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Chapter 1.  Introduction 

1.1 Overview of ITS Data and Applications 
Intelligent transportation systems (ITS) infrastructure automatically records vast amounts 

of traffic data, which is highly useful for a variety of applications if properly archived. Induction 
loops are still the most common detector used in urban areas, although newer technologies (such 
as video or infrared detection) continue to improve and have been successfully deployed. 
Although different technologies report different data, common implementations measure 
quantities such as traffic volumes, speeds, and occupancy, and may attempt to classify vehicles 
by weight or length. With automated devices, this data is typically collected continuously and at 
a relatively fine resolution, barring communication or technical failures. 

It is not difficult to find applications for a large, well-maintained data set of this sort, 
especially in regions where spatial coverage is high. A common use is in operational studies, 
such as before-and-after evaluation of ramp meter deployment, or to determine an optimal 
schedule for reversible lanes. More recently, it has been suggested that transportation planners 
can use ITS data sets to assist in generating annual average daily traffic (AADT) counts for 
reporting to the Federal Highway Administration (FHWA). Other applications abound: volume 
counts are highly useful for calibrating planning models used by metropolitan planning 
organizations; for evaluating the effectiveness of work zone channelization in reducing driving 
speeds; and for measuring the impact of tolled or managed lanes at both the corridor-level and 
system-wide scales, to name just three. Such data can even be used to develop, test, and evaluate 
theoretical route choice and traffic flow models. 

At present, ITS infrastructure is typically operated by a traffic management center 
(TMC), which maintains control and communication links with detectors. If the data is to be 
stored, the TMC then assumes responsibility for archiving the data and performing any quality 
control measures specified by agency policy. Although some TMCs then grant other users access 
to the data, internally or to the general public, in many cases it is difficult for others to obtain this 
data. This is usually not due to technical factors; rather, concerns about issues such as data 
reliability, responsibility for maintaining and providing support to users, and control over uses 
for the data pose larger obstacles to implementation of data sharing. In other cases, data sharing 
has simply not been identified as an agency priority. 

This research described in this report addresses exactly these issues, providing guidance 
on how to organize and store data so it is useful to a broad spectrum of users, developing and 
testing data reliability and imputation algorithms to answer questions of quality and missing data, 
and describing some future trends in detector technologies to ensure that the system is useful 
well into the future. The remainder of this chapter describes data sharing applications in greater 
detail, particularly those relevant to planners employed by a state department of transportation 
(DOT); elucidates on implementation challenges, classifying them as “organizational,” 
“methodological,” or “technical;” provides brief discussion of a modular data archiving 
framework which can address these issues; and presents the organizational structure of this 
report. 



 

2 

1.2 Opportunities for Sharing Data 
As briefly mentioned, many opportunities exist for using ITS data in new ways. In 

particular, a key motivation for this project was the possible use of ITS volume data to 
supplement automatic traffic recorders (ATRs) and tube counts collected by DOT planners to 
generate AADT estimates. Because all detector technologies in current use record traffic 
volumes more or less continuously throughout the entire year, the potential exists to obtain 
AADT counts without resorting to “factoring” or other estimation techniques, and at a greater 
number of locations, increasing both accuracy and spatial coverage. 

Four prime advantages of using ITS data for this purpose are increased coverage, more 
accurate statistical inferences, diminished safety risks to agency personnel collecting data, and 
the elimination of inefficient “double counting” of traffic volumes by personnel in different 
agency departments. 

The continuous recording of traffic data by ITS infrastructure offers much greater 
temporal coverage than short-term tube counts can provide. While some DOT planners also 
maintain permanent ATRs, these are typically fewer in number compared to the detectors 
operated by a local TMC. Thus, making use of both can lead to a great increase in spatial 
coverage as well. Improvements in both spatial and temporal coverage lead to greater 
redundancy and a larger source of data to draw from. 

This in turns leads to more accurate statistical predictions. When only a short-term 
sample is available, historical scaling factors must be applied based on the day and month of 
each sample. This method is vulnerable to outliers in the observed data and other variations in 
observed traffic counts. Even when scaling factors are not needed, high spatial coverage allows 
interpolation in case of missing data, and even estimation of volumes in locations where no 
detector is present. Although current FHWA guidelines do not permit the use of interpolated data 
in lieu of actual measurements, several accurate statistical methods have been developed to 
accomplish this, suggesting that this policy may be revisited in the future. 

Further, manually placing pneumatic tube counters can be dangerous, and expose agency 
personnel to unnecessary risk, as when placing tubes across a busy freeway ramp. The use of ITS 
detectors obviates this risk, as the traffic stream is only interrupted during installation and 
maintenance activities, which are typically accompanied by planned closures and changes in 
channelization. 

Finally, it is not uncommon to see detectors or tube counts used for AADT counts in the 
vicinity of TMC sensors that collect similar data. The use of a common data repository 
eliminates the need for this “double counting,” which is an inefficient use of agency resources 
and effort. 

This data can also be applied by planners using traffic assignment models, which require 
calibrated volume-delay functions (VDFs). Rather than assuming a standard function to be used 
throughout the entire network, ITS data allows more accurate regional (and even corridor-level) 
specification of these functions, in principle allowing better calibration of planning models to 
observed counts and traveler behavior. 

1.3 Organizational, Methodological, and Technical Challenges 
Broadly speaking, challenges in implementing a central data archive can be classified as 

organizational, methodological, and technical. Organizational issues are related to how data 
should be stored, and how responsibilities should be assigned. These include determining the 
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workgroups or agencies that have primary responsibility for collecting, operating, and 
maintaining the archive; determining which users are authorized to access the archive; 
developing an interface allowing authorized users to retrieve data in a useful form; determining 
the level of aggregation (if any) performed on the data prior to storage; and documenting the 
protocols and formats used. A PostgreSQL database developed in this project provides a flexible 
basis for storing data, and generating different types of reports for users with differing needs. 
Several existing data archives were examined as case studies, and are discussed in Chapter 2 
with an emphasis on organizational issues. 

Methodological issues involve the use of statistics or other quantitative procedures to 
ensure the data is useful and generates useful models. The most significant issue is related to data 
quality—if incorrect data cannot be marked as such, the quality of the archive will suffer. 
Although it is not possible to correctly assess every single observation as either correct or 
incorrect, observation of general patterns and internal consistency can be used to flag data that 
are highly implausible or physically impossible. A second key issue involves estimation of 
missing or suspicious data, and developing statistical procedures that allow accurate imputation 
based on contemporaneous observations. Finally, new methods may be needed for other 
applications, such as calibration of VDFs. Novel algorithms are created and tested for these 
purposes, and also compared with existing methods. 

At the same time, there are a number of technical challenges that must be addressed. In 
the short-term, communication protocols must be established to connect TMCs to the central 
archive. New communications infrastructure (such as fiber optic cable or wireless transmitters) 
may be required, depending on detector locations and existing communication links. In the long-
term, advances in detector technology suggest that the archive should be able to accept data from 
multiple types of detectors. To this end, a common data format is developed in this project, 
allowing the archive to work with any detector whose data can be converted into this format. 

These three types of challenges form the framework for this research project, as described 
in the following chapters. 

1.4 Prototype Data Archive  
This project included development of a prototype data archiving system, which was 

implemented on a small scale, receiving data from three detectors. Although larger-scale 
implementation will likely require structural changes, this prototype still demonstrates the key 
features of the proposed approach, shown in Figure 1.1. 

Detector data is collected at participating TMCs, then transmitted at regular intervals to 
the central archive, followed by a preprocessing procedure: the data is converted into the 
common format, its reliability is assessed, and (optionally) a corrected estimate is made if the 
initial reading is missing or suspect. In all cases when an estimate is made, both the original and 
corrected readings are stored and marked as such. These assessments require knowledge of the 
network structure, which are coded when the archive is installed, and historical data values 
stored in the archive at an earlier time. 

Following preprocessing, the data record is stored in the database. A variety of users can 
then access this data by generating reports, which are customized for individual applications. 
Supporting subroutines can be applied at this time, such as imputing data even at locations where 
no detector is present. These techniques are described more fully in Chapter 4. 
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Figure 1.1: Prototype system schematic. 

This basic structure can readily be adapted to larger-scale implementation involving 
multiple TMCs and detector types. In such cases, each TMC transmits its data directly to the 
central archive, maintaining a modular structure in which TMCs can be freely added or removed 
from the archive. 

1.5 Outline 
The remainder of this report is organized as follows: Chapter 2 describes past experience 

with data archives by other agencies, along with guidelines that have been developed for their 
implementation and a general overview of ITS data collection. Chapter 3 describes the prototype 
system in greater detail, along with a specific action plan. Chapter 4 focuses on the issues of data 
reliability and error correction, and presents a comparison of existing and newly-developed 
algorithms for these tasks. Chapter 5 describes field data tests conducted using the prototype 
system, and Chapter 6 summarizes the key findings. 

Additional information can be found in six appendices: Appendix A provides information 
on current and emerging detector technologies, and Appendix B contains a survey form 
distributed to Texas TMCs regarding current practices in data sharing. Appendix C contains an 
analysis of variability in AADT count data collected in Texas. Appendix D demonstrates a 
potential application of this data, to calibrate a VDF used in traffic assignment. Appendix E 
describes the effect of reducing the amount of data stored, and using statistical techniques to 
estimate the omitted data. Although the results were promising, storage space does not appear to 
be a limiting factor in archive design, and thus this technique was not incorporated into the 
prototype system. Finally, Appendix F includes slides from a workshop that can be used to train 
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agency personnel in the methods developed in this report, and to communicate the most 
important research findings.  
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Chapter 2.  ITS Data and Case Studies in Data Archiving 

2.1 Introduction 
This project’s main goal is to determine how to use existing operational data for planning 

purposes. To this end, there are three major areas in which research needs to be directed: 
methodology, technology, and agency organization. But first, it is important to examine existing 
systems, to identify difficulties and key issues. For instance, using data in this way will require a 
central archive of sensor data, and there are many ways to implement such a system. Previous 
experience by other agencies can give crucial guidance in developing such a system for Texas. 

Fundamentally, the issue of using ITS data for planning is one of data integration and 
sharing. Done effectively, this can greatly streamline the use of available resources. For instance, 
tube counts collected for planning purposes may duplicate loop detector data already being 
collected by TMCs, wasting resources and unnecessarily exposing technicians to danger when 
laying tubes on high-volume roads. 

However, connecting data from different sources is often complicated. Hall (2003) 
highlighted several key components of successful data partnerships/integration, as seen in nine 
different states: 

• Clarifying roles and responsibilities of partners 

• Agreeing on data standards, and managing potentially conflicting data definitions 
and currencies 

• Resolving equipment and connectivity issues and taking advantage of new 
technology 

• Integrating data from different data sets 

• Utilizing data with varying spatial accuracies and resolutions 

• Archiving and managing large data sets 

• Securing resources and funding, and sharing partnership costs 

• Quantifying and qualifying the value, utility, and benefit of data partnering 
investments 

• Addressing privacy and security concerns 

• Obtaining management leadership and support 

• Overcoming cultural and institutional barriers 
 
These points outline the major issues involved in transportation data sharing, and should 

be kept in mind throughout the rest of this document. The remainder of this chapter proceeds as 
follows: first, the nature of ITS and planning data is discussed, with some discussion of the types 
of data collected and the differing needs associated with each use. Data quality issues are also 
addressed in this section. Next, a series of case studies is presented, each detailing a data 
archiving system, including its developers, users, and contents. Responses from a questionnaire 
distributed to TMCs in Texas are also included. Finally, the key barriers identified from the 
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implementation of these and other such systems are discussed, along with recommended 
strategies to overcome these obstacles.  

