (2002) requires that the ratio of web depth to span length be
less than 1/25. Thus, while the span length of D38 was 60 ft, the span length of D56 and D75
was 120 ft. The web slenderness ratios included 75, 113, and 150. For the overhang bracket
reaction height, five different locations were chosen and were evenly spaced along the depth of
the web. Overhang widths from the center of the girder to the edge of the slab were 3 ft. and 4 ft.
The stiffener spacing varied from 10 ft to 30 ft.
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In addition to the main parameters for the FEA studies summarized in Table 8.2, the
effects of the flange width and web imperfections were also considered. Because the flange
width of 20 in. listed in Table 8.1 may be practically large, particularly for the Section D38,
smaller flange widths were also considered. AASHTO/LRFD (2007) requires that the ratio of
flange width to web depth be larger than 1/6. Thus, the ratio of flange width to web depth was
adjusted to be 1/5 for narrow flanges, which is slightly larger than the minimum value of 1/6.
The narrow flanges for Section D38, D56, and D75 were 7.5 in., 11.25 in. and 15 in. wide,
respectively.

Table 8.1: Dimensional Propertiesof Cross Sections Studies

Type Parameter Symbol Unit | D38 | D56 | D75
Web Thickness tw inch 0.5 0.5 0.5

Web Web Depth D(=d,)) inch | 37.5 |56.25 |75
Web Slenderness A - 75 113 150
Web Area Ay, in? | 18.75 | 28.13 | 37.5
Flange Thickness | t inch | 125 | 125 |1.25

Flange Flange Width by inch | 20 20 20
Flange Slenderness | M - 8 8 8
Area Ar in.? 25 25 25

. Fabrication .
Deformation Imperfection Limit Ay (= 150 inch 0.25 0.35 0.50

Table 8.2: Parametersand Their Ranges

Parameter Range

Span Length 60 ft (D38), 120 ft (D56 and D75)

Web Slenderness Ratio 76, 113 and 150

Bracket Reaction Height 5 different positions along depth of girder
Overhang Width 3 and 4 ft

Stiffener Spacing 10 ft and 30 ft

Load girder self-weight and fresh concrete load
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Figure 8.6: Web Plate Imperfection for Girder Model (Rescaled)

The initial imperfections were applied to the web to consider the effects of the initial web
imperfections on the web behavior. The key factors concerning the application of web
imperfections were the magnitude and shape of the imperfection in the web. The American
Welding Society (AWS) D1.5 Specifications (2008) have a limit of D/150 (D: depth of web)
plate tolerance that was adopted as a reference for the selection of the magnitudes of initial
imperfections for the FEA models. The imperfections were applied to the web in the same
direction as the overhang bracket reaction force because the bracket reaction force will tend to
intensify the imperfections in the same direction as the bracket reaction force.

The determination of the web imperfection shape for the FEA models required the
preliminary finite element analysis for the perfect FEA model that had no imperfection. The
preliminary analysis for the perfect FEA model was conducted by fixing the edge nodes of each
web segment between transverse stiffeners and applying the lateral displacement of a maximum
imperfection at the center node of each web segment. The imperfection shape in the web was
obtained by updating the geometry of the perfect FEA model on the deformations from the
preliminary analysis results. As an example, the web plate imperfection shape for a plate girder
model is depicted in Figure 8.6 with the magnitude of the imperfection greatly amplified.
Although the impacts of imperfections on the web performance were investigated, most of the
results that are presented in this chapter were for perfectly flat webs so that the effect of the
various parameters could be investigated. At the end of the chapter, the effects of the web plate
imperfections are demonstrated.

8.4 FEA Results and Discussions

Large displacement analyses were conducted on girders with the full range of the
parametric set listed in Table 8.2. Unless specified otherwise, the FEA girder models that are
discussed in this section had no imperfection in the web. The typical overhang width of 3 ft was
used for all the graphs presented in this section except for the graphs that demonstrate the effects
of the overhang width on the web behavior.
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8.4.1 Effects of Web Slender ness

The large displacement FEA studies first focused on the effects of the web slenderness on
the girder behavior. The finite element analyses were conducted for 60 different parametric
conditions for girder models that had no web imperfections.

Figure 8.7 and Figure 8.8 illustrates the effects of web slenderness on the web behavior
for respective stiffener spacings of 10 and 30 feet. The overhang bracket was positioned at
midheight of the web in both cases. On both figures, the lateral deformations in the web in the x-
axis are plotted against the depth of the web on the y-axis. From both Figure 8.7 and Figure 8.8,
the maximum lateral deformation in the web occurred near the mid-depth of the web. This was
the case that was observed for all of the analyses with the overhang bracket reaction height in the
tension zone in the web including the mid-depth of the web. However, when the overhang
bracket reacts in the compression zone in the web, the maximum deformation point occurs
higher up in the compression zone in the web.

For the change in web slenderness from 75 to 150, which is two times increase in the web
slenderness ratio, maximum web deformations for stiffener spacings of 10 ft and 30 ft increased
from 0.027 in. to 0.066 in., and 0.047 in. to 0.153 in., respectively. This indicates that the webs
with larger web slenderness ratios are more susceptible to larger web deformations. A
comparison of the graphs shows that the effect of the stiffener spacing is heavily dependent on
the girder depth. For example, the web deformations did not differ that much between the values
of the stiffener spacing for the D38 section. For a 10 ft. spacing the maximum web deformation
1s 0.027 in. and increases to 0.047 in. for the 30 ft. spacing (74% increase). For the D75 section
the maximum web deformation is 0.066 in. for the 10 ft. spacing and increases to 0.153 in for the
stiffener spacing of 30 ft. (132% increase) spacing.
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Figure 8.7: Effects of Web Slenderness for Stiffener Spacing of 10 ft
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Figure 8.8: Effects of Web Slenderness for Stiffener Spacing of 30 ft

8.4.2 Effects of Overhang Bracket Reaction Height

As mentioned earlier, although it is preferable for the overhang bracket to react near the
bottom flange of the girder, in many situations, the brackets have been observed to react near
midheight of the web. The FEA models that addressed the issues of bracket reaction heights
allowed the five different reaction locations for overhang brackets that were evenly spaced along
the depth of the web.

Figure 8.9 and Figure 8.10 demonstrates how the overhang bracket reaction height affects
the web deformation in the girder subjected to overhang loads. Figure 8.9 and Figure 8.10 show
the results for girder section of D38 and D75, respectively. The web deformation profiles in the
graphs were nondimensionalized with respect to the corresponding imperfection tolerances listed
in Table 8.1. Although the FEA girder models allowed the five different reaction locations for
overhang brackets, both figures show the results for only three of the different reaction locations
for clarity. The values that are shown are for reactions at one sixth, half, and the five sixths of the
web depth.
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Figure 8.9: Effects of Overhang Bracket Reaction Height for Girder Type D75
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Figure 8.10: Effects of Overhang Bracket Reaction Height for Girder Type D38

The web deformations for reactions at 1/3 and 2/3 of the web depth follow the general
trend shown in the figures with the location of the maximum deformation shifting up as the
reaction point shifted up.

Both graphs show that web deformations increase as the overhang bracket reacts closer to
the top flange of the girder. There are two potential contributing factors for the larger
deformation as the reaction point shifts upward. The most significant factor is most likely

144



because the magnitude of the lateral force required increases as the bracket reaction shifts
upward as the moment arm between the force couple is reduced. The other contributing factor is
because the compressive stress in the upper portion of the web makes the plate more flexible. In
order to investigate which factor makes more contribution to the effects of the bracket reaction
height, the approach of a unit line load was introduced into the finite element analyses. In this
approach, the same unit line load, 1 kip/ft., was laterally distributed to the web at the five
different bracket reaction heights as well as the edge of the top flange.