2.2 ITS and Planning Data Collection 
As ITS encompasses a broad range of technologies involved in transportation, there is a 

wide variety of data that can be collected through these means. Turner (2001) and Margiotta 
(2002) provide some description of these data and the following discussion summarizes these 
sources, as does Table 2.1.  

Perhaps the most ubiquitous ITS data collection devices are loop detectors, which 
primarily measure volume and occupancy; certain loop configurations can measure speed 
directly as well. Other parameters of interest can be estimated from these measurements. Vehicle 
classification also can be attempted using such systems. These devices are located in the 
roadway itself, one per lane, and are commonly spaced ¼ mile – 1 mile apart in urban areas. This 
data is recorded continuously, and reported back to a central system regularly, typically at 20- to 
60-second intervals.  

Typical operational use of this data is made to automatically adjust ramp meter timing in 
real-time (Taylor and Meldrum, 2000), or to detect incidents or locations of heavy congestion. 
This may be made available to the public online, to the media, to transit agencies, to emergency 
dispatchers, or to other users who value up-to-date information on traffic conditions. Some 
agencies also archive this data to generate annual average daily traffic (AADT) counts, saturation 
flows, peak hour factors, and so on.  

Similar data can be collected by video surveillance devices, although these are not as 
widespread as loop detectors. Electronic toll systems provide another means to measure dynamic 
traffic flows at particular points in the traffic network, and are becoming increasingly common.  

Data collected by ITS devices are usually collected continuously, and at various points in 
the network; that is, they have broad spatial and temporal range. In this way, a large amount of 
data is collected. If this information is to be used for anything other than real-time use, it is vital 
to store it in an easily accessible form for later use. However, ITS measurements, with their wide 
spatiotemporal coverage, are of a different nature than typical planning volume measurements, 
which are collected at specific points in space and time. For instance, tube counts are usually 
performed only at select locations on particular dates. 

Table 2.2 lists typical supply- and demand-side data used by planners. As this table 
indicates, the data needs of transportation planners go far beyond the volume and occupancy 
measurements that are routinely collected by loop detectors. Still, ITS data can be used to 
estimate some of this additional information as well. For instance, Ashok and Ben-Akiva (1993) 
describe a procedure to estimate dynamic origin-destination matrices. Electronic toll collection 
data has also been used towards this end. 
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Table 2.1: ITS Data Types (adapted from Turner, 2001, Table 3) 

ITS data 
source 

Primary data 
elements 

Typical collection 
ITS-generated data 
equipment 

Spatial 
coverage 

Temporal 
coverage Real-time uses 

Freeway and Toll Collection 

Freeway 
traffic flow 
surveillance 
data 

❚ volume 
❚ speed 
❚ occupancy 

❚ loop detectors 
❚ video imaging 
❚ acoustic 
❚ radar 
❚ microwave 

usually 
spaced at 
≤1 mile;  
by lane 

sensors report 
at 20- 
to 60-second 
intervals 

❚ ramp meter timing 
❚ incident detection 
❚ congestion/queue  
   identification 

 ❚vehicle classification 
❚ vehicle weight 

❚ loop detectors 
❚ weigh-in-motion 
❚ video imaging 
❚ acoustic 

usually 50-
100 per 
state; by 
lane 

usually hourly pre-screening for 
weight enforcement 

Ramp meter 
and 
traffic signal 
preemptions 

❚ time of preemption 
❚ location 

field controllers 
at traffic 
control 
devices only 

usually  
full-time 

Priority to transit, 
HOV, and EMS 
vehicles 

Ramp meter 
and 
traffic signal 
cycle 
lengths 

❚ begin time 
❚ end time 
❚ location 
❚ cycle length 

field controllers 
at traffic 
control 
devices only 

usually  
full-time 

Adapt traffic control 
response to actual 
traffic conditions 

Visual and 
video 
surveillance 
data 

❚ time 
❚ location 
❚ queue length 
❚ vehicle trajectories 
❚vehicle classification 
❚ vehicle occupancy 

❚ cctv 
❚ aerial videos 
❚ image processing  
   Technology 

selected 
locations 

usually  
full-time 

❚ coordinate traffic 
   control response 
❚ congestion/queue 
   identification 
❚ incident verification 

Vehicle 
counts from 
electronic toll 
collection 

❚ time 
❚ location 
❚ vehicle counts 

electronic toll 
collections equipment 

at 
instrumented 
toll lanes 

usually  
full-time 

automatic toll 
collection 

TMC-
generated 

❚ link congestion  
   indices TMC software selected 

roadway 
usually  
full-time ❚ incident detection 

Traffic flow 
metrics ❚ stops/delay estimates  segments  ❚ traveler information 

❚ control strategies 
Arterial Street 

Arterial 
traffic flow 
surveillance 
data 

❚ volume 
❚ speed 
❚ occupancy 

❚ loop detectors 
❚ video imaging 
❚ acoustic 
❚ radar 
❚ microwave 

usually 
midblock at 
selected 
locations 
only 
(“system 
detectors”) 

Sensors report 
at 
20- to 60-
second 
Intervals 

❚ progression setting 
❚ congestion/queue 
   identification 

Traffic signal 
phasing and 
offsets 

❚ begin time 
❚ end time 
❚ location 
❚ up/downstream offsets 

field controllers 
at traffic 
control 
devices only 

usually  
full-time 

adapt traffic control 
response to actual 
traffic conditions 
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Table 2.2:  Various Types of Planning Data (adapted from Jack Faucett Associates, 1997) 
Supply Demand 
System Data 
❚Mileage and lanes  
❚ Capacity 
❚ Functional road class 
❚ Nodes and segments 
❚ Land use data for system expansion 
❚ Intraurban truck routes 
Service Data 
❚ Access  
❚ Interurban access  
❚ Intermodal access  
❚ Data on service providers 
❚ Fare or fee structure data  
❚ Drayage services 
Facilities Data 
❚ Inventory of facilities 
❚ Delivery and pickup  
Infrastructure Condition Data 
❚ Pavement data by highway route  
❚ Any data pertinent to condition of routes, 

bridge, ramps, etc. that affect the efficiency of interurban 
truck access to the urban area or truck pick-up and delivery 
activities  

❚ Age of various road classes 

Economic Activity Data 
❚ Employment data by SIC code and region 
❚ Industrial operations 
❚ Wholesalers and distributors  
❚ Commodity data by SIC and geographic detail 
❚ Export/import data by point of exit/entry  
Demographic Data 
❚ Income data by household and region 
❚ Vehicle ownership data by household and 

region 
❚ Population and labor force data  
❚ Household characteristics  
Land Use Data 
❚ Acreage data 
❚ Housing data  
❚ Employment data 
❚ Access data  
❚ Zoning data  
Travel Data 
❚ Trip generation data  
❚ Trip distribution data  
❚ Travel cost data  
❚ Special generator data  
❚ Traffic volume data  
❚ VMT data 
Travel Behavior Data 
❚ Mode choice data  
❚ Route choice data  
❚ User preference data  
❚ Time-of-day for pickup and deliveries 
❚ Carriers behavior data 
❚ Intermodal agreements 

 
Often, this data duplicates what is collected by operations personnel. One key reason for 

such duplication is the lack of an efficient means of sharing data. Accuracy may be another 
reason: if loop detectors malfunction, they may continue to report data and, in the absence of 
error-checking procedures, lead to skewed estimates. This may be more critical in the planning 
domain than in operations domain; for instance, incident detection or congestion monitoring 
requires only coarse estimates of vehicle speeds and occupancies. On the other hand, data 
requirements for operations such as real-time adaptive ramp metering may be more rigorous. 

Turner (2001) suggests that data quality be defined as “the fitness of data for all purposes 
that require it,” implying that “measuring data quality requires an understanding of all intended 
purposes for that data” (ibid.). In the context of operations data, the most common measure of 
data quality is completeness, or the number of samples available for aggregation. For instance, in 
Figure 2.1, the boldfaced 30’s indicate that for each of the 15-minute aggregated samples, all 
thirty 30-second individual measurements are available. 
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Data for segment SEGK715001 for 07/15/2001 
Number of Lanes: 4 
 
# Time  Samp  Speed  Vol  Occ 
00:01:51  30   47  575   6 
00:16:51  30   48  503   5 
00:31:51  30   48  503   5 
00:46:51  30   49  421   4 
01:01:52  30   48  274   5 
01:16:52  30   42  275  14 
... 

Figure 2.1: The Advanced Regional Traffic Interactive Management & Information System 
(ARTIMIS) Reporting of Data Completeness (ARTIMIS archives; Turner, 2001) 

 

 
Figure 2.2: Quality and Completeness of Representative City Databases. (Turner, 2001) 

Other systems, such as that used by the Washington State Department of Transportation, 
flag data as “good,” “bad,” or “suspect” (Ishimaru and Hallenbeck, 1999). These are identified 
through bounds checking (ensuring that observed occupancy, volume, and speed measurements 
meet basic physical feasibility requirements), noticing if measurements do not change (e.g., if a 
loop continually reports the same count, one may assume it is malfunctioning), and so on. Figure 
2.2 displays quality and completeness statistics for several city databases. 

From a planning perspective, data quality has received more attention, partially due to the 
different time scale involved: while many operations data needs are real-time and require very 
recent data, the time needed to perform quality checks is less burdensome for long-term planning 
applications. For instance, the Virginia Department of Transportation uses the following 
classification scheme: 
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Code 0 - Not Reviewed  
Code 1 - Acceptable for Nothing  
Code 2 - Acceptable for Qualified Raw Data Distribution  
Code 3 - Acceptable for Raw Data Distribution  
Code 4 - Acceptable for Use in AADT Calculation  
Code 5 - Acceptable for All TMS Uses 
 
Elsewhere, several European countries (the Netherlands, Switzerland, Germany, France, 

and the United Kingdom) perform automated data checking by comparing measured data to 
historical data for consistency (FHWA, 1997). 

More sophisticated data checking measures might include consistency checking from 
period-to-period, from lane-to-lane, or verification against traffic flow theory (ibid.) These errors 
can arise from a number of sources, including environmental conditions, improper installation or 
calibration, communication failures, inadequate maintenance, and errors inherent in the chosen 
technology (Margiotta, 2002). All contribute to imperfect information, which must be addressed 
if this data is to be acceptable to planners.  

2.3 Case Studies 
The following case studies provide a representative look at several possible data 

archiving systems that have been implemented. Two separate systems are in place in Seattle, one 
operated by the state department of transportation and the other by a transit agency. In contrast to 
the other four studies reviewed here, Detroit’s was designed for planning uses from the 
beginning. The archive used in the Minneapolis-St. Paul area had its genesis in a collaboration 
between the state and a university. The Maricopa County RADS system, in the Phoenix area, is 
the most recent and is still under development. Finally, California’s PeMS system has a far 
broader scope, storing and integrating data collected throughout the entire state. Much of the 
information in this section comes from FHWA (2005).  

A number of other regions also archive data; these include Atlanta, Chicago, New York 
City, Ft. Worth, Houston, Portland, San Antonio, Toronto, and the state of Virginia. These are 
not profiled here, in order to focus on five regions whose archival systems are particularly 
noteworthy. Information on the others can be found in FHWA (1999) and Bertini et al. (2005). 

2.3.1 Seattle  
ITS data from loop detectors and ramp meters in the Seattle metropolitan area is stored in 

an archive maintained by the Washington State Transportation Center (TRAC). When initiated in 
1981, the goal of this archive was to provide ongoing data to evaluate and justify innovative 
traffic management measures such as HOV lanes and ramp metering. This data also is used to 
ensure that the reversible express lane schedules on I-5 and I-90 are optimal. Improvements to 
such technologies are tested using this data. One such example is the introduction of real-time 
fuzzy-logic ramp metering control (Taylor and Meldrum, 2000) 

Seattle freeway loop detectors are polled for occupancy and volume readings at 20-
second intervals, and this data is stored in an Oracle database. Five-minute aggregations of these 
data are stored in a flat-file database. Both of these databases store these values in binary form. A 
program called CDR has been developed to access this database, and allows one to retrieve data 
from selected loops during a given time period (Ishimaru and Hallenbeck, 1999). 
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Common uses for this data are WSDOT operational studies and agency publications 
regarding traffic counts (WSDOT, 2006). FHWA (2005) notes that this archive is also used for 
planning tasks, but is “planning-oriented in terms of how agencies plan for operations as opposed 
to the more traditional capital-improvements planning function.” This archive is also used by 
regional planners, particularly the Puget Sound Regional Council (the local MPO), by 
consultants, and by researchers at institutions such as the University of Washington and The 
University of Texas at Austin. 

Basic checks are performed to see if the data is consistent with fundamental physical 
requirements (such as jam density, or saturation flow). Failing data are flagged as “suspect” or 
“bad,” although no suggestion is made for a more plausible value. Thus, it is the responsibility of 
those using the data to decide how to handle flawed data. 

A second data archive is maintained by King County Metro, a transit agency also 
operating in the Seattle metropolitan area. This archive primarily consists of automated vehicle 
location (AVL) data reported by buses equipped with this technology (Casey et al., 1998; Wall 
and Dailey, 1999; Cathey and Dailey, 2003). 

Some of this information is also revealed to the public using products such as 
BUSVIEW, which allows travelers to see real-time bus location (Figure 2.3). This is useful, for 
instance, to see if a bus is running late. However, others have realized the value of this data for 
estimating historical travel times and for air quality improvement strategies. In general, King 
County Metro is willing to share this data with anyone who requests it. 

 

 
Figure 2.3: Sample BUSVIEW interface. 

2.3.2 Detroit 
The Michigan ITS (MITS) center stores data from loop detectors. An older system of 

loops reports data as 1-hour lane volumes; a newer double-loop system (in the Detroit region 
constituting the majority of system loops) reports volume, occupancy, and speed data at 2-minute 
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intervals. The original intent of this system was to simplify traffic counts, hence the 1-hour 
aggregation performed by the older loops. In contrast to some of the other systems described in 
this section, MITS was primarily constructed with planning aims in mind. Indeed, its primary 
users are Michigan Department of Transportation (MDOT) planners and the Southeast Michigan 
Council of Governments (SEMCOG).  

Data are stored in a flat-file database, and quality control is performed automatically. If a 
loop is disabled (for instance, during maintenance), data is flagged accordingly. Data are also 
checked against historical values for consistency. 

2.3.3 Minneapolis-St. Paul 
The archived data management system (ADMS) operating in the Minneapolis-St. Paul 

region is a collaborative effort between the Minnesota Department of Transportation (MnDOT) 
and the University of Minnesota at Duluth (UM Duluth). Thus, its main users are MnDOT 
operations personnel and UM Duluth researchers. The system has been in operation since 1997 
and has been used, for instance, to defend ramp metering programs to the state legislature and to 
provide data to university researchers. 

Data are collected from loop detectors throughout the metropolitan area, compressed, and 
are loaded onto a UM Duluth FTP server daily. This archive is publicly accessible 
(ftp://tdrl.d.umn.edu/pub/tmcdata/) along with several utilities that can aggregate data and 
provide descriptive statistics; these can be downloaded from 
http://www.d.umn.edu/~tkwon/TDRLSoftware/Download.html (URLs current as of January 
2007). 

This data is stored in a flat file format, and is formatted in a manner similar to what is 
received by the TMC. Automatic quality control checking marks data as “good,” “suspect,” or 
“bad.”  

2.3.4 Phoenix 
Currently under development, the Maricopa County Arizona Regional Archive Data 

Server (Maricopa County RADS) will store traffic volumes, speeds, road closures, incident 
information, and other data. Main users of this system are expected to include Maricopa 
Association of Governments (MAG) planners, Arizona Department of Transportation (ADOT) 
ITS personnel, local traffic engineers, transit agencies, commercial vehicle operators, and 
private-sector information providers.  

As the system is not yet operational, few details can be provided on specific database 
implementations or quality control procedures. However, the Internet is intended to be a key 
distribution point for this data. It also is anticipated that multiple database formats will be used, 
to facilitate use by multiple groups of users.  

2.3.5 California 
In contrast to the systems mentioned above, California’s freeway Performance 

Measurement System (PeMS) involves data obtained from freeway sensors, police dispatch 
systems, and weather information throughout the entire state, rather than just a single 
metropolitan area. PeMS was initiated jointly by the California Department of Transportation 
(Caltrans) and the University of California at Berkeley (UC Berkeley) (Varaiya, 2002). PeMS 
contains three large databases storing incident, weather, and freeway information. Processing and 
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interface layers allow access to this information in a variety of formats. The impetus for this 
system came from a 1997 white paper, and it was operational by 2002.  

Because the system was initiated by operations personnel, most of the use made of this 
system by Caltrans is operational in nature, such as travel time prediction, congestion 
monitoring, and level of service analysis. This data also is used by university researchers, 
planning organizations (such as the San Diego Association of Governments), the public (via the 
Internet), and the media—for instance, the Los Angeles Times used this archive during a transit 
strike to report on its impacts. 

Quality control is performed automatically, and inconsistent data are automatically 
replaced by estimates derived from other detectors in the vicinity. 

 
 

 
Figure 2.4: Schematic of Major PeMS Components (FHWA, 2005) 

2.4 Institutional Barriers 
As seen in the above case studies, although ITS solutions are frequently used for 

operations purposes, they are not typically considered in transportation planning. Institutional 
barriers tend to impede the linkage of operations and planning data. Issues include the 
endorsement of ITS data to peer agencies or the general public, devising a means of 
communication across geographic boundaries and between agencies, and coordination of data 
collection needs.  

Turner (2001) suggests several reasons why data archiving is not as widespread as one 
might expect, given its potential benefits: 

• Operations personnel tend to see their role as “crisis managers,” overlooking the 
longer-term value of the data they use. 

• Operations personnel may feel that others (e.g. planners) are the primary 
beneficiaries of archived data, and that responsibility for implementing such 
systems belongs to them. 

• Planning personnel are unfamiliar with ITS data collection technologies, and as a 
result are uncomfortable using them. 
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• Data archiving was not considered when ITS systems were deployed in the past. 

• Institutional issues relating to control, maintenance, and ownership of archived 
data. 

 
Such obstacles are largely institutional in nature; the technology to archive and share data 

and is readily available. To help overcome these barriers and streamline the incorporation of ITS 
data into the planning process, the USDOT (2000) recommends the following specific strategies:  

• Create an ITS committee involving regional stakeholders, 

• Educate elected officials and transportation executives, 

• Include ITS in MPO planning documents, 

• Develop a program for regional ITS projects, 

• Educate MPO staff, 

• Educate other stakeholders, 

• Educate the general public on specific ITS projects, 

• Use ITS advocates in the region, 

• Utilize the National ITS Architecture to develop a regional architecture, 

• Use peer-to-peer networking, 

• Involve academia in regional ITS planning 

• Determine data collection needs for planning purposes, and 

• Determine the most efficient and effective ways to distribute and apply ITS-
generated data. 

 

2.5 Data Archiving in Texas 
To supplement the review of data archival systems implemented in other regions, a 

twelve-question survey was distributed to nine TMCs in Texas. (Appendix B contains a copy of 
the questions in the survey). Of these, five responses were received, from TMCs located in 
Austin, Dallas, El Paso, Fort Worth, and San Antonio. This section summarizes their replies, 
followed by some discussion of common elements in their responses. 

2.5.1 Austin 

The Austin TMC controls 75 closed-circuit television (CCTV) cameras and nearly 2500 
inductive loop detectors. CCTV data is not archived, but loop detector data (including volume, 
occupancy, and speed measurements, as well as vehicle classification) is stored in an ASCII 
comma-separated file. These files are available online for up to two years, after which they 
remain archived on CD. Data are not stored if they are clearly in error, providing some basic data 
quality assurance. 

Once stored, the data is retrieved as needed for particular projects. Typical uses of this 
data include congestion studies, volume forecasting performed by the Capital Area Metropolitan 
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Planning Organization, and detector maintenance. The Texas Transportation Institute (TTI) also 
accesses this data on a quarterly basis for its own studies, and has provided this TMC with 
recommendations for improving the usefulness and efficiency of the data format. 

2.5.2 Dallas 
The Dallas TMC uses approximately sixty microwave vehicle detectors and fifty video-

based detectors to record speed, volume, and occupancy measurements, as well as vehicle 
classification. These data are stored in comma-delimited ASCII files, which are then compressed 
and archived online at a publicly-accessible website. Measurements obtained at a particular 
freeway location are only recorded if the detector in each lane reports valid data. 

Usage statistics are not maintained for this data, but the North Central Texas Council of 
Governments and TTI both make regular use of this data for various research projects. Also, 
attempts to integrate this data with other regional sources are underway, including data 
imputation. 

2.5.3 El Paso 
The El Paso TMC operates over eighty CCTV cameras, and two types of automated 

vehicle detectors: 281 traditional loop detectors as well as 148 microwave detectors. The 
automated detectors record their data in comma-delimited text files, which are currently stored in 
separate locations. The loop detector data is archived on a dedicated server, which only 
maintains data for one week, although they indicate that this system is slowly being phased out 
in favor of microwave-based detectors. Microwave detector data, on the other hand, is stored on 
a separate computer, which is currently not integrated with the rest of the operation system. 
Currently there is no data checking performed, although research is underway to provide 
validation techniques for the microwave detectors. This data has been used for assorted traffic 
studies for three years; an example of a current use is a project to predict travel times.  

2.5.4 Fort Worth 
The Fort Worth TMC collects data from over 1500 loop detectors and 180 side-fire radar 

detectors; as the loop detectors age and stop functioning, they are being replaced with the radar 
detectors. All of these sensors report volume, occupancy, and vehicle classification; the radar 
detectors and selected pairs of closely-spaced loops also record speed information. These paired 
loops also perform error checking by ensuring that they report consistent results. The radar 
detectors employ specific noise reduction and anti-ghosting algorithms to counteract these 
sources of error. Currently, none of this data is stored in any permanent way, since the data 
archival component of the system proposal was not funded. Efforts are underway to add this to 
the system. 

2.5.5 San Antonio 
The San Antonio TMC makes use of a variety of detector types in their system: forty 

video image detection systems, five side-fire radar detectors (eighty more by the end of the year), 
and over 1600 loop detectors, which record speed, volume, and occupancy data. Statistical 
sampling is used to verify accuracy of the data. All of this data is initially stored on the servers 
collecting this data; after 24 hours, it is transferred permanently to disk arrays and also made 
available on a public FTP server for one year. Tape backups also exist to protect against any data 
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loss. Work is underway to develop databases to facilitate access to this data. This data is most 
often used for research and statistical purposes. 

2.5.6 Opinions on Using Archived Data for Planning Purposes 
The responders also were asked to give their opinion on the largest obstacles standing in 

the way of using ITS data for planning purposes; their responses are paraphrased below, in no 
particular order. 

 

• Managing a large amount of data. In order to help, the vast quantities of ITS data 
need to be distilled to a useful summary. 