Essentially, this approach can tell which reaction point in the web for the same lateral
load is the most susceptible to web deformation. Figure 8.11 shows the FEA results that
demonstrate the effect of the loading point on the web deformation. The web deformation
profiles for the loading points at the one sixth and the five sixths of the web depth are almost
symmetric about the mid-depth of the web, with the maximum web deformation for the
compression zone loading slightly larger than that for the tension zone loading. This indicates
that the loading point in the compression zone in the web does not intensify the web deformation
significantly. Therefore, it can be concluded that for construction load levels, the effects of the
overhang bracket reaction height on the web deformation is mainly due to the magnitude of the
overhang bracket reaction. The magnitude of the overhang bracket reaction force can be
significantly reduced by adjusting the vertical dimension of the overhang bracket. As shown in
Equation (8.4), longer vertical dimensions of overhang brackets generate smaller reaction forces
for the web, thereby minimizing web deformations. Because the overhang framing into middepth
of the web is the worst case, all of the FEA results presented in the remainder of this chapter are
for the case of the overhang bracket framing into middepth of the web. Cases in which the
overhang bracket frames into a different location on the web will result in a different
deformation profile; however, the basic trends in the behavior will be the same.
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Figure 8.11: Effects of Loading Point for Girder Type D75
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8.4.3 Effects of Stiffener Spacing

The nonlinear large displacement FEA analyses also investigated the effects of the
stiffener spacing on the girder behavior. Figure 8.12 shows the FEA results for girder type D75
that illustrate the effects of the stiffener spacing on the web deformation, and the FEA results for
other girder types are presented in Appendix D. As expected, the larger stiffener spacing caused
more web deformation as shown in the figure. This indicates that transverse web stiffeners play a
role in restraining the lateral deformation in the web. The change in the stiffener spacing from 10
feet to 30 feet more than doubled the amount of web deformation. This trend was similar for the
other two girder types of D38 and D56. However, the increase in the stiffener spacing for D38
and D56 affects the increase in web deformation less than that for D75.
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Figure 8.12: Effects of Stiffener Spacing for Girder Type D75

8.4.4 Effects of Overhang Width

Figures 8.13 and 8.14 use FEA results to illustrate the effects of the overhang width on
the web deformation. Figures 8.13 and 8.14 describe FEA results for girder types of D36 and
D75, respectively. As expected, the web deformation increased with the overhang width. The
change in the overhang width from 3 ft. to 4 ft. resulted in approximately 2.3 times more web
deformation. This shows that the web deformation is significantly influenced by the overhang
width. For a given girder depth, the impact of the larger overhang can come in two areas. A
wider overhang obviously has a larger gravity load due to the increase in the amount of concrete
on the overhang. In addition, if the diagonal frames into midheight of the web panel for both
overhang widths, the difference in geometry can also amplify the overhang force. The larger
width will have a smaller angle for the diagonal of the overhang bracket, which therefore
increases the diagonal force due to the different geometry.
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Figure 8.13: Effects of Overhang Width for Girder Type D38
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Figure 8.14: Effects of Overhang Width for Girder Type D75

8.4.5 Effectsof Top

As discussed in the Section 8.2, smaller top flange widths result in larger overhang loads
for a given overhang width. The increase in force is due to the larger distance from the edge of
the top flange to the edge of the concrete deck, which is the net overhang width. Figure 8.15
shows FEA results for girder type D38 that demonstrate the effects of the top flange width on the

Flange Width
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web behavior. The 7.5 in. wide flange is a 62.5% decrease in the top flange width compared to
the 20 in. flange and the smaller flange had a 75% average increase in the web deformation. The
increase in the web deformation is caused by the larger lateral load and also by the smaller
torsional restraint provided to the web by the smaller flange.
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Figure 8.15: Effects of Top Flange Width for Girder Type D38

8.4.6 P-Delta Effect

The web in the fascia girder with the overhang loads is subjected to a complicated state of
stress from the combined bending and lateral load from the overhang. In-plane bending of the
girder results in a linear stress distribution with compression in the upper portion of the web and
tension in the lower portion. In addition, the lateral load from the overhang causes out-of-plane
bending in the web plate. This loading condition creates P-delta effects for the web similar to the
case for a column subjected to axial load combined with the bending moment that results in an
increase in the moment and lateral deflection in the column. This P-delta effect is illustrated in
Figure 8.16. The girder had an overhang width of 3 ft with the overhang bracket reacting at the
mid-depth of the web. While the girder represented by the deformation profile in blue was
subjected to both the vertical load and the lateral load, the girder represented by the deformation
profile in pink was subjected to only the lateral load. Although the web with the combined
loading experienced more lateral deformations, the P-delta effect was not too significant. The
case shown is for the girder with the most slender web. The P-delta effects for the other two
girder sections were smaller.
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Figure 8.16: P-Delat Effect for Girder Type D75
8.4.7 Effects of Web Imperfections

Plate girders with initial web imperfections in the web were investigated. The direction of
the imperfections was considered to be the same as the overhang bracket reaction force.
Nonlinear large-displacement finite element analyses (FEA) were performed on selected plate
girder models. The imperfections in the web plates were obtained as outlined in Section 8.3.
Comparisons of the FEA results between perfect girders and girders with initial web
imperfections are shown in Figure 8.17 where the solid-line curves and the dotted-line curves
represent a perfect girder and a girder with initial imperfections, respectively. The graph shows
that although there was a slight change in the web deformation profiles, the effects of web
imperfections were relatively small. The shifts in the curves are primarily caused by P-delta
effects; however as was outlined in the last section, the P-delta effects were relatively small.
Therefore, increasing the plate deformation by a value equal to the maximum permissible
imperfection had a relatively small effect. The main area that is impacted is the upper portion of
the web where the web is in compression. However, the impact is not very significant.
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Figure 8.17: Effect of Web Imperfections

8.5 Closing Remarks

The investigation into the behavior of steel fascia girders subjected to overhang loads
during construction was conducted to improve the understanding on the impact of the overhang
on the structural performance of the steel girders. Extensive parametric studies were conducted
using the finite-element analyses with a wide range of variables. Based upon the study, the
following conclusions were reached:

Web deformations resulting from overhang brackets reacting on the web plate
increase with increases in the web slenderness.

Web deformations increased as the overhang bracket reacted closer to the top flange
of the girder. For a given overhang width, the primary cause of the increase in web
deformations was due to the fact that the bracket reaction increases as the bracket
diagonal reacts higher on the web. The magnitude of the overhang bracket reaction
force can be significantly reduced by adjusting the vertical leg for the overhang
bracket, thereby resulting in smaller web deformations.

The transverse web stiffener helps to restrict the web deformations caused from the
overhang brackets reacting on the web plate. A smaller stiffener spacing produces
smaller web deformation. The effects of the stiffener spacing are more pronounced
for webs with larger values of the web slenderness.

Web deformations increase with the overhang width. In addition, for a given
overhang width, smaller top flange widths result in larger net overhang widths,
thereby leading to more web deformation.

Fascia girder webs with overhang loads are subjected to combined loading of vertical
bending and lateral loads from the overhang bracket. Although the compression
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portions of the web with the combined loading experienced more lateral deformation,
the P-delta effect on the web deformation was not too significant.

The imperfections on the webs in the girders produced a change in the web
deformation profile for a girder without web imperfections. However, the effects of
the web imperfection were relatively small.

Finally, the overhang width, the overhang bracket reaction height, the web
slenderness, and the stiffener spacing were the dominating factors for the lateral
deformation in the web in the girder that is subjected to the overhang load. Although
these dominating factors intensified web lateral deformation, the range of lateral
deformations in the web for the cross sections studied was below the fabrication
imperfection limit of D/150 specified in the Bridge Welding Code from the American
Welding Society (2008). In finished bridges, a web with an imperfection in the same
direction as the lateral deformation imposed by the overhang bracket is likely to have
web deformations larger than the D/150 limit, although the effects are most likely
relatively minor.
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Chapter 9. Summary and Conclusions

9.1 Summary

Overhang construction can pose several problems for both concrete and steel girder
systems. Current design methodologies in bridge design don’t often consider the overhang
demands on bridge behavior, but instead utilize typical details. The construction loads in these
overhangs are transferred to the fascia girder through overhang brackets. The specific layout of
the overhang brackets are often left up to the contractor. Because of the relatively large
eccentricity of the overhang load, the fascia girders on concrete and steel girder systems are often
subjected to large torques that are often not considered by engineers during the design process.
These torques can cause excessive rotations of the girder system that should be considered
during the design process. Problematic deformations have occurred in both concrete and steel
girder systems in Texas. The large torques have caused the fascia girder in a prestressed concrete
girder bridge to lift off of the bearing pads during construction and also caused a twin steel girder
system in a bridge widening to nearly fail by system lateral torsional buckling. In addition, there
were concerns that the reaction forces from overhang brackets could distort the web, thereby
leading to local instabilities or large web imperfections that get locked into the girders once the
deck cures.

The research presented in this report was part of a research investigation sponsored by the
Texas Department of Transportation (TxDOT) to investigate the effects of overhang construction
on the behavior of concrete and steel girder systems.

The primary goals of the research project included improving the understanding of bridge
behavior due to overhang loads, identifying critical overhang geometries as a function of the
overhang loading, evaluating the global and local instabilities of steel girder systems, and
developing simple design methodologies and design recommendations for overhang
construction.