• Ensuring data accuracy. Data standards for planners may be different, and there 
may be a lack of trust of ITS devices due to these issues. 

• Providing useful formats for all users. Different clients need different 
information; for instance, planners want geocoded data by street and block, while 
operations personnel typically prefer locations identified by milepost or centerline 
station, while the devices may report their location in a latitude/longitude system. 

• Different data goals. Planners are generally seeking system-wide information, 
such as trip origins and destinations; this is in contrast to operational demands 
focused on specific corridors or facilities, not the users themselves. 

2.6 Conclusions 
Developing a system that allows ITS data to be used for planning purposes carries 

tremendous potential, as the data already being collected by ITS devices can greatly expand the 
amount of information available to planners, while enabling the calibration and use of innovative 
transportation models with sufficient data requirements. The easiest way to accomplish this task 
is through the development of a centralized, automated data archive that stores this information, 
along with an easy-to-use program (or suite of programs) to enable ready access to this 
information. 

The case studies profiled above provide some guidance as to the variety of such systems 
available, and possible applications. The diversity in these systems comes about from their 
different origins (whether initiated by operations personnel, planning personnel, or university 
researchers), different scopes of coverage (from volume data alone to databases containing 
weather and incident information as well) and a number of different quality control procedures 
(typically determined according to primary data use). Based on current practices in Texas, it 
seems that developing uniform data archiving formats and quality control measures can greatly 
facilitate this type of data sharing. 

In the end, the barriers to implementing such a system are primarily institutional rather 
than technological. Therefore, it is crucial to clearly explain the benefits of such a system, and to 
design it with all of the involved parties in mind. 
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Chapter 3.  Prototype System 

3.1 Introduction 
This chapter describes the prototype archive system in greater detail, first in terms of how 

data is collected, stored, and retrieved. This is followed by an example action plan presenting 
specific steps that could be taken to implement such a system. 

This system interfaces with TMCs, which collect data directly from detectors and then 
transmit it to the archive. A modular design is proposed, in which TMCs only interface with the 
central archive, and in which all data processing algorithms are housed in the archive itself. This 
allows TMCs to be easily added or removed from the archive at any future point in time, for any 
reason. Furthermore, the proposed design is technologically flexible, and can accommodate a 
very broad range of current and future traffic detector designs. 

3.2 Database Design and Data Formats 
This section describes the purpose and components involved in the data archiving system. 

Illustrated schematically in Figure 3.1, the process begins as traffic detectors report data they 
collect. This data is then preprocessed, and undergoes a reliability testing (quality check) 
procedure to quantify confidence in the reading, based on fundamental, historical, and network-
based considerations. (This procedure is described more fully in Chapter 4). Optionally, data that 
is considered unreliable can be replaced with interpolated data at this point—whether this is 
desirable or even permissible depends on the purposes for which the data will be used. 
Nevertheless, it is an option at this point.  

Next, the data is stored in an archival database, to be accessed by operators generating 
“reports” (for instance, daily volumes for weekdays in March, for a given set of detectors). These 
reports consist of database queries, which return the desired data. Missing or suspect data can 
optionally be replaced by interpolated or estimated data at this stage as well. A web interface has 
been constructed to enable access from a variety of locations (Figure 3.2). 

Recall that the system is designed with maximum future flexibility in mind, including the 
ability to handle data from multiple detector technologies with ease. To facilitate this, all 
incoming data are preprocessed into a common form, indicating the following information: 

 
1. The detector ID number 
2. The detector type 
3. The information recorded by the detector (e.g., volume, speed, or occupancy) 
4. The spatial location of the detector 
5. The time span over which the data was collected 
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Figure 3.1: System design schematic 

 
 

 
Figure 3.2: Web interface to data archive 

(optional) 

(optional) 
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In particular, a common standard should be defined for recording spatial and temporal 
coordinates; latitude/longitude or facility/milepost are the most useful possibilities for encoding 
spatial information, while coordinated universal time (UTC) is a useful standard for recording 
times. 

To design a flexible and efficient way of archiving traffic data, we utilize the relational 
open-source database PostgreSQL and employ the widely-used database normalization 
techniques (Codd, 1970 and 1971). The techniques are applied to organize relational database 
such that the duplication of information is minimized, redundancy is eliminated, and 
inconsistency can be discovered. It as well safeguards the database against different types of 
structural problems and abnormalities 

The database outlined has four tables, as shown in Tables 3.1–3.4. The tables are at least 
in first, second, and third normal form (1NF, 2NF and 3NF), which means that the tables 
faithfully represent the relations of records and the appropriately address the dependency issues. 

Table 3.1: Detector Details Table 
 ID Name Detector Type 

Type INTEGER TEXT INTEGER 
Modifiers NOT NULL, UNIQUE - NOT NULL 
Example 1 Mopac 1 

 

Table 3.2: Detector Type Description Table 
 Detector Type Description 

Type INTEGER TEXT 
Modifiers NOT NULL NOT NULL 
Example 1 Inductive Loop Detector 

 

Table 3.3: Data Collected Table 
 ID Status Date Time Volume Speed Occupancy 

Type INTEGER INTEGER DATE TIME INTEGER DOUBLE 
PRECISION 

DOUBLE 
PRESCISION 

Modifiers NOT NULL, 
UNIQUE - - - - - - 

Example 1 1 01/30/08 14:00 0 60 0 
 

Table 3.4: Status Description Table 
 Status Description 

Type INTEGER TEXT 
Modifiers NOT NULL NOT NULL 
Example 1 Normal 
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3.3 Action Plan 

3.3.1 Introduction 
A centralized archive for traffic data can be successfully implemented in three phases, 

receiving data collected by multiple types of ITS detectors and allowing different users to 
generate custom reports for a variety of purposes.  

The three phases can be summarized as follows: 
Phase I. Establish policies and standards for data storage and communications—the 

desired functionality must be established, along with the hardware and communications 
infrastructure needed to support it. Leadership roles must also be assigned, and the archive’s 
physical location must be identified. 

Phase II. Implement central data archive—the chosen hardware must be identified, the 
database software initialized, and additional code must be written to implement error checking, 
error correcting algorithms, and provide an interface and reporting structure to allow access to 
the data. 

Phase III. Integrate TMCs with central data archive—this phase must be performed 
once for each TMC that is connected to the archive, and again if an additional TMC is to be 
added. Programs must be written to convert data from the format used by the TMC’s detectors 
into the standard format used by the archive, and the communication link between the TMC and 
archive must be established. Depending on the chosen error checking and error correcting 
routines, additional parameters may need to be specified at this point as well. 

Further details of each phase are provided in this subsection, along with a list of specific 
tasks that must be accomplished in each phase. 

3.3.2 Phase I. Establish policies and standards for data storage and communications 
This first phase is concerned with preliminary matters, determining what data will be 

archived from what traffic management centers (TMCs) and how, the necessary communication 
infrastructure, the physical location(s) for the archive, and the management structure for 
operating and maintaining the archive. Although basic, substantial time should be invested at this 
stage to ensure that the archive is useful for both current and future needs. Future considerations 
to take into account include implementation of new traffic detector technologies, anticipated 
changes in data reporting requirements and standards, and new or proposed TMCs that may be 
built after implementing the archive. This phase is divided into four tasks, each of which is 
discussed in more detail below. 

 
Task 1.1 Determine scope of data archive 
Task 1.2 Determine communication and equipment needs 
Task 1.3 Determine “chain of command” 
Task 1.4 Identify physical location(s) for archive 
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Task 1.1 Determine scope of data archive 
This task is further divided into three subtasks, each of which is concerned with 

identifying a key structural component of the archive: 
 

 Subtask 1.1.1—Specify desired functionality 
At a minimum, one must decide (a) what basic data must be recorded (e.g., volume and 

speed), (b) the frequency at which data must be received (e.g., at least daily or hourly), (c) who 
may access the data (e.g., restricted to agency personnel or publicly available), and (d) how the 
data should be accessed (e.g., the structure of database queries, forms, and reports) 

 
Subtask 1.1.2—Identify participating TMCs 
Based on the functionalities specified in Subtask 1.1.1, as well as the desired scope of the 

archive and interest in participation, a set of TMCs will be identified for participation in the 
archiving system. Note that not all of these TMCs need to participate from the very beginning, as 
the overall implementation plan is modular and allows additional TMCs to be introduced to the 
system at any time. 

 
Subtask 1.1.3—Specify data formats 
According to the TMCs and data requirements selected in Subtasks 1.1.1 and 1.1.2, 

specific data formats will be identified, including encoding schemes for detector 
location(latitude/longitude vs. facility/milepost), data time (local time vs. UTC), and units of 
measurement for volume, speed, and density. 

 
Task 1.2 Determine communication and equipment needs 
In the previous task, the locations of participating TMCs were identified, along with the 

necessary data reporting requirements, including reporting frequency. Based on these, the 
appropriate mode(s) of communication (e.g., fiber optic, wireless, telephone, or radio) can be 
identified, along with the computer hardware needed for the central archive. In particular, 
enough storage space must be provided to store the data; a server, operating system, and software 
are needed to run the database program and communicate with users to generate reports; and 
backup and redundancy considerations, such as off-site storage or a redundant array of 
independent disks (RAID), to ensure continued access to the data in case of equipment failure. 

 
Task 1.3 Determine “chain of command” 
The departments and personnel responsible for implementing and maintaining this 

archive must be identified, within the context of the intended users, participants, and 
functionality. 

 
Task 1.4 Identify physical location(s) for archive 
The location of the hardware and software must be specified, as well as the location of 

any backup or redundancy options. Depending on the communication modes, it may be desirable 
to locate this in the proximity of one or more TMCs. 

3.3.3 Phase II. Implement central data archive 
The second phase is concerned with making the data archive operational, setting up the 

necessary hardware, software, and communications equipment. Note that integration with 
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individual TMCs is accomplished in a later phase. This division emphasizes the modular nature 
of the implementation plan, in that the central archive can operate independently of specific 
TMCs. This phase is divided into three tasks, each of which is described in further detail below: 

 
Task 2.1 Install needed computational equipment and communications infrastructure 
Task 2.2 Implement database and interface 
Task 2.3 Enable remote access 
 
Task 2.1 Install needed computational equipment and communications infrastructure 
Installation of the equipment identified in Task 1.2 is accomplished during this task, 

physically establishing the database and preparing it for installation of software and 
communication with TMCs and end users. 

 
Task 2.2 Implement database and interface 
This task is divided into four steps, each corresponding to a software-related need that 

must be implemented. 
 
Subtask 2.2.1—Initialize database 
A suitable database platform must be identified, and the relevant fields and forms 

constructed, based on the specifications chosen in Phase I. 
 
Subtask 2.2.2—Implement reliability assessment algorithms 
Quality control algorithms for the data must be programmed and integrated with the 

database, such as the continuous set theoretic algorithm discussed in Chapter 4. 
 
Subtask 2.2.3—Author routines to generate reports 
Depending on the desired uses and the specific database platform, it may be necessary to 

write additional code to generate reports portraying data in the desired format, as well as the 
necessary forms to allow users to interface with the database. 

 
Subtask 2.2.4—Implement interpolation/data correction scheme 
One or more data correction and interpolation schemes should also be programmed and 

integrated within the database, with a clear option available to users as to whether interpolated 
data is appropriate for their application. 

 
Task 2.3 Enable remote access 
The final task in this phase is to activate and test communication links between the 

archive and other locations. In particular, TMCs must be able to access the archive to deposit 
data, and other users must be able to access the archive to generate reports and download traffic 
data.  

3.3.4 Phase III. Integrate TMCs with central data archive 
This phase is unique in that it needs to be performed several times, once for each TMC 

that will be connected to the archive. Once the data archive is operational, this step will need to 
be performed again if additional TMCs need to be connected. For each TMC, the following three 
steps need to be performed: 
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Task 3.1 Generate needed parameters for the central archive 
Task 3.2 Develop routines for translating detector data to central archive format 
Task 3.3 Establish communications link  
 
Task 3.1 Generate needed data for the central archive (e.g. upstream/downstream; jam 

density & capacity; other detectors for interpolation) 
The type and location of every detector operated by the TMC must be stored in the 

database before data archiving can begin. Furthermore, depending on the algorithms chosen for 
calculating data reliability and/or interpolating missing data, additional parameters must be 
specified, such as roadway capacity and jam density, or the IDs of upstream and downstream 
detectors. 

 
Task 3.2 Develop routines for translating detector data to central archive format 
Different detectors report data differently, and these need to be translated to a common 

format before transmission to the archive. Thus, it may be necessary to write a computer 
program to accomplish this conversion. 

 
Task 3.3 Establish communications link  
Finally, the communication link between the TMC and the archive must be created and 

tested. After this, the flow of data can commence. 
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Chapter 4.  Data Reliability and Imputation 

4.1 Introduction 
No detector device is perfect, and thus the question of data quality is critical for any data 

recording and archival process. It is important to construct rigorous measures of reliability or 
confidence in traffic data; for instance, if archived data will be used to influence policy decisions 
through traffic studies, one should have high confidence in the validity of the measurements. 

Section 4.2 of this chapter defines a general “reliability index,” indicating the consistency 
of each data measurement with fundamental traffic relations, historical data, and 
upstream/downstream measurements. The reliability index is an integer ranging from zero (no 
confidence in the data; it is almost certainly wrong) to ten (very high confidence; it is very likely 
to be correct). 

Following identification of suspicious data, it may be desirable to generate a more 
trustworthy estimate of the true value. Such procedures are also important for addressing 
problems of missing data. The research literature contains several examples of data imputation 
algorithms, and these are described and compared in Section 4.3, alongside three new algorithms 
developed in this project. Traffic data can also be estimated even in locations where no detector 
is present, using extrapolation techniques; these are described in Section 4.4. 

4.2 Reliability Indices 
It is desirable to apply the same metric to all data that are received. Thus, the reliability 

index is given a general definition that can be applied regardless of the type of detector. While 
this gives maximum flexibility in admitting innovative technologies, this requires that the 
reliability index not depend on the specific data type received (e.g., volume or occupancy). 
Further, there are multiple measures of consistency that are not easily compared: as an example, 
if the data is consistent with historical measurements, but not with upstream data, how should 
these two assessments be reconciled? 

Continuous set theory (CST) provides a technical framework for making these 
assessments commensurable. Initially developed four decades ago, continuous set theory is based 
on two facts: it is often impossible to precisely classify measurements without arbitrariness; and 
decision-making must be made using such imprecise assessments. For instance, how should the 
thresholds for “historical consistency” be defined? One choice is to define a single interval of 
traffic volume, for which any measurement within that interval is deemed consistent, and any 
other measurement inconsistent. But with this definition of consistency, two volume 
measurements that are nearly identical can be classified differently, if one is just within the 
interval, and the other just outside it. 

This is an issue because, fundamentally, “consistency” is an inherently imprecise concept 
that cannot properly be defined by discrete intervals. CST remedies this deficiency by allowing 
measurements to be both “consistent” and “inconsistent” to varying degrees, giving a fuller 
picture of the quality of the data. 

As defined in this project, the reliability index is based on three separate consistency 
assessments. First, the data is checked for fundamental consistency: is it consistent with basic 
traffic laws? Are the volume and density measurements reasonable? Second, the network 
consistency is examined: how do the measured data compare to upstream and downstream 
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observations? Finally, the historical consistency is measured, according to previous records at 
the same location. 

For each of these three checks, the data is classified among four categories: probably 
correct (PC), maybe correct (MC), probably incorrect (PI), and absolutely incorrect (AI). 
For instance, the data may be considered “probably correct” regarding network consistency, but 
“probably incorrect” regarding historical consistency. As mentioned above, CST allows for 
partial membership in multiple categories; for instance, the data may be two-thirds “probably 
correct,” and one-third “maybe correct.” A decision table and continuous set theoretical decision 
rule are then used to determine the overall reliability index, taking all of these measures into 
account. 

The remainder of this section is organized as follows. First, there’s a brief overview of 
continuous set theory; its concepts are introduced, along with a simple example. Next, the three 
consistency checks—fundamental, network, and historical—are described and defined in turn. 
Finally, the decision-making process is defined, and an example is given showing how this 
process can be applied to a hypothetical data measurement. For a fuller treatment of the 
mathematics of continuous set theory, see, for instance, von Altrock (1995). 

4.2.1 Continuous Set Theory 
Developed by Lofti Zadeh in 1965, continuous set theory directly addresses the notion 

that decisions must often be made based on inherently imprecise quantities. Although continuous 
set theory is a mathematically rigorous concept, CST-based classification does not accomplish 
anything that could not be done using previously-existing methods. Rather, its prime strength is 
its ability to model complicated decision problems using intuitive, natural language. This makes 
the process of calibrating and tuning models considerably easier, and facilitates comprehension 
of the model for all interested parties, regardless of specific expertise.  

For instance, as explained below, a key element in CST decision making is the 
construction of a set of decision rules. In the context of traffic data archiving, one decision rule 
might be “if the data is probably correct (PC) according to fundamental rules, is probably 
incorrect (PI) when looking at nearby detectors, but may be correct (MC) historically, then, 
overall, the data may be correct (MC).” By phrasing the decision in natural language, the process 
of tuning is much easier: in this situation, if experience shows that this rule is expressing too 
much confidence in the data, it can be changed: “if the data is PC according to fundamental 
rules, PI when looking at nearby detectors, and MC historically, overall the data is probably 
incorrect (PI).” The mathematical details of exactly how this change affects the classification 
process are “under the hood,” so to speak, and need not be fully understood by an operator 
calibrating the data. (Of course, these details are fully explained in this section). Note that such 
decision rules also provide an elegant solution to the problem of combining nominally 
incommensurable evaluations, by couching them in natural (although rigorously-defined) 
terminology. 

CST is applied widely in automated decision-making contexts. For instance, many 
automobiles use CST to control automatic transmissions or braking, many thermostats use CST 
to control heating and air conditioning systems, and some dishwashers use CST to adjust cycle 
parameters. The common characteristic of all of these decision problems, and the reason why 
CST works well for these, is their need to account for multiple input parameters that may not fall 
neatly into clearly-defined categories. For instance, when controlling air conditioning, both 
outdoor temperature and current energy consumption levels are continuously-varying quantities 
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that are not well-suited to discrete categorization. For the remainder of this section, we use this 
example to illustrate how CST works. The following sections explain, in detail, how this 
procedure can be applied to transportation data archiving. 

The first step in applying CST is to translate each of the input parameters into the 
corresponding linguistic parameters, a process called fuzzification. Continuing with the air 
conditioning example, we need to fuzzify the indoor and outdoor temperatures, as well as the 
current energy consumption. For instance, Figure 4.1 shows one way to fuzzify indoor air 
temperature among three categories (“cold,” “warm,” and “hot”). For each possible temperature 
and each category, we must decide to what degree that category describes the temperature, 
ranging from zero (not at all descriptive) to one (fully descriptive). 

For instance, an indoor temperature of 50°F is almost universally considered cold, and 
not at all warm or hot; so we assign COLD = 1, WARM = 0, and HOT = 0. Likewise, an indoor 
temperature of 90°F is definitely hot, and not at all cold or warm; so we assign COLD = 0, 
WARM = 0, and HOT = 1. For intermediate temperatures, it is less clear; while a temperature of 
65°F is certainly not hot, it is somewhat cold, and somewhat warm; so we assign COLD = 0.5, 
WARM = 0.5, and HOT = 0.  

The figure shows the membership rules mapping each temperature to how COOL, 
WARM, and HOT that temperature is. This fuzzification rule is arbitrary, and it can be tuned as 
necessary to adapt to a particular situation. 

Although not shown here, similar fuzzification rules must be developed for describing 
energy usage (for instance, into two categories, PEAK and OFF-PEAK; see Figure 4.2). Thus, at 
any moment in time, we observe the temperature and energy usage, and have a linguistic 
description of the current state as some combination of COOL, WARM, HOT, LOW energy 
consumption, and HIGH energy consumption. 

 
 

 
Figure 4.1: Fuzzification of indoor air temperature. 
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Figure 4.2: Fuzzification of energy consumption 

 

 
Figure 4.3: Defuzzification converting linguistic airflow to a numeric value 

Table 4.1: Decision rules for air conditioning example 
 OFF-PEAK energy use PEAK energy use 
COOL temperature LOW airflow LOW airflow 
WARM temperature HIGH airflow LOW airflow 
HOT temperature HIGH airflow HIGH airflow 

 
The next step is to construct a decision table, showing what action should be taken for 

each combination of states. For this case, the desired output is the air flow through the air 
conditioning system (with a higher flow rate corresponding to faster cooling and higher energy 
expenditures); although this is a precise number, we fuzzify for the purpose of constructing a 
decision table (e.g., LOW airflow, and HIGH airflow; Figure 4.3), and one possible decision 
table is shown in Table 4.1. Note that this table frames the decision-making process in intuitive, 
natural-language terms. 

At any given moment, the current temperature and energy use describe the “state” of the 
system. It is often the case that more than one “state” exists simultaneously due to fuzzification. 
For instance, if the indoor temperature is 75 degrees and the energy use is 25 kW, it is partially 
WARM and partially HOT, but energy use is entirely HIGH. That is, the states (WARM, PEAK) 
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and (HOT, PEAK) both exist partially, and the decisions for both of these states (LOW and 
HIGH airflow, respectively) should be taken into account. The exact method for accomplishing 
this is somewhat involved, and is described more fully below; but the following key properties 
are satisfied: 

• All applicable states contribute to the final decision—both (HOT, PEAK) and 
(WARM, PEAK) influence the end result. 

• If one state is more applicable than another, it should weigh more heavily in the 
decision—if it is mostly (HOT, PEAK) and only slightly (WARM, PEAK), the 
airflow should be more HIGH (the decision for HOT, PEAK) and less LOW (the 
decision for WARM, PEAK), and vice versa. 

• The decision is deterministic; that is, it the same temperature and energy use always 
result in the same airflow rate. 

 
Finally, a defuzzification process converts this combined decision into a crisp, numeric 

output (the rate of airflow). Note that this process is easy to tune; if, for instance, one implements 
this system and observes that the airflow is usually too high, one can either alter the decision 
table (to favor LOW airflow), or adjust the state definitions (perhaps the definitions of HIGH and 
LOW airflow are incorrect). The same advantages can be applied to transportation data as well, 
as described in the following sections. 

Recall that the classification is made according to three inputs (fundamental consistency; 
network consistency; and historical consistency), so the decision table is three-dimensional, 
rather than two-dimensional as in the above example. The fuzzification procedures for 
fundamental, network, and historical consistency are described, followed by presentation of the 
decision table and defuzzification principle. 

4.2.2 Fundamental Consistency 
Fundamental consistency is a measure of data quality indicating the plausibility of 

observed data, based on basic physical constraints and laws of traffic flow theory. In particular, if 
q, u, and k denote the volume, space-mean speed, and density of traffic, the following relations 
must hold: 
 

1. q = uk 
2. q ≤ qmax 
3. k ≤ kjam 

 
Dimensional analysis ensures that the first relation must hold; by definition, volume must 

equal the product of speed and density. The second relation requires that the flow be no greater 
than the capacity of qmax of the section, and the third requires that the density not exceed the jam 
density kjam. 