The research investigation included field monitoring, laboratory testing, and parametric
finite element analyses. Three bridges were instrumented and monitored during the concrete
deck pour to collect data that was used to validate finite element models that were used to study
the effects of overhang construction on the bridge behavior. In addition to the field studies,
laboratory tests were conducted on elements of concrete girder systems at the Phil M. Ferguson
Structural Engineering Laboratory at The University of Texas at Austin. The tests consisted of
lateral stiffness and strength tests on the bracing bar systems used to restrain prestressed concrete
girders, overturning tests on a prestressed concrete beam with elastomeric bearing pads, and
rotational tests of the girder and panel deck system. The laboratory testing provided valuable
data for the FEA models for the concrete bridges that were used to clarify several uncertainties in
the modeling of key elements in concrete girder systems.

Based on the validated models, detailed parametric studies were conducted to investigate
the effects of the overhang loading on girder behavior. Results from the parametric studies were
used to identify the geometries of girder systems that are prone to problems with the overhangs
as well as to provide design suggestions. In addition, a closed-form solution for lateral rotation in
the fascia girder in a concrete girder bridge was derived by using a rigid-body model and used to
develop design methodologies and recommendations for overhang construction.
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9.2 Conclusions

The conclusions of the research study are summarized in this section. The study resulted
in substantial improvement in the understanding of the overhang construction on the structural
behavior of the bridge girder systems. The identification of critical overhang geometries was
achieved along with the development of design equations and recommendations for overhang
construction. The conclusions are provided in three subsections. The summary and
recommendations for prestressed concrete girder systems are provided first, followed by global
buckling of steel girder systems, and the last subsection provides a summary of local effects of
steel girder webs. Specific recommendations for design are made in Section 9.3.

9.2.1 Prestressed Concrete Girder Systems

Based upon the studies of overhang construction on concrete girder systems, the
following conclusions can be made:

e The lateral stiffness of the R-bars was small compared to the axial stiffness of the
top bracing bar. In addition, the strength of the R-bar and connection to the bracing
bar were significantly smaller than the yield capacity of the bracing bar. This
indicates that the lateral stiffness and capacity of top bracing are governed by the R-
bar.

e The maximum rotation that the AASHTO Type C beam sustained in the laboratory
tipping test was approximately 2.5 degrees. This would likely be a typical value for
most prestressed concrete beams.

e Three different connection configurations were evaluated in the laboratory
including the TxDOT standard connection in Figure 9.1. The other two connections
are more representative of the connection that is commonly used in practice in
which the bracing bar passes over the top of the precast deck panels and is bent to
connect to the R-bar. The Standard connection configuration possessed a higher
stiffness and was also stronger than the connections that are used in practice. The
connections that are used in practice exhibited better ductility than the standard
connection.

e Forces in the diagonal timber blocking were very small and often zero in the
analysis. The diagonal timber blocking does not provide restraint to twisting of the
girders due to a lack of positive connection between the girders and the timbers.
The primary role of the timber blocking is to distribute lateral loads between the
girders. With symmetric overhang loads and geometry, the horizontal bottom strut
does distribute lateral compressive loads from opposing overhangs.

e While conventional Beam Types IV and VI showed good rotational response for a
typical overhang width of 3 ft, conventional Beam Types A, B and C experienced
excessive beam rotations. In comparison, all of the Tx I-girders showed good
rotational response for a typical overhang width of 3 ft.

e Two different distributions of top bracing bars were considered in the investigation.
The first case had the bracing distributed uniformly along the length (distributed
bracing). The second case had the bracing concentrated at the ends of the beam (end
bracing). End bracing can provide a good alternate for the distributed bracing that is
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currently required by the TxDOT standard drawings. End bracing also allows the
contractor to use the bracing detail of the Standard connection in Figure 9.1(a) that
is found in the TxDOT standard drawings as a thickened deck can be used for this
connection type.

Larger girder spacing leads to more restoring moment to the fascia girder of the
girder system.

Larger beams showed better performance at resisting twist from the eccentric
overhang due to the wider top flange, the wider bearing pad, and the larger beam
self-weight.

The rigid-body model that was developed for predicting the twist of the girder had
reasonable agreement with the FEA analysis. The model can be used to evaluate the
girder twist during construction. The model can also be used to determine the
amount of bracing necessary to restrain the twist during construction. Values for the
stiffness and strength of key elements of the prestressed girder system are provided
in Section 9.3.1 for design recommendations.

30 Top Bracing Bar 50°
Top Bracing Bar

~

R-bar
R-bar R-bar

Top Bracing Bar

(a) Standard (b) Inclined Top (¢) Inclined Bottom

Figure 9.1: Connection Configurations for Top Bracing

9.2.2 System Buckling of Steel Girder Systems

The instability of twin girder systems such as those used in bridge widening with
combined flexure and torsion due to unbalanced overhang loads was investigated, and the
parametric FEA studies were carried out on steel twin-girder systems to improve the
understanding of the behavior. A closed-form solution for self-equilibrating overhang width of
the twin girder system was derived and compared with the computational solutions. Conclusions
from these studies are as follows:

e The unbalanced eccentric overhang load leads to a significant amount of lateral
displacement and twist of twin girder systems and should be taken into
consideration in the design of systems for bridge widening applications or other
cases with unbalanced loading on girder systems.

e For girder systems failing in the global system buckling mode, the spacing of
intermediate cross-frames did not have a significant impact on the buckling
behavior of the girder systems that were considered.
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e The system mode of buckling becomes more critical for smaller girder spacings,
larger span to width ratios of the girders, and larger overhang widths.

e Proportioning interior and exterior overhang widths to produce zero net torque on
the girder system will minimize the effects of the eccentric load due to the overhang
loads.

9.2.3 Local Stability of Web of Steel Girders

The investigation into the steel fascia girder that is subjected to the construction overhang
loads was conducted to improve the understanding of the structural behavior of the web in the
girder. The extensive parametric studies by using the finite-element analyses were performed
over the wide range of parameters, and produced the following conclusions.

e Girders with a larger web slenderness experienced larger web deformations from
the overhang brackets reacting on the web.

e For a given overhang size and girder depth, web deformations increased as the
overhang bracket reacted closer to the top flange of the girder. The larger
deformations were caused by the increase in the bracket reaction that occurs as the
spacing between the force couple from the overhang bracket decreased. The
magnitude of the overhang bracket reaction force can be significantly reduced by
adjusting the vertical dimension of the overhang bracket, thereby resulting in
smaller web deformations.

e The overhang width, the overhang bracket vertical dimension, the web slenderness
and the stiffener spacing were the dominating factors for the lateral deformation in
the web in the girder subjected to the overhang load.

e The range of lateral deformations in the web for the cross sections studied was
below the fabrication imperfection limit of D/150 specified in the Bridge Welding
Code from the American Welding Society (2008).

9.3 Design Recommendations

The study improved the understanding of the impact of overhang construction on the
structural behavior of the bridge girder systems. Based on the research results from field
monitoring, laboratory testing, and analytical studies, design recommendations for overhang
construction in concrete and steel bridges can be proposed and are summarized in the following
subsections.

9.3.1 Prestressed Concrete Girder Systems

e The connection types for top bracing bars included two types of connections that
are referred to as the flexible connection and the stiff connection. The flexible
connection is representative of the actual connection configuration typically used in
practice for the top bracing bar while the stiff connection is the connection
configuration specified by the TxDOT standard drawings. The flexible connection
is used because the widespread use of precast concrete panels makes it difficult to
implement stiff connection. Both connection types are recommended to be used for
bracing for concrete girder systems through the adequate amount of bracing
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determined by the proposed overhang design equation. The stiff connection can
generally be used in the end regions of the beams where the thickened end may be
used without the deck panels.

Two top bracing distributions were considered: bracing distributed along the length
of the bridge and end bracing. For the case of the distributed bracing, the top
bracing bars were uniformly distributed along the girder length, while for the end
bracing, the top bracing bars were concentrated at each end of the girder. The
method of end bracing can provide an alternative over distributed bracing that is
currently required by TxDOT standard drawing. The end bracing method is
recommended especially when the concrete deck panels are not used at the
thickened ends and the stiff connection is to be implemented.

The horizontal timber blocking in combination with the top bracing bars is much
more effective at restraining rotation of the girder than the diagonal timber
blocking. The horizontal timber blocking combined with top bracing provides
restoring moment to the fascia girder. Therefore, horizontal timber blocking is
recommended to be used for bracing of girder systems at the locations of the top
bracing bars.

The rigid-body model is recommended to be used for evaluating the safety of
concrete girder systems subjected to overhang construction loads. Key values of the
bearing stiffness, the stiffness of the timber blocking, and the R-bar/bracing bar
stiffness are given in Table 9.1

Table 9.1: Design Valuesfor Structural Componentsin Girder Systems

Top Connection Type | Stiffness Strength Note
Bracing [ gyiff 39 (kip/in.) | 3 (kips) R-bar (#4), Top Bracing Bar (#5)
Flexible 15.5 1.2 (kips)
(kip/in.)
Timber Blocking Young's Cross Timber Size (4 by 4 in.)
Modulus Sectional Area
700 ksi 12.25 in?
Bearing Beam Type Pad Size Compressive Lateral Stiffness
Pads Length Width Stiffness per
Width
Conventional | 7 in. 12 in. 31.2 ((kip/in.)/in.) | 3.2 (kip/in.)
[-Beams 7 in. 14 in. 34.7 (kip/in.)/in.) | 3.7 (kip/in.)
7 in. 16 in. 37.8 ((kip/in.)/in.) | 4.3 (kip/in.)
7 in. 22 in. 44.9 ((kip/in.)/in.) | 5.9 (kip/in.)
9 in. 24 in. 87.4 ((kip/in.)/in.) | 8.3 (kip/in.)
Tx [-Girders | 8 in. 21 in. 60.9 ((kip/in.)/in.) | 6.4 (kip/in.)
9 in. 21 in. 81 ((kip/in.)/in.) 7.2 (kip/in.)
10 in. 21 in. 104 ((kip/in.)/in.) | 8 (kip/in.)
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9.3.2 System Buckling of Steel Girder Systems

e Steel girder systems with a relatively large length to width ratio combined with
unbalanced load from the overhangs are susceptible to the system mode of buckling
that is critical during construction of the bridge deck. Therefore, the unbalanced
ovehang load should be taken into consideration for design of systems in bridge
widening applications or other cases with unbalanced loading on girder systems

e For system buckling, proportioning the interior and exterior overhang widths to
produce zero net torque on the girder system is suggested to minimize the effects of
the eccentric overhang loads.

9.3.3 Effects of Overhang Bracketson L ocal Deformationsin Web Plates

e For a given overhang width, the overhang bracket that reacts close to the top flange
can produce substantial lateral reaction force on the web. Therefore, the use of the
large ratio of overhang bracket vertical dimension to overhang width, which often
results in overhang brackets reacting close to the bottom flange, is recommended to
minimize the bracket reaction force.

e The overhang width, the overhang bracket reaction height, the web slenderness, and
the stiffener spacing were the dominating factors for the lateral deformation in the
web in the girder that is subjected to the overhang load. Although these dominating
factors intensified web lateral deformation, the range of lateral deformations in the
web for the cross sections studied was below the fabrication imperfection limit of
D/150 specified in the Bridge Welding Code from the American Welding Society
(2008). In finished bridges, a web with an imperfection in the same direction as the
lateral deformation imposed by the overhang bracket is likely to have web
deformations larger than the D/150 limit, although the effects are most likely
relatively minor.
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Appendix A: System Buckling of Twin-Girder System

A.1Lateral Torsional Buckling of a Single Girder in Pure Bending

Prior to discussing the system buckling mode, the classical solution for the lateral
torsional buckling of a single girder that is subjected to pure bending is reviewed (Timoshenko
and Gere, 1961). Figure A.1 shows the doubly symmetric beam that is simply supported with
constant moment. At both ends, the twist of the beam is prevented but the beam is free to warp.
The basic assumptions include linear-elastic material, small deformation and no cross-section
distortion. When the lateral torsional buckling occurs to the beam, the beam will experience three
distinct deformations that are in-plane bending (vertical bending), out-of-bending (lateral
bending), and the twist of the cross-section as shown in the Figure A.2.

—p
y

pu © N _

Figure A.1 Simply Supported Beam Subjected to Pure Bending
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(b) Top View

centroid

(c) Cross Section View
Figure A.2 Deformed Configurations in Lateral Torsional Buckling Mode

The global coordinate system of x, y and z coordinates is introduced along with the local
coordinate system of &, n and { coordinates. While the global coordinate system is fixed, the axes
of the local coordinate system coincide with the centroidal axes of the deformed beam. The
positions of the local axes of the beam are defined by the vertical displacement, v, in the y-
direction, the lateral displacement, u, in the x-axis, and the rotation, ¢, about the z-direction. The
applied external moment, which is about the x-axis, can be related to the internal resisting
moments with respect to &, 1 and { axes.
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M; = Mo (A.1)

M, = -M¢ (A.2)
du
My =M (A.3)

The application of the Euler beam theory gives the three governing differential equations of
equilibrium.

d?v
Mg = —Elk+— (A.4)
d?u
Mp =Ely 5 (A.5)
deo d3¢
M; = G — — El,, —~
¢ =4 dz WV dz3 (A.6)

Substitution of Equations (A.1) to (A.3) into Equations (A.4) to (A.6) gives

d?v
EIXE +M=0 (A.7)
d?u
Ely 2+t Me=0 (A.8)
deo d3¢ du
G~ Ely g~ M =0 (A.9)

Equation (A.7) represents the in-plane bending behavior of the beam. Since Equation (A.7) is a
function of the vertical displacement, v only, the solution to the equation (A.7) can be obtained
independently from the other two Equations (A.8) and (A.9). The second and third equations that
describe the lateral bending and twisting behavior of the beam, respectively, are coupled with
each other and must be solved simultaneously. Differentiation of Equation (A.9) and substitution
of the result into Equation (A.8) gives the differential equation that is a function of the twist
rotation, ¢ only.

d*o d?¢ M?

WE—G @—E—Iy@=0 (A.10)

Equation (A.10) that describes the lateral torsional buckling behavior of the beam is a fourth-
order linear differential equation with constant coefficients. By denoting “a” and “b” as

GJ M2

El

= —, b =
T 2El,’ " ELEL, (A.1D)
Substitution of Equation (A.11) into Equation (A.10) gives
d*e d?¢
—F—2a——bep =0
dz* 4 4z2 ¢ (A.12)
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The general solution for Equation (A.12) can be assumed as
@ = Asin(mz) + Bcos(mz) + Csinh(nz) + Dcosh(nz) (A.13)

where m and n are positive, real quantities that are functions of a and b.

m = ’—a+\/a2+b,n= a++/a?+b, (A.14)

The four arbitrary constants in Equation (A.13) can be determined by using the boundary
conditions for a simply supported beam. The prevention of the twist of the beam at each end and
the allowance of the warping deformation of the beam at each end provide the following
conditions.

a)z=0,=0
b)z=0,¢"=0 (A.15)
A)z=Le=0
dz=Le"=0

By using the first two boundary conditions in Equation (A.15), the constants B and D are
determined as

B=D=0 (A.16)

Substitution of Equation (A.16) into Equation (A.13) and the application of the other two
boundary conditions give the following equations.

A(m? + n?) sin(mL) =0
(A.17)
C(m? + n?) sinh(nL) = 0

Because m and n are both positive non-zero values and sinh(nL) is zero only if nL. = 0, C must
be zero. Thus, the non-trivial solution to Equation (A.17) becomes

sin(mL) =0 (A.18)

The smallest value of m that satisfies Equation (A.18) is

T
m=7 (A.19)
Substitution of Equation (A.19) into Equation (A.14) gives
I\ 2

— 2 = (=

a++/@ +b) = (L) (A.20)

Substitution of Equation (A.11) into Equation (A.20) leads to the closed-form solution for the
buckling moment of a doubly-symmetric I-beam in pure bending.

m2E2] I,

> (A21)

TT
M)er =1 \/EIyG] +
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A.2 System Buckling of a Twin-Girder System in Pure Bending

Figure A.3 shows the original configuration of the cross-section of a twin-girder system
as well as the deformed configuration of the system during system buckling. The girder system
consists of doubly symmetric I-girders with a spacing of S.

\ u
\

M, M

\ 4

D —
SC
> X
vA
/ ® = SC (shear center)
./.
7/
7/
Y
7
Y
Y
7/
Y
Y
7/
/
(P/'
>
v
y

Figure A.3 Cross-Section View of Twin-Girder System in System Buckling Mode

The constant moments, M; and M, are applied to the twin girders, respectively. For the
deformed configuration of the cross-section in the figure, only the internal shear forces
associated with the rotation of the entire cross-section about the shear center are depicted for
clarity and will be explained in detail later. The simplifying assumption that the two girders are
continuously braced by internal cross-frames with infinite stiffness leads to the assumption that
the cross-section of the girder system remains rigid during system buckling. Although the stiff
internal cross-frames can restrain the relative displacement or rotation between the two girders,
they cannot prevent the displacement and rotation of the entire cross-section of the girder system.
During the system buckling, the entire cross-section will experience the vertical and lateral
displacements and the rotation about the shear center of the cross-section. The external moments
M,, and M about the n and T axes, respectively can be related to the external moments M,

and M, about the x axis.
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(Mn),geernar = ~ (M1 + M2) (A22)

du
(M()external - (Ml + MZ)E (A'23)

Attention should be paid to the fact that the total internal lateral bending resisting moment of the
entire cross-section is the sum of the internal resisting moments of the two girders about the
weak axis of the girder.
M 2EI d’u
( T])internal - y@ (A'24)

where Iy, is the moment of inertia of the single girder about the weak axis.