Although it might appear that these relations must hold in an absolute sense, continuous 
set theory is still applicable for several reasons. First, there is inherent instability and 
heterogeneity in a traffic stream: vehicles and driver behavior are not uniform, and traffic 
streams are continuously evolving; in fact, the entire notion of a continuous traffic stream is a 
modeling simplification. Thus, although these laws must hold on average at an aggregate level, 
the state at a particular detector location at any given moment may not satisfy these exactly. 
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Second, the notions of maximum capacity and jam density are not exact, and depend on driver 
and freeway characteristics that cannot be entirely observed, and which need not be stationary 
with time.  

In fact, it is exactly for reasons such as these that continuous set theory is beneficial. It is 
not useful to either classify a data observation as either fully consistent (satisfying relations 1–3 
exactly) or inconsistent (at least one of relations 1–3 is violated), but rather to have a 
continuously-varying measure of consistency, ranging from entirely consistent to entirely 
inconsistent.  

As mentioned in the previous section, traffic data is fuzzified into four different states: 
probably correct (PC), maybe correct (MC), probably incorrect (PI), and absolutely incorrect 
(AI). We develop a “consistency score” for each of the relations 1–3 above, showing how 
plausible a given data observation is with respect to each of them. All consistency scores are 
nonnegative real numbers, with lower numbers indicating greater confidence. In particular, the 
respective consistency scores for the three relations are 
 

1. 1q
uk

−  

2. max{q/qmax – 0.9, 0} 
3. max{k/kjam – 0.9, 0} 

 
The first relation penalizes any deviation from the requirement q = uk, while the second 

and third penalize excess volume and density, defined as a volume-capacity or density-jam 
density ratio exceeding 0.9. The maximum of these three consistency scores is taken to be the 
overall fundamental consistency score, that is,  

( )
max

, , max 1 , ,
jam

q q kFC q u k
uk q k

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 

which is then fuzzified according to the following relations (see Figure 4.4 for a graphical 
representation): 
 

{ }
{ }{ }
{ }{ }
{ }{ }

max 1 10 ,0

max min 10 ,2 10 ,0

max min 10 1,3 10 ,0

max min 10 2,1 ,0
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= − −

= −

    (4.1) 
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Figure 4.4: Fuzzification for fundamental consistency (regions from left to right are PC, MC, 

PI, and AI). 

4.2.3 Network Consistency 
Network consistency makes explicit use of the spatial relationships between road 

segments, especially the notions of “upstream” and “downstream” links. For access-controlled 
facilities with detectors on all on- and off-ramps, flow conservation implies that every vehicle 
detected by a sensor on the mainline must already have been detected by another detector 
upstream, and must be detected again downstream. For illustration, in Figure 4.5 any vehicle 
passing point C must have already passed point A or B, and must pass point D or E in the future.  

Thus, when looking at traffic volume counts over a sufficiently long period of time (an 
hour or more), we expect the sum of the counts at A and B to equal both to the count at C, and to 
the sum of the counts at D and E, a property that is exploited in determining the network 
consistency score of a detector reading.  

The network consistency score can either be calculated in real-time, or applied to an 
aggregated set of data offline. If performed in real time, as data is received, it is only possible to 
make a comparison with the upstream detectors (A and B in Figure 4.5) as the vehicles have not 
yet reached the next location downstream. In this case, we compare the values VA + VB and VC, 
where VC is the current volume reading at detector C, and VA and VB are the volume readings at 
these detectors at a suitable point in the past. Given a current travel speed u, and distances dA and 
dB to detectors A and B, respectively, the appropriate time offsets are tA = dA/u and tB = dB/u; it is 
appropriate to use interpolation if these time offsets do not exactly correspond to a past data 
measurement. 

However, the previously-calculated reliability scores for the readings at A and B should 
also be taken into account: if the volume at either of these sites is highly unreliable, one should 
not expect the sum A + B to be a reliable predictor of the volume at location C either.  
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Figure 4.5: Demonstration of network consistency 

Keeping this in mind, the network consistency score can be calculated as: 
 

( ), ,
20

A B CA B

C

V V VRI RINC q u k
V

+ −+= ×  

 
where RIA and RIB are the reliability indices for A and B at the time offset determined by the 
present speed u. Effectively, this formula penalizes any deviation from true flow conservation 
([VA + VB]/VC – 1), scaled according to the maximum possible value of RIA + RIB. This value is 
then fuzzified according to the following relations (see Figure 4.6 for a graphical representation): 
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     (4.2) 

 
When there is no upstream detector, NC is set to be 0.075 to indicate that the data is 50% 

MC and 50% PI. 
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Figure 4.6: Fuzzification diagram for network consistency 

4.2.4 Historical Consistency 
The key notion of historical consistency is that past observations can be used to help 

identify suspect data in the present. In comparison to the more basic fundamental and network 
consistency checks, it is not difficult to imagine instances where a perfectly valid data reading 
might appear inconsistent given the historical record (due to a severe incident or extreme weather 
conditions, for instance). Such examples actually indicate the strength of the three-part 
consistency check: in such cases, the fundamental and network consistency scores can 
compensate for a low historical consistency score; while the historical consistency score can play 
a valuable role in detecting other anomalies not captured by the other two scores. 

One must decide the data that is to be used for a historical consistency check; possible 
options are “all readings at this location for the same day of the week,” “all readings at this 
location, at the same time of day (regardless of day of week),” “all readings at this location, at 
the same time of day and day of the year,” etc. The appropriate choice depends on data 
availability, and the degree of aggregation for the counts being used. 

These data form a set X of previous data (volume, speed, density, and volume difference 
with upstream detector), with which the current observation Y will be compared. In particular, 
for each element yi of Y, the percentile pi of this element will be calculated according to the set X, 
and each element is assigned a consistency score ci = 0.5 – |pi – 0.5|. 

The overall historical inconsistency score is taken to be the maximum of these: 
 

{ }|5.0|5.0min),,,( −−= iid pqkuqHC  
 

which is then fuzzified according to the following relations 
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Figure 4.7: Fuzzification for historical consistency 
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4.2.5 Decision Table 
In the previous three steps, three separate reliability assessments are made: fundamental, 

network, and historical. The “decision table” step combines these to produce an overall 
reliability assessment, using the concept of an “aggregate state.” Aggregate states are simply the 
superposition of the input assessments, and the set of all aggregate states is the Cartesian product 
of the sets of component states. For instance, let the set {FPC, FMC, FPI, FAI} represent the four 
possible states (probably correct, maybe correct, etc.) according to the fundamental consistency 
criterion, with {NPC, NMC, NPI, NAI} and {HPC, HMC, HPI, HAI}representing the possible states 
according to the network and historical consistency criteria.  

An aggregate state represents all three of these components simultaneously. For instance, 
one possible aggregate state is (FPC, NMC, HPI), corresponding to the case where the data is 
“probably correct” fundamentally, “maybe correct” from a network perspective, and “probably 
incorrect” from a historical perspective. Every possible combination is allowed; thus there are 43 
= 64 possible aggregate states, as shown in Table 4.2 

 

0.30 0.49 0.40 0.45 0.50 
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Table 4.2:  Enumeration of aggregate states. 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct (FPC, NPC, HPC) (FPC, NPC, HMC) (FPC, NPC, HPI) (FPC, NPC, HAI) 
Maybe correct (FPC, NMC, HPC) (FPC, NMC, HMC) (FPC, NMC, HPI) (FPC, NMC, HAI) 
Probably incorrect (FPC, NPI, HPC) (FPC, NPI, HMC) (FPC, NPI, HPI) (FPC, NPI, HAI) 
Absolutely incorrect (FPC, NAI, HPC) (FPC, NAI, HMC) (FPC, NAI, HPI) (FPC, NAI, HAI) 
(a) Table for data that are “probably correct” according to the “fundamental” criterion. 
 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct (FMC, NPC, HPC) (FMC, NPC, HMC) (FMC, NPC, HPI) (FMC, NPC, HAI) 
Maybe correct (FMC, NMC, HPC) (FMC, NMC, HMC) (FMC, NMC, HPI) (FMC, NMC, HAI) 
Probably incorrect (FMC, NPI, HPC) (FMC, NPI, HMC) (FMC, NPI, HPI) (FMC, NPI, HAI) 
Absolutely incorrect (FMC, NAI, HPC) (FMC, NAI, HMC) (FMC, NAI, HPI) (FMC, NAI, HAI) 
(b) Table for data that are “maybe correct” according to the “fundamental” criterion. 
 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct (FPI, NPC, HPC) (FPI, NPC, HMC) (FPI, NPC, HPI) (FPI, NPC, HAI) 
Maybe correct (FPI, NMC, HPC) (FPI, NMC, HMC) (FPI, NMC, HPI) (FPI, NMC, HAI) 
Probably incorrect (FPI, NPI, HPC) (FPI, NPI, HMC) (FPI, NPI, HPI) (FPI, NPI, HAI) 
Absolutely incorrect (FPI, NAI, HPC) (FPI, NAI, HMC) (FPI, NAI, HPI) (FPI, NAI, HAI) 
(c) Table for data that are “probably incorrect” according to the “fundamental” criterion. 
 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct (FAI, NPC, HPC) (FAI, NPC, HMC) (FAI, NPC, HPI) (FAI, NPC, HAI) 
Maybe correct (FAI, NMC, HPC) (FAI, NMC, HMC) (FAI, NMC, HPI) (FAI, NMC, HAI) 
Probably incorrect (FAI, NPI, HPC) (FAI, NPI, HMC) (FAI, NPI, HPI) (FAI, NPI, HAI) 
Absolutely incorrect (FAI, NAI, HPC) (FAI, NAI, HMC) (FAI, NAI, HPI) (FAI, NAI, HAI) 
(d) Table for data that are “absolutely incorrect” according to the “fundamental” criterion. 
 

Since the reliability decision is based on an aggregate assessment, we need to determine 
the degree of membership of each of the aggregate states. Recall that continuous set theory 
allows partial set membership; that is, a particular piece of data might be 0.5 Probably Correct 
(Fundamental), 0.8 Maybe Correct (Network), and 0.3 Maybe Correct (Historical), what is the 
membership in the aggregate set (FPC, NMC, HMC)? By convention, this membership is defined to 
be the lowest of any of the components: in the case, 0.3. In equation form, the membership 
μ(F,N,H) of an aggregate state (F,N,H) is defined as 

( ) ( ) ( ) ( ){ }, , min , ,F N H F N Hμ μ μ μ=  

where μ(F) is the membership in the fundamental assessment, etc. Membership in all sixty-four 
aggregate states is calculated in this way. Note that the sum of all of these memberships need not 
equal one; this is not a concern. 

Each aggregate state is associated with an overall assessment of data quality: if the data is 
probably correct (fundamental), maybe correct (network), and maybe correct (historical), what is 
the combined assessment? Table 4.3 shows one way to accomplish this, although this can 
certainly be tuned as necessary: 
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4.2.6 Defuzzification 

The last step is to create the actual, numeric “reliability index” from the continuous aggregate 
state memberships determined by the decision table. To do this, a mapping from the aggregate 
assessment to the reliability index is needed, similar to the functions used to fuzzify the input 
data. Equations (4.4) are appropriate for this use: 

Table 4.3: Decision rules for all aggregate states. 
Network ↓ Historical 

→ 
Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct Probably correct Probably correct Probably correct Probably correct 
Maybe correct Probably correct Probably correct Maybe correct Maybe correct 
Probably incorrect Maybe correct Maybe correct Maybe correct Probably incorrect 
Absolutely incorrect Maybe correct Maybe correct Probably incorrect Absolutely incorrect 
(a) Table for data that are “probably correct” according to the “fundamental” criterion. 
 