With respect to the vertical displacement, v, of the entire cross-section, each girder has a
vertical differential displacement, v’ due to the rotation of the entire-cross section about the shear
center. The relationship between the vertical differential displacement,v’, and the rotation angle,
@, is given by

1
=@ (A.25)

The vertical differential displacement causes an additional internal moment and shear force on
each girder. These internal moment and shear force can be determined by using the classical
Euler beam bending theory.
M’ = —EI v __1 El SdZ(p
X dz2 2 T dz2 (A.26)
V' = a1 El, Sd3(p
~ & 2 123 (A.27)

Since the vertical differential displacements of the two girders are equal and opposite, the
internal moments and shear forces on the two girders are also equal in magnitude and opposite in
sign. Therefore, for the entire cross-section, the sum of the additional moments or the additional
shear forces cancels out each other. However, the additional shear forces forms a couple and,
thus, increases the internal torsional resistance of the entire cross-section, which is given by

T'=V'S =~ ELS’— (A.28)

The total internal torsional resistance of the twin-girder system includes the St. Venant torsion,
the warping torsion and the shear couple of Equation (A.28). Thus, the total internal torsional
resistance becomes

B¢ 1 d3(p

. _Z 2
( Z)mternal ] 2Ely —= dz3 2 ELS dz 1,3 (A.29)
Equating Equations (A.22) and (A.24) , and Equations (A.23) and (A.29), respectively gives
u (M;+M,)
El +—1 2 p=0 (A.30)

Y dz2 2

—=0 (A.31)

>d3cp (M; + M,) du
dz3 2 dz

do 1 .,
6o - E(IW+ZIXS
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The average of the external moments on the two girders is
(M; + My)
Mave = - 5

Differentiation of Equation (A.31) and substitution of the resulting expression into Equation
(A.30) gives

(A.32)

d*e d>@ My

1
E (IW * ZIXS2> dzt G dz?  El
Comparison of Equation (A.33) to Equation (A.10) indicates that the Myye o can be determined
by replacing the I,, in Equation (A.21) with (Iw +%IXSZ). Therefore, the solution for the
Equation (A.33) becomes

®=0 (A.33)

n2E2ly (1, + lIXSZ)

i 4
Mave,cr = E EIyG] + 12
Substitution of I, = I,,,d?/4 for doubly symmetric I-sections into Equation (A.34) gives

T m2E2[, (I,d? + [4S?
Mave,cr = L \/EIyG] + Y(‘}l-,]_.z . ) (A.35)

Finally, the system buckling capacity of a twin-girder system with doubly symmetric I-sections
can be expressed as

(A.34)

21 m2E21,(1,d2 + 1,52)
(Ml + Mz)cr = T \/EIyG] + 412 (A.36)

where, L= span length, E= modulus of elasticity, G= shear modulus, I,= moment of inertia about
strong axis, I,= moment of inertia about weak axis, /= torsional constant, d= distance between

flange centroids, and S= girder spacing.
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Appendix B: Bearing Pad Stiffness

This chapter discusses the method for determining the compressive and shear stiffnesses
for elastomeric bearing pads. The values of the compressive stiffness and shear stiffness for
elastomeric bearing pads that were calculated based on the method presented in this chapter were
used throughout the study.

Figure shows the dimensional parameters for an elastomeric bearing pad. The parameters
for dimensions for the elastomeric bearing pad are defined as follows.

L= length of bearing pad parallel to the length of the beam

W= width of bearing pad perpendicular to the length of the beam
A= Area of bearing pad (= LW)

h,;= thickness of elastomer layer i

h,..= total elastomer thickness (= Y, h,;)

hs= thickness of reinforcing steel shim

The shape factor of elastomer layer i is defined as the ratio of plan area of layer i to area
of perimeter free to bulge.

LW

S =
Y 2h(L+ W)

(B.1)

Exterior Layer
Interior Layer |

L (length) ot

Length
| | h¢(Steel Shim Thickness)
W (width
(width) h,;(Layer Thickness)

l<—>|
\*
M
[T

(a) Plan View (b) Elevation View

Figure B.1 Dimensions for Elastomeric Bearing Pad

The most accepted method of determining compressive modulus for a reinforced
elastomeric bearing pad is given as (Muscarella and Yura, 1995).

E. = 3G(1 + 2kS?) (B.2)

where E .= effective compressive modulus of elastomeric layer i, G= shear modulus of a bearing
pad, k= constant dependent on elastomer hardness (0.75, 0.60, and 0.55 for 50, 60, and 70
durometer elastomeric material, respectively), S;= shape factor of layer i. The compressive
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stiffness for layer i can be related to the effective compressive modulus, E.., for a given area (A)
and thickness (h,;) of the layer i.

E A
hri
For purposes of determining the compressive stiffness of the bearing pad that consists of

multiple layers, the elastomer layers in the bearing pad can be considered as springs in series.
Thus, the compressive stiffness of the bearing pad that has n elastomer layers becomes

1 w1
—=) = (B.4)
kc Z kci

=1

By applying the stiffness reduction factor of 3, the initial compressive stiffness of the
bearing pad can be expressed as

ke =

(B.3)

1
kS = §kc (B.5)

The reason for using the stiffness reduction factor for the compressive stiffness of the
bearing pad is as follows. Figure B.2 shows the graph of the typical compressive stress-strain
relationships for a 3 shim flat bearing and a 3 shim 4% tapered bearing that was presented by
Muscarella and Yura (1995). The graph shows that the bearings behave linearly for small stress
levels, and exhibit strain hardening for further load. The Equation (2.1) for the compressive
modulus for a reinforced elastomeric bearing pad is more agreeable with the curves between
compressive stresses of 500 psi and 1500 psi, which is the most common working range for
bearings (Muscarella and Yura, 1995).

14 |
g )77
< 2T FlatBearing — -~/
7 >
2 10 i =
: 8 =
@ “1  345t010.3 MPa ==
2 6T (500to1500psi) o~ ;aez?ir :d
P _ :
O D | _h____:—__f:_—r"[;- : ___:_:-_"__:——r—'I—" I I
O : ) ® 8 10

Compressive Strain (%)

Figure B.2 Compressive Stress-Strain Curves for 70 Durometer Flat and Tapered 3-Shims
Bearings (from Muscarella and Yura (1995))

The range of compressive stresses of 500 psi and 1500 psi corresponds to service load

levels rather than construction load levels. In general, the construction load levels are well below
the service load levels. Therefore, the use of the initial slope of the material curve was
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considered suitable for girder systems under construction load levels, typically for girder systems
with short span lengths. To convert the compressive modulus of Equation (2.1) to the initial
compressive modulus, the stiffness reduction factor of 3 was used.

The shear stiffness of the bearing pad can be determined by using the plan area, total
thickness, and shear modulus of the bearing pad, and can be expressed as

_GA
hrt
The use of the procedure to determine the initial compressive stiffness (kQ) and shear
stiffness (k) of the bearing pad that was discussed above is illustrated by using the rectangular

bearing pad that was used in the beam overturning test. The parameters for dimensions for the
rectangular bearing pad in the beam overturning test were as follows.

kg (B.6)

n =8 elastomer layers

L=7"
W =16"
A=112in?
h.y = h.g = 0.25"
hys = hypy = hys = hye = hyy = 0.277

h,, = 2.125"
hs = 0.105"

While the shear modulus, G, for the elastomer hardness of 50 ranges from 0.077 ksi to
0.11 ksi, the lower limit of 0.077 ksi was used throughout the study, which is a conservative
value from the design point of view. For the elastomer hardness of 50, the constant, k, dependent
on elastomer hardness was 0.75.

The use of Equation (B.1) through Equation (B.3) gives the shape factor, compressive
modulus, and compressive stiffness for each layer, which are listed in Table B.1. The application
of Equation (B.4) gives the compressive stiffness of the bearing pad.

Table B.1 Compressive Stressfor Each Layer

Layer Number i 1 2 3 4 5 6 7 8
Thickness (in.) 0.25 0.27 0.27 0.27 0.27 0.27 0.27 0.25

S; 9.74 8.99 8.99 8.99 8.99 8.99 8.99 9.74
E.; (ksi) 33.1 28.2 28.2 28.2 28.2 28.2 28.2 33.1
k. (k/in.) 148273 | 11676.2 | 11676.2 | 11676.2 | 11676.2 | 11676.2 | 11676.2 | 14827.3

1 _( 1 4 1 + 1 + 1 4 1 + 1 4 1 + 1 )
k. \14827.3 ' 11676.2  11676.2 = 116762 116762 116762 11676.2 14827.3

k. = 1541.4 k/in.
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By applying Equation (B.5), the initial compressive stiffness of the bearing pad is
calculated as

1541.4

kS = = 513.81 kips/in.
The use of Equation (B.6) gives the shear stiffness of the bearing pad.
0.077x112 o
kg = i = 4.06 kips/in.

TxDOT provides the standard drawings for elastomeric bearing pads that match the
conventional [-beams and the Texas I-girders. For reference, the initial compressive stiffness and
shear stiffness for theses elastomeric bearing pads were calculated by using the method discussed
above and listed in Table B.2.

Table B.2 Stiffness Values per Single Elastomeric Bearing Pad

Pad Size Initial Compressive
Beam Type Stiffnes.s per Width | Lateral Stiffness
Length (in.) | Width (in.) (klp/ ln-) (kip/in.)
in.
7 12 31.2 3.2
7 14 34.7 3.7
[-Beams 7 16 37.8 4.3
7 22 44.9 5.9
9 24 87.4 8.3
8 21 60.9 6.4
I-Girders 9 21 81.0 7.2
10 21 104.0 8.0
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Appendix C: Comparison of FEA Resultsfor Flexible and Stiff
Connections

This section contains the additional graphs that demonstrate comparisons of FEA results
for flexible and stiff connections (Figures C.1-C.11.). The girder system consisted of four
girders of a span length 60 ft and a girder spacing of 7.7 ft. the bracing was distributed uniformly
along the length of the girder.

05 - Ovethang Width
Parameter Conditions
beam type A
- distributed bracing
T 0.4 - span (60 ft)
S beam spacing (7.7 ft)
c # of beams (4)
L2 03 -
T
i
DO: Fascia Girder
c 02 - flexible connection
o
R
ho} . .
= 01 - stiff connection
O 1 1 1 1 1 1 1 1 1 )

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Overhang Width (ft)

Figure C.1 Comparison for Flexible and Stiff Connection for Beam Type A
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o
a1
]

Overhang Width

Parameter Conditions
beam type B
- distributed bracing
> 0.4 - span (60 ft)
S beam spacing (7.7 ft) Bem
g # of beams (4) oren
2 03 - )
(1]
i}
@ Fascia Girder
= 0.2 -
2 flexible connection
o
s 0.1 -
stiff connection
O 1 1 1 1 1 1 1 1 1 J

0 0.5 1 15 2 2.5 3 3.5 4 45 5
Overhang Width (ft)

Figure C.2 Comparison for Flexible and Stiff Connection for Beam Type B

05 T Overhang Width
Parameter Conditions
beam type C
— distributed bracing
> 0.4 - span (60 ft)
S beam spacing (7.7 ft) Bem
g # of beams (4) srEten
2 03 - h
(1]
i}
@ Fascia Girder
c 0.2 - . .
s flexible connection
K@
o
S 0.1 -
stiff connection
O 1 1 1 1 1 J

0 0.5 1 15 2 25 3 3.5 4 4.5 5
Overhang Width (ft)

Figure C.3 Comparison for Flexible and Stiff Connection for Beam Type C
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0.5 - [Parameter Conditions
beam type IV
distributed bracing
_— | | span (60 ft)
g 0.4 beam spacing (7.7 ft)
S # of beams (4)
S
Ovwethang Width
2 03 - :
I . .
IS flexible connection
C -
= 0.2 L
% Rotation
o
s 0.1 - g . .
Fascia Girder stiff connection
O 1 1 1 1 1 1 1 1 J

0 0.5 1 15 2 2.5 3 3.5 4 45 5
Overhang Width (ft)

Figure C.4 Comparison for Flexible and Stiff Connection for Beam Type IV

05 1 Parameter Conditions
Tx28 flexible connection
distributed bracing —
_
= 0.4 - span (60 ft)
(3] beam spacing (7.7 ft)
S, # of beams (4)
S
O 03 - Overhang Width
= |
]
o
o
c _
= 0.2
o Bexm
(./I) Rotation
=
Fascia Girder stiff connection
O 1 1 1 1 1 1 1 1 1 J

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Overhang Width (ft)

Figure C.5 Comparison for Flexible and Stiff Connection for Tx28
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Mid-Span Rotation (deg.)

o
(6}
]

Parameter Conditions
Tx34 . .
distributed bracing flexible connection
—
o5 04 - span (60 ft)
<B) beam spacing (7.7 ft)
RS # of beams (4)
c
S 03 - Overbang Widh
T
e
(@)
o
c 4
= 0.2
o Beam
(_/I) Rotation
=]
s 0.1 - 0
Fascia Girder St'ff connection
O 1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5
Overhang Width (ft)

Figure C.6 Comparison for Flexible and Stiff Connection for Tx34

Parameter Conditions
x40
distributed bracing
- span (60 ft)
beam spacing (7.7 ft)
# of beams (4)

flexible connection

- Ovethang Width

Rotation

6
stiff connection

Fascia Girder

1 1 1 1 1 1 1 1 1 J

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Overhang Width (ft)

Figure C.7 Comparison for Flexible and Stiff Connection for Tx40
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Mid-Span Rotation (deg.)

Mid-Span Rotation (deg.)

05 +

Parameter Conditions
Tx46 flexible connection
distributed bracing
0.4 -| | span(60ft)
beam spacing (7.7 ft)
# of beams (4)
03 - Ovethang Width
0.2 -
Beam
Rotation
01 - p
Fascia Girder stiff connection
O 1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5
Overhang Width (ft)

Figure C.8 Comparison for Flexible and Stiff Connection for Tx46

05 1 Parameter Conditions
Txa4 flexible connection
distributed bracing
0.4 - | span(60ft)
beam spacing (7.7 ft)
# of beams (4)
03 - Ovethang Width
0.2 -
Beam
Rotation
0.1 - p
Fascia Girder stiff connection
O 1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5
Overhang Width (ft)

Figure C.9 Comparison for Flexible and Stiff Connection for Tx54
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Mid-Span Rotation (deg.)

Mid-Span Rotation (deg.)

05 +
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Tx62 flexible connection
distributed bracing
0.4 | | span(60f0 \
beam spacing (7.7 ft)
# of beams (4)
03 - Ovethang Width
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Beam
Rotation
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Fascia Girder “T stiff connection
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Figure C.10 Comparison for Flexible and Stiff Connection for Tx62

05 1 Parameter Conditions
Tx70 flexible connection
distributed bracing
04 1 | span(eoty \
beam spacing (7.7 ft)
# of beams (4)
03 - Ovethang Width
0.2 -
Beam
Rotation
0.1 - p
Fasoia Girder stiff connection
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0 0.5 1 15 2 2.5 3 3.5 4 4.5
Overhang Width (ft)

Figure C.11 Comparison for Flexible and Stiff Connection for Tx70
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Appendix D: Design Examples

The purpose of this appendix is to provide design examples based on the procedure
proposed in the Chapter 6 of this report. The examples are intended to illustrate the overhang
design method. Examples 1 and 2 demonstrate the overhang design for flexible connections,
while Example 3 demonstrates the overhang design for stiff connection. Example 1 shows the
overhang design for a concrete girder system of the AASHTO Type IV beam that is similar to
the Airport Concrete Bridge and Example 2 shows the overhang design for a concrete girder
system of AASHTO Type B Beam that is similar to Hutto Concrete Bridge.

Example 1. Find if the minimum required bracing is sufficient for a concrete girder
system consisting of AASHTO Type IV beams of an overhang width of 3 ft. The connection
between the bracing bars and the R-bars consist of the flexible connection.

Beam Type: Beam Type IV

Line Unit Weight of Beam: 821 plf

Width of Top Flange of Beam: 20 in.

L, Span Length: 120 ft

Sps, Beam Spacing: 7.33 ft

# of Beams: 7

Wprq, Width of Bridge: (# of Beams — 1)* s, =43.98 ft

Connection Type of Top Bracing: Flexible Connection

ng, # of Top Braces: 5 (minimum required) from TxDOT standard drawing

Nya, # of Wood Blocking: 5 (minimum required)

dp,, Bracing Moment Arm: 46 in.