Network ↓ Historical 

→ 
Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct Probably correct Maybe correct Maybe correct Probably incorrect 
Maybe correct Probably correct Maybe correct Probably incorrect Probably incorrect 
Probably incorrect Maybe correct Maybe correct Probably incorrect Probably incorrect 
Absolutely incorrect Maybe correct Probably incorrect Probably incorrect Absolutely incorrect 
(b) Table for data that are “maybe correct” according to the “fundamental” criterion. 
 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct Probably incorrect Probably incorrect Probably incorrect Probably incorrect 
Maybe correct Probably incorrect Probably incorrect Probably incorrect Absolutely incorrect 
Probably incorrect Probably incorrect Probably incorrect Probably incorrect Absolutely incorrect 
Absolutely incorrect Probably incorrect Absolutely incorrect Absolutely incorrect Absolutely incorrect 
(c) Table for data that are “probably incorrect” according to the “fundamental” criterion. 
 
Network 
↓ 

Historical 
→ 

Probably correct Maybe correct Probably incorrect Absolutely incorrect 

Probably correct Probably incorrect Probably incorrect Probably incorrect Absolutely incorrect 
Maybe correct Probably incorrect Probably incorrect Absolutely incorrect Absolutely incorrect 
Probably incorrect Probably incorrect Absolutely incorrect Absolutely incorrect Absolutely incorrect 
Absolutely incorrect Absolutely incorrect Absolutely incorrect Absolutely incorrect Absolutely incorrect 
(d) Table for data that are “absolutely incorrect” according to the “fundamental” criterion. 
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Figure 4.8: Fuzzification of reliability index 
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    (4.4) 

 
where RI denotes the overall reliability index, which we are trying to find. The most common 
method for doing this uses “centroid defuzzification,” an algorithm based on the following 
intuition: for each of the sixty-four aggregate states, we know its degree of membership μ∗, as 
well as the aggregate decision (PC, MC, PI, or AI). In Figure 4.9, the centroid and area of the 
region underneath the appropriate curve and the horizontal line μ = μ∗. The area-weighted 
“center of mass” is then calculated, and its horizontal coordinate is taken to be the reliability 
index RI.  

Note that the PC set is defined for reliability indices as high as 15.15, even though the 
reliability index is capped as 10. This is done to ensure that this maximum value of the reliability 
index can be attained, by allowing the x-coordinate for the centroid of the PC trapezoid to be as 
high as 10. 
 

3 5 7 15.15 
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Figure 4.9: Area below the MC curve and the horizontal line μ = μ∗ 

4.2.7 Example 

This section demonstrates how the reliability index is calculated, working with five-
minute aggregated data. Assume a detector records volume, speed, and traffic density on a two-
lane freeway segment, with an estimated capacity of 4000 veh/hr, and an estimated jam density 
of 250 veh/mi. 

Assume a detector on a freeway segment records the following data for a five-minute 
interval: 

• Volume: 150 veh 

• Speed: 55 mph 

• Density: 30 veh/mi (many loop detectors report occupancy, which can be used to 
directly estimate density) 

 
Another detector is located three quarters of a mile upstream of this detector, with one 

onramp in between. Forty seconds ago, this detector recorded a volume of 125 veh (with a 
reliability index of 7), and the detector on the onramp recorded a volume of 45 veh (with a 
reliability index of 2). 

We begin by calculating the reliability scores for each of the three criteria: 
 
Fundamental: First, scores are calculated for all three fundamental traffic requirements:  
 

1 0.09q
uk

− =  

max{q/qmax – 0.9, 0} = 0 
max{k/kjam – 0.9, 0} = 0 
 

3 5 7 10 
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The maximum of these, or 0.09, is taken as the raw fundamental consistency score. Using 
the equations (1), this gives μ(FPC) = 0.1 and μ(FMC) = 0.9. (That is, according to the 
fundamental consistency criterion, the data is 0.1 “probably correct” and 0.9 “maybe correct.”) 

 
Network: The network consistency score is calculated as 
 

9 20 0.06
20 150 20

A B CA B

C

V V VRI RI
V

+ −+ × = × =  

 
Using the equations (2), this gives μ(NMC) = 0.8 and μ(NPI) = 0.2. (That is, according to 

the fundamental consistency criterion, the data is 0.8 “maybe correct” and 0.2 “probably 
incorrect.”) 

 
Historical: To find historical consistency, one needs to know what percentile the current 

data form in the past data archive at this time and location. Assume that the volume, speed, and 
density data occur at the 43rd, 65th, and 37th percentiles, respectively; then the overall historical 
inconsistency score is calculated as 

 
 min{0.5 – |0.43 – 0.5|, 0.5 – |0.65 – 0.5|, 0.5 – |0.37 – 0.5|} = 0.35 
 
Using the equations (3), this gives μ(HPC) = 0.5, μ(HMC) = 0.875 and μ(NPI) = 0.333. 

(That is, according to the historical consistency criterion, the data is 0.5 “probably correct,” 
0.875 “maybe correct,” and 0.3333 “probably incorrect.”) The fact that these do not sum to one 
is not relevant. 

 
Decision Table: Of the 64 aggregate states, there are twelve in which the observed data 

have a positive membership: 
 
μ(FPC, NMC, HPC) = min{0.1, 0.8, 0.5} = 0.1 
μ(FPC, NMC, HMC) = 0.1 
μ(FPC, NMC, HPI) = 0.1 
μ(FPC, NPI, HPC) = 0.1 
μ(FPC, NPI, HMC) = 0.1 
μ(FPC, NPI, HPI) = 0.1 
μ(FMC, NMC, HPC) = 0.5 
μ(FMC, NMC, HMC) = 0.8 
μ(FMC, NMC, HPI) = 0.333 
μ(FMC, NPI, HPC) = 0.2 
μ(FMC, NPI, HMC) = 0.2 
μ(FMC, NPI, HPI) = 0.2 
 
For each of these, we look up the appropriate rule in the decision table; and find the area 

and centroid of the region beneath that rule’s graph and the horizontal line corresponding to the 
degree of membership, as shown in Table 4.4: 
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Thus, we calculate the x-coordinate of the total centroid to be 5.86, which we round up 
for a reliability index of 6. 

Table 4.4: Degree of membership, areas, and centroids for aggregate states 
State μ Decision Area Centroid (x-coordinate) 

FPC, NMC, HPC 0.1 PC 0.49 9.174 
FPC, NMC, HMC 0.1 PC 0.49 9.174 
FPC, NMC, HPI 0.1 MC 0.38 5 
FPC, NPI, HPC 0.1 MC 0.38 5 
FPC, NPI, HMC 0.1 MC 0.38 5 
FPC, NPI, HPI 0.1 MC 0.38 5 

FMC, NMC, HPC 0.5 PC 2.25 9.56 
FMC, NMC, HMC 0.8 MC 1.92 5 
FMC, NMC, HPI 0.333333 PI 1.111 3 
FMC, NPI, HPC 0.2 MC 1.92 5 
FMC, NPI, HMC 0.2 MC 1.92 5 
FMC, NPI, HPI 0.2 PI 0.72 3 

 

4.2.8 Field Data Demonstration 

In this section, the proposed reliability scheme is demonstrated using field data. The 
necessary code for the experimental testing is implemented in the Java language.  

The reliability index calculated from the proposed CST is implemented on three 
randomly chosen detectors from Dallas. The locations of the detectors are depicted in Figure 
4.10. These three detectors are installed on the eight lanes on westbound I-20, with an estimated 
capacity of 16,000 vehicles per hour and an estimated jam density of 1,000 vehicles per mile. 

The upstream detector, middle detector and downstream detector are located near Dowdy 
Ferry Road, Bonnie View Road, and Houston School Road respectively. The travel time between 
upstream and middle detector is approximately eight minutes, while the travel time between 
middle and downstream detector is approximately two minutes. The experimental results are 
summarized in Table 4.5 and Figure 4.11: 
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Figure 4.10: Detector Locations (from Google Maps) 

Table 4.5: Observed distribution of reliability indices 

RI Upstream Detector Middle Detector Downstream Detector 
Number Percentage Number Percentage Number Percentage 

0 42,567 31.45% 6,307 3.74% 6,293 3.84% 
1 0 0.00% 3 0.00% 4 0.00% 
2 831 0.61% 30 0.02% 47 0.03% 
3 3,168 2.34% 351 0.21% 214 0.13% 
4 3,230 2.39% 169 0.10% 190 0.12% 
5 4,329 3.20% 12,898 7.64% 11,232 6.86% 
6 31,645 23.38% 7,352 4.35% 5,108 3.12% 
7 25,346 18.73% 8,906 5.28% 6,361 3.88% 
8 19,136 14.14% 4,016 2.38% 4,565 2.79% 
9 5,098 3.77% 11,934 7.07% 16,005 9.77% 
10 0 0.00% 116,863 69.22% 113,815 69.47% 
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4.3.1 Data Imputation Methods 

 The problem of missing data is well-known among transportation researchers and 
practitioners, and multiple approaches for estimating missing observations have been devised. 

The simplest methods involve linear regression, using nearby (spatially and temporally) 
observed data to estimate the missing value, calibrated using a past corpus of data. Linear 
regression can be implemented in a number of ways. Chen et al. (2003) and Nguyen and Scherer 
(2003) recommend estimating a linear regression model based on neighboring detectors. Al-
Deek and Chandra (2004) suggest estimating a set of linear regression models, each relating data 
at the missing detector to data at a nearby detector, and taking the median of all estimates 
generated in this way. The advantages of linear regression models are their simplicity, ease of 
computation, and ease of interpretation; however, they perform poorly when neighboring data is 
missing as well. Al-Deek and Chandra's method is more robust to missing data from individual 
neighboring detectors, but still cannot be used when all neighboring data is missing (for instance, 
when a power failure affects all detectors in a particular area). 

Kwon (2004) suggests combining linear regression with non-normal Bayesian 
imputation, terming the procedure “nonnormal Bayesian linear regression” (NBLR). NBLR 
involves estimating a linear regression model as described above, along with the deviation 
between each past observation and the estimate the linear regression would have predicted. 
Missing data are then imputed by performing the linear regression and then applying a deviation 
sampled from the past set. 

Other methods only use data from the missing detector to perform the imputation, thus 
avoiding the requirement that neighboring data also be available. Nguyen and Scherer (2003) 
mention that historical averages can be used to replace missing data, and Gold et al. (2000) 
describe a “factoring-up” approach, in which missing data are effectively set to the average of 
observed data at nearby time periods (for example, if two out of twelve data readings are missing 
from a one-hour block, the two missing data are set to the average of the ten that were observed). 
These approaches can be more reliable, in that they do not rely on neighboring data; however, 
but not considering other locations, they are less able to represent current conditions if they differ 
from historical norms. 

Time-series approaches can also be applied, as described in Nguyen and Scherer (2003), 
in which spatiotemporal autocorrelations are calculated using observed data, and then used to 
impute the missing values. This approach has the advantage of building on a well-developed 
body of literature in this field (see, for instance, Hamilton, 1994). 

Additionally, the CST-based reliability index developed in Section 4.2 can also be 
applied to impute missing data, by applying a search procedure to identify missing data values 
that maximize this reliability score. This approach has the advantage of considering multiple 
aspects of data reliability (consistency with historical measurements, with nearby observations, 
and with basic traffic flow theory). 