Wop, Overhang Width: 3 ft (from center of beam to edge of overhang)

ts, Thickness of Slab: 8 in.

Thickness of Slab Haunch: 10 in.

Bearing Width: 22 in.

Step 1: Calculate Effective Eccentric Force and Its Eccentricity
F,,p, Half of Work Bridge Weight: = 23.5/1000/12*wy,.4/2
= 23.5/1000%43.98/2 = 0.517 kip
F,;, Weight of Net Overhang: = w.t;(w,, — Liz)L
=0.15*8/12*(36-10)/12*120 = 26 kips
F,4, Half of Finishing Equipment Weight: = 5.7+ F,,,;,
=5.7+0.517 = 6.22 kips
Fyr, Weight of workers: = 1.25 kips
Fr,,, Weight of Overhang Formwork : = g, (2 X 12 + wyp — Lig)L
=0.01*(2*12+36-10)/12*120 = 5 kips
L,y Eccentricity of net overhang weight: = L;; + (Wyp, — Lig)/2
=10+(36-10)/2 = 23 in.
L¢q Eccentricity of half of finishing equipment weight: = w,,
=36 in.
L« Eccentricity of weight of workers: =w,;, + 1 X 12
=36+1*12 =48 in.
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L¢,, Eccentricity of weight of overhang formwork: = L;g + (2 X 12 + wyp, — Lig) /2
=10+(2*¥12+36-10)/2 = 35 in.
F = Fop + Fsq + Fyi + Fpyy = (264+6.22+1.25+5) = 38.5 kips

e = Lonlon®Fsalsat Pwiwit Frwliv _ (647346 20#36+1.25%48+5%35)/ (26+6.22+1.25+5)

FontFsq+Fwi+Frw

=27.51n.

Step 2: Calculate Quarter-Point Lift-off Force
Wym, Weight of Beam = (821 plf*L) = (821/1000)*(120) = 98.52 kips
Wy, Weight of Slab Haunch = (w.2L;4(ts + 2)L
=0.15*(2*10/12)(10/12)*(120) = 25 kips
W;4, Half of Weight of Interior Deck = w,tsL(sps — 2L;q)/2
=0.15%(8/12)(120)(7.33-2*10/12)/2 = 33.98 kips
Wo=Wym+Wgp= 98.52+25 =123.52 kips
Total Capacity of Top Bracing Bars: = (# of Top Braces)* Pg.x = 5*1.2 = 6 kips
L;4, Half of Top Flange Width = 10 in.
w,,, Bearing Width = 22 in.
dpr, Bracing Moment Arm = 46 in.
FopL, Quarter-Point Lift-off Force = 4WidLid+4Pm::C_il; ;W” Wo+Wia)

= (4*33.98%10+4*6*46+22%(123.52+33.98)/(4*27.5-22) = 67.4 kips
Check F(=38.5 kips) < F,p,(=67.4 kips), OK!

Step 3: Calculate Beam Rotations
k,, total vertical stiffness of bearing per width =2%44.9 (M?T/m')= 89.8 (kli{ m')
12 ' '
0, = P (Fe — WigLiq — Pmaxdbr)(180/n)
bWh
= 12/(89.8%22%)*(38.5%27.5-33.98*10-6%46)*(180/r) = 0.32 degree < 0.5, OK!

_ i (F+W0+Wid)3
2 9kp ((_25+Wb)F+Wb(WO+Wid)+2LidWid+2dberax)2 (180/7-[) (degree)
— 8/(9%89.8)*(38.5+123.52+33.98)°/((-2*27.5+22)*38.5+22*(123.52+33.98)
+2%10%33.9812*46*6)>*(180/m) = 0.36 degree < 0.5, OK!

Step 4: Summarize Final Design
Use 5 top bracing bars in flexible connection for overhang of 3 ft.

Example 2: Find if the minimum required bracing is sufficient for a concrete girder
system of AASHTO Type B beams of a overhang width of 3ft. The top bracing bars are fastened
to the R-bars with flexible connections.

Beam Type: Beam Type B

Line Unit Weight of Beam: 375 plf

Width of Top Flange of Beam: 12 in.

L, Span Length: 60 ft

Sps, Beam Spacing: 6.88 ft

# of Beams: 9
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Wpra, Width of Bridge: (# of Beams — 1)* s, = 55.04 ft

Connection Type of Top Bracing: Flexible Connection

ng, # of Top Braces: 5 (minimum required) from TxDOT standard drawing
Nya, # of Wood Blocking: 5 (minimum required)

dp,, Bracing Moment Arm: 28 in.

Wop, Overhang Width: 3 ft (from center of beam to edge of overhang)

ts, Thickness of Slab: 8 in.

Thickness of Slab Haunch: 10 in.

Bearing Width: 14 in.

Step 1: Calculate Effective Eccentric Force and Its Eccentricity
F,,p, Half of Work Bridge Weight: = 23.5/1000*wy,,.4/2
= 23.5/1000%55.04/2 = 0.647 kip
F,;, Weight of Net Overhang: = w.t;(w,, — Liz)L
=0.15*8/12*(36-6)/12*60 = 15 kips
F,4, Half of Finishing Equipment Weight: = 5.7+ F,,,
= 5.74+0.647 = 6.35 kips
Fr, Weight of workers: = 1.25 kips
Fr,,, Weight of Overhang Formwork: = w,, (2 X 12 + w, — Lig)L
=0.01*(2*12+36-6)/12*60 = 2.7 kips
L,y Eccentricity of net overhang weight: = L;; + (Wop, — Lig)/2
= 6+(36-6)/2 =21 in.
L¢q Eccentricity of half of finishing equipment weight: = w,,
=36 in.
L« Eccentricity of weight of workers: =w,;, + 1 X 12
=36+1*12 =48 in.
L¢,, Eccentricity of weight of overhang formwork: = L;g + (2 X 12 + wy, — Lig) /2
= 6+(2*%12+36-6)/2 = 33 in.
F = Fyop, + Fyq + Fyy + Fp, = (15+6.35+1.25+2.7) = 25.3 kips
__ FonlontFsqLsa+FwikLlwk+FrwLlfw
€= Fon+Fsa+Fywk+Ffw

= (15*21+6.35%36+1.25%48+2.7*33)/ (15+6.35+1.25+2.7) = 27.38 in.

3

Step 2: Calculate Quarter-Point Lift-off Force
Wym, Weight of Beam = (375 plf*L) = (375/1000)*(60) = 22.5 kips
Wy, Weight of Slab Haunch = (w.2L;4(ts + 2)L
=0.15*(2*6/12)(10/12)*(60) = 7.5 kips
W;q, Half of Weight of Interior Deck = w t;L(sps — 2L;q)/2
=0.15*(8/12)(60)(6.88-2*%6/12)/2 = 17.64 kips
Wo=WymtWep=22.5+7.5 = 30 kips
Total Capacity of Top Bracing Bars: = (# of Top Braces)* Pa.x = 5*1.2 = 6 kips
L;q4, Half of Top Flange Width = 6 in.
wy, Bearing Width = 14 in.
dp,, Bracing Moment Arm = 28 in.

e AW g Lig+4P maxdpr+wp (Wo+W;
Fgpy, Quarter-Point Lift-off Force = idLig+4Pmaxdpr +Wp (Wo+Wid)

4e—wp
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= (4*17.64*6+4*6*28+14%(30+17.64))/(4*27.38-14) = 18.45 kips
Check F(=25.3 kips) > Fpp.(=18.45 kips), NG!
Increase the number of top bracing bars by trial and error

Step 3: Recalculate Quarter-Point Lift-off Force
Try 14 for the number of top bracing bars
Total Capacity of Top Bracing Bars: = (# of Top Braces)* P,y = 14%1.2 = 16.8 kips

e AW g Lig+4P maxdpr+wp (Wo+W;
Fypy, Quarter-Point Lift-off Force = ldoid m:X br Wy (Wo+ Wig)
e—wp

= (4*17.64*6+4*16.8%28+14*(30+17.64))/(4*27.38-14) = 31.1 kips
Check F(=25.3 kips) < Fypp.(=31.1 kips), OK!

Step 4: Calculate Beam Rotations

kp, total vertical stiffness of bearing per width = 2*34.7 = 69.4 (%)
91: 123 (Fe—W iJ‘id _Pmax dbr )X(ISO/”)
bW

= 12/(69.4%14°)*%(25.3%27.38-17.64*6-16.8*28)*(180/1) = 0.42 degree < 0.5, OK!