While missing data are easy to detect, other researchers have considered the problem of 
identifying data that are present, but probably incorrect, and thus subject to imputation as well. 
This is commonly done by comparison with either historical data, or fundamental physical 
relationships. For instance, Payne et al. (1976) flag data with physically impossible values for 
volume, speed, and density, and Chen and May (1987) look for occupancy values far from the 
historical norms. Turner et al. (2000) and Chen et al. (2003) look at combinations of data that are 
impossible, such as zero volume and positive occupancy. More sophisticated methods have also 
been described, such as defining an acceptable set of volume/density values (Nihan et al., 1990), 
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data storage rates (Nihan et al., 2002), or statistical entropy (Al-Deek and Chandra, 2004). 
Observations from nearby detectors can also be used to mark suspicious data; such approaches 
can be found in Coifman (1999) and Vanajakshi and Rilett (2004). 

4.3.2 Experimental Setup 

 This section describes the procedure used to compare the accuracy of imputation 
methods, starting with discussion of the data set used, and then presenting the methods used, 
along with specific details of implementation. 

Data Set 

To compare these methods, a sample of loop detector data was obtained from the Dallas 
Traffic Management System (DalTrans), operated by the Texas Department of Transportation, 
using a public website allowing downloading of archived data 
(http://ttidallas.tamu.edu/detectordataarchive/). A detector located on the I-20 freeway was 
chosen for a testbed location (Figure 4.14), recording data on the third travel lane in the 
westbound direction. The archive contains occupancy, speed, and volume (large vehicle and 
total) data, aggregated at the five-minute level. All available data from this detector between 
September 14, 2007 and December 31, 2007 were downloaded, a total of 24,577 observations. 

  

 
Figure 4.14: Detector locations (Map source: Texas Department of Transportation) 

 Ten percent of the sample (2457 observations) were randomly selected to serve as 
“missing” data, allowing each of the methods to be applied to impute a value, which could then 
be compared with the data actually observed. The remaining ninety percent of the sample was 
used to calibrate these models; that is, none of the “missing” observations were used to estimate 
any of the regression models or calculate any historical statistics. For the purposes of this 
comparison, only volume data were imputed and compared, although speed and occupancy data 
were used in some of the imputation models. 
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Methods Applied 

Based on the past literature, eleven methods were applied to impute “missing” data. 

Simple Linear Regression 

Of the linear regression methods, the one described by Al-Deek and Chandra (2004) was 
adapted for use, because it is most robust to missing observations. Seven simple linear regression 
models were estimated, each relating the volume at detector 103 to the volume at one other 
nearby detector, as shown in Figure 4.14. That is, seven volume estimates 103
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where iv  is the volume recorded at detector i , and i

0β  and i
1β  are estimated parameters for each 

detector. 
We test two methods of generating an imputed value from these estimates: using either 

the average (SLR-AVG) or the median (SLR-MED). Note that if one or more of these estimates 
cannot be used because of missing data from another detector, the average or median is 
calculated using the remaining values. 

Multiple Linear Regression 

Al-Deek and Chandra (2004) also suggest making use of speed and occupancy data, as 
well as possible quadratic relationships among explanatory variables, when using linear 
regressions. As before, up to seven volume estimates are made, using the regression equations  
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for ,203,204}04,201,202{101,102,1∈i , where is  and io  respectively denote the speed 
and occupancy estimates. Again, either the average (MLR-AVG) or the median (MLR-MED) of 
these estimates can be used to produce the imputed value. 

Local and Global Regression 

Local and global linear regression models attempt to incorporate a greater geographic 
scope into the imputation process. Instead of using data from an adjacent location (or the same 
location), one can use volume readings from multiple locations in order to make the prediction. 
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Local linear regression uses locations in the vicinity of the detector missing data, such as ten 
locations immediately upstream. Global linear regression uses locations drawn from throughout 
the region. 

Although local linear regression is expected to be more accurate, it is vulnerable to events 
that cause loss of data in an entire region, such as a localized power outage. Global regression 
models may help overcome this problem, by drawing on data from multiple sources. (It is 
important to note that global regression models are generally more subject to problems of 
missing data, because they rely on successful operation and communication between many 
different regions of detectors, rather than just one or two. However, they do help address the 
specific problem of power failures localized at the missing detector.) 

Only one detector is chosen from each location because volume readings recorded from 
detectors at the same location are very highly correlated. Although correlation also exists 
between detectors at adjacent locations, the presence of on- or off-ramps between them mitigates 
this to some extent. 

In this experiment, the detectors chosen for local and global regression can be seen in 
Figure 4.15. In each case, the detector in the third lane was chosen for making the estimates  

  i
i

i
vv ββ ∑+

10

1=
0

103 =ˆ  

where i  indexes the detectors used (either local or global). 
 

 
Figure 4.15: Detector locations for (a) local regression and (b) global regression  

Nonnormal Bayesian Linear Regression 

The NBLR technique suggested by Kwon (2004) can be implemented by modifying one 
of the above-mentioned regression techniques. After estimating a regression model using 
observations n,1,2,K , one then calculates the deviations 103103 ˆ= iii vvd −  , where 103

iv  and 103ˆiv  
respectively denote the actual volume for the i-th observation, and the value the regression model 
would have predicted. 



 

50 

Then, for the missing data, the regression model is applied, and the result is added to a 
deviation term randomly drawn from d1, …, dn. The intent of this procedure is to more accurately 
reflect the variability existing in the data, and to remove any statistical bias from the regression 
equation. 

Historical Imputation 

All of the regression models described thus far rely on data from other locations in order 
to make a prediction. Historical imputation models, on the other hand, impute data using data 
measured only at the location where needed. While this has the advantage of robustness (this 
procedure can almost always be used), it carries the severe disadvantage of implicitly assuming 
typical operating conditions, and cannot use any spatial information to determine if conditions 
vary from past norms. However, ex post factoring approaches, such as that suggested by Gold et 
al. (2000), do allow limited temporal inferences to be made in this respect. 

As implemented in this experiment, the readings from each detector are classified by 
time-of-day into 288 categories (the number of five-minute intervals in a day), generating a 
corpus of data that is used for historical imputation. Each missing observation is then imputed as 
either the average (HIST-AVG) or median (HIST-MED) of past observations from the same 
time-of-day; this follows the procedure given in Nguyen and Scherer (2003). Given additional 
data, further segmentation on day-of-week would be desirable. 

A factoring approach similar to that in Gold et al. (2000) is also tested, in which each 
missing volume datum is set to the average of all present volume data from the same detector 
within the last hour; this approach is referred to as FACTOR in the following tests. 

CST Imputation 

Section 4.2 describes a CST-based system for quantifying confidence in ITS data on a 
continuous scale (0-10). This assessment is based on three criteria: fundamental consistency (do 
the data respect physical relationships, such as jam density or the requirement that volume be the 
product of speed and density), network consistency (are the data consistent with recent upstream 
measurements), and historical consistency (are the data reasonable given past observations at this 
location), which are then combined to generate an aggregate “reliability index.” 

Although developed to assess archived data and identify suspicious readings, this 
evaluation procedure can be used to assist with imputing missing data by treating it as a “black 
box” subroutine of a search procedure. Let ),,( 103103103 osvF  denote the reliability index as a 
function of the volume, speed, and occupancy; the task is then to find values of 103v , 103s , and 

103o which maximize F . F is not provably concave; however, any metaheuristic search (such as 
genetic algorithms, simulated annealing, or tabu search) may be used. For simplicity, we use the 
following local search algorithm to find a local maximum:  

  1. Generate initial values for ),,(= 103103103 osvD  , and calculate  )(DF  
  2. Perturb these values by testing ,0,0)(= vDD Δ+′ , ,0,0)( vD Δ− , ,0)(0, sD Δ+ , 

,0)(0, sD Δ− , and )(0,0, oD Δ+ , )(0,0, oD Δ−  in turn.  
  3. If )(>)( DFDF ′ for any of these, set DD ′=  and return to Step 2. Otherwise, 

terminate.  
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with pre-defined step sizes vΔ , sΔ , and oΔ . In this implementation, the initial value is chosen 
by establishing 103s  at its historical median, 103v so as to be consistent with flow conservation 
from upstream detectors, and from calculating density as the quotient of 103v  and 103s , and then 
dividing by an assumed average vehicle length of 20 ft (6 m) to calculate estimated occupancy. 
One advantage of this procedure is that it estimates the volume, speed, and occupancy 
simultaneously, considering the relationship between the three; the methods described above 
must calculate each of these separately, with no explicit guarantee of consistency.  

4.3.3 Results 
 Using the procedures described above, eleven methods for imputing data were applied: 

SLR-MED, SLR-AVG, MLR-MED, MLR-AVG, LOCAL, GLOBAL, NBLR, HIST-MED, 
HIST-AVG, FACTOR, and CST. This subsection presents results from these tests grouped by 
type; Section 4.3.6 presents a broader perspective on all eleven. 

Linear Regression-Based Models 

Seven of the models are based in linear regression; results are summarized in Table 4.6. 
Several results are apparent. First, for both the simple and multiple linear regression models, the 
average of the estimates outperformed the median, as measured both by the regression 
correlation coefficient ( 2r ) and root-mean square error (RMSE). This is interesting, as the 
median is often used in data imputation for its sensitivity to outliers (Al-Deek and Chandra, 
2004). 

Second, using multiple data from the same detector, and considering quadratic relations, 
as in MLR, provides a better estimate than the simple linear regression. This is not surprising, 
since more explanatory variables always improve a linear regression model; however, as seen by 
the adjusted correlation coefficients ( 2r ), the improvement is more than would be expected by 
chance. 

Third, both the LOCAL and GLOBAL models (as well as NBLR, which is built on 
LOCAL) appear to suffer from data availability issues that SLR and MLR do not—LOCAL and 
NBLR were only able to impute 2150 of the 2457 missing data (88%), while GLOBAL was only 
able to impute 755 of them (31%). By contrast, SLR and MLR were always able to impute a 
missing value. While this does suggest that the increased data requirements of LOCAL and 
GLOBAL may be a hindrance, the experimental setup nevertheless favored SLR and MLR in 
this manner. Since none of the imputed data replaced truly missing values (rather, missing values 
were simulated by randomly deleting observations), data was always available from other 
detectors at the same location, and thus SLR and MLR were always able to make imputations. 

Fourth, the GLOBAL model appears to be significantly less accurate than the LOCAL 
model, as expected. Finally, the addition of the random deviation terms in NBLR seems to 
degrade the average performance of the prediction, but does succeed in reducing the bias 
(average signed difference between observed and predicted values) by two-thirds. 

Figures 4.16 through 4.20 graphically illustrate the goodness-of-fit for these models, by 
plotting the estimated five-minute volume (vertical axis) against the value actually observed 
(horizontal axis) for these models. The median-based regressions are not shown, due both to their 
slight underperformance, and to their substantial similarity to the average-based regressions. 
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Table 4.6: Results from linear regressions  
  SLR-MED  SLR-AVG  MLR-MED MLR-AVG  LOCAL  NBLR   GLOBAL 
 n    2457  2457  2457  2457  2150  2150  755 

2r    0.9450  0.9508  0.9578  0.9625  0.9574  0.9155
 

0.8392  

2r   0.9450  0.9508  0.9576  0.9624  0.9572  0.9151
 

0.8370  

RMSE   8.80  8.33  7.73  7.29  7.77  10.9  15.0  
Bias   0.28−  0.08+  0.17+  0.06+  0.06+  0.02+  0.58+  

 
 

 
Figure 4.16: Plot of data estimated with SLR-AVG vs. observed