8 (F+Wo+Wig)®
-8 1
2 9kp ((—2€+Wb)F+Wb(Wo+Wid)+2LidWid+2dberax)2 (180/m) (degree)
= 8/(9*69.4)*(25.3+3O+17.64)3/((-2*27.38+14)*25.3+14*(30+17.64)
+2*6*l7.64+2*28*16.8)2*(180/75) = 0.46 degree < 0.5, OK!

Step 5: Summarize Final Design
Use 14 top bracing bars in flexible connection for overhang of 3 ft.
Keep 5 wood blockings.

Example 3: Find the minimum required bracing for a concrete girder system of
AASHTO Type B beams with a 3ft overhang width. The top bracing bars are fastened to the R-
bars with the stiff connection.

Beam Type: Beam Type B

Line Unit Weight of Beam: 375 plf

Width of Top Flange of Beam: 12 in.

Width of Bottom Flange of Beam: 18 in.

L, Span Length: 60 ft

Sps, Beam Spacing: 6.88 ft

# of Beams: 9

Wpra, Width of Bridge: (# of Beams — 1)* s, = 55.04 ft

Connection Type of Top Bracing: Stiff Connection

ng, # of Top Braces: 5 from TxDOT standard drawing

Nya, # of Wood Blocking: 5 from TxDOT standard drawing

Length of Wood Blocking: (Beam Spacing - Width of Bottom Flange of Beam)

=(6.88-18/12) =5.38 ft

dp,, Bracing Moment Arm: 28 in.

Wop, Overhang Width,: 3 ft (from center of beam to edge of overhang)
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ts, Thickness of Slab: 8 in.
Thickness of Slab Haunch: 10 in.
Bearing Width: 14 in.

Step 1. Calculate Effective Eccentric Force and Its Eccentricity
F.,p, Half of Work Bridge Weight: = 23.5/1000*wy,.4/2
= 23.5/1000*55.04/2 = 0.647 kip
F,p, Weight of Net Overhang: = w.t;(w,p, — Lig)L
=0.15*8/12*(36-6)/12*60 = 15 kips
Fs4, Half of Finishing Equipment Weight: = 5.7+ F,;,
= 5.740.647 = 6.35 kips
F,k, Weight of workers: = 1.25 kips
Ff,,, Weight of Overhang Formwork: = wg,, (2 X 12 + wy, — Lig)L
=0.01*(2*12+36-6)/12*60 = 2.7 kips
L,p Eccentricity of net overhang weight: = L;; + (W, — Lig) /2
=6+(36-6)/2 =21 in.
L¢4 Eccentricity of half of finishing equipment weight: = w,,
=36 1n.
L« Eccentricity of weight of workers: =w,, +1 X 12
=36+1*12 =48 in.
L¢,, Eccentricity of weight of overhang formwork: = L;q + (2 X 12 + wyp, — Lig) /2
= 6+(2*12436-6)/2 = 33 in.
F = Fop + Fsq + Fyy + Fpy, = (15+6.35+1.25+2.7) = 25.3 kips
_ FOhLOh+FSdLSd+FWkLWk+FfWLfW
€= FontFsq+Fwi+Frw

= (15%21+6.35*36+1.25%48+2.7*33)/ (15+6.35+1.25+2.7) = 27.38 in.

2

Step 2: Check for Rupture of R-bar
W;q, Half of Weight of Interior Deck = w t;L(sps — 2L;gq)/2
=0.15*(8/12)(60)(6.88-2*6/12)/2 = 17.64 kips
L;4, Half of Top Flange Width = 6 in.
w,,, Bearing Width = 14 in.
ky, total vertical stiffness of bearing per width = 2%34.7 = 69.4 (%)

kg, Total Top Bracing Stiftness = (# of Top Bracing Bars)*(39 kip/in.) = 5*39
=195 kip/in.
kya, Total Wood Blocking Stiffness = (# of Wood Blockings)*(11025/(5.38*12) kip/in.)
= 5%(11025/(5.38*12)) = 853.86 kip/in.
Total Capacity of Top Bracing Bars: = (# of Top Braces)* Pa.x = 5*3 = 15 kips
dpr, Bracing Moment Arm = 28 in.

05,v, Beam Rotation at Rupture of R-bar = % P.x(180/1)

= (195+853.86)/(195%*853.86*28)*15*180/ = 0.193 degree

: . _ Fe—Wiq4L;
0 , Beam Rotation for Given Overhang Width: = ( 4 ld)z
kbwb+k5tkwddbr
12 kSt'+de

— (25.3%27.38-17.64%6)/(69.4%143/12+195*853.86+28%/(195+853.86))*(180/x)

(180/m)
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=0.239 degree
Check 0.239 degree > 0p,(=0.193) degree, NG!
Increase the number of top bracing bars by trial and error

Step 3: Recheck for Rupture of R-bar by Increased Number of Top Bracing Bars
Try 7 for the number of top bracing bars (increase 5 to 7).

ks, Total Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.) = 7*39
=273 kip/in.

k,a, Total Wood Blocking Stiffness = 853.86 kip/in. (same as in the previous step)

Total Capacity of Top Bracing Bars: = (# of Top Braces)* Po.x = 7*3 = 21 kips

0.y, Beam Rotation at Rupture of R-bar = esttlowa Ppax(180/1)
kstkwadpr

= (273+853.86)/(273*853.86*28)*21*180/r = 0.208 degree

6, Beam Rotation for Given Overhang Width: = kb("}:: _:V ZI‘:L‘:;Z (180/m)
( 12b+ kstkaf;T)

= (25.3*27.38-17.64*6)/(69.4*14°/12+273*853.86*28%/(273+853.86))*(180/n)
=0.189 degree
Check 0.189 degree < 0p,+(=0.208) degree, OK!

Step 4: Summarize Final Design
Use 7 top bracing bars in stiff connection for overhang of 3 ft.
Keep 5 wood blockings.
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Appendix E: Stability of Webs

This section contains the additions graphs of effects of the stiffener spacing on the
structural behavior of the web of the girder subjected to the overhang loads (Figures E.1-E.5).
The FEA girder models for the graphs in this section had no imperfection in the web. The
overhang bracket was positioned at midheight of the web, and the stiffener spacing considered
included 10 ft. and 30 ft.

100% girder type D56
90% overhang width (3 ft)
reaction height (middepth)
80% Imperfection Limit (0.35in.)
~ 70%
S ——
= 60%
e}
8 50% 56.3"
Q
g 4w | |
= 30% stiffener spacing (30 ft) e
20% stiffener spacing (10 ft)
10%
0% 1 1 1 1 )
0% 20% 40% 60% 80% 100%

(Lateral Deformaton )/(0.35 in.) (%)

Figure E.1 Effect of Stiffener Spacing for Type D56 with Overhang Width of 3 ft.
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100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Web Depth (%)

girder type D38
overhang width (3 ft)
reaction height (middepth)
Imperfection Limit (0.25in.)
1375"
stiffener spacing (30 ft) D38
stiffener spacing (10 ft)
0% 20% 40% 60% 80% 100%

(Lateral Deformaton )/(0.25 in.) (%)

Figure E.2 Effect of Stiffener Spacing for Type D38 with Overhang Width of 3 fi.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Web Depth (%)

girder type D75

overhang width (4 ft)
reaction height (middepth)
Imperfection Limit (0.5 in.)

Won ( 4 ft)

stiffener spacing (30 ft)

stiffener spacing (10 ft)

1 1 1 1 J

0% 20% 40% 60% 80% 100%
(Lateral Deformaton )/(0.5 in.) (%)

Figure E.3 Effect of Stiffener Spacing for Type D75 with Overhang Width of 4 ft.
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100% girder type D56
90% overhang width (4 ft)
reaction height (middepth)
80% Imperfection Limit (0.35 in.)
o 70% waldt)
=  60%
e}
§ 50% 41
8 40% ‘m
20% stiffener spacing (30 ft)
10% stiffener spacing (10 ft)
O% 1 1 1 1 J
0% 20% 40% 60% 80% 100%

(Lateral Deformaton )/(0.35 in.) (%)

Figure E.4 Effect of Stiffener Spacing for Type D56 with Overhang Width of 4 fi.

100% girder type D38
90% overhang width (4 ft)
reaction height (middepth)
80% Imperfection Limit (0.25 in.)
;\3 70% Wion ( 4 ft) |
= 60%
e}
§ 50% <\l ,
S 40% i "w
= 30% -
20% stiffener spacing (30 ft)
10% stiffener spacing (10 ft)
O% 1 1 1 1 J
0% 20% 40% 60% 80% 100%

(Lateral Deformaton )/(0.25 in.) (%)

Figure E.5 Effect of Stiffener Spacing for Type D
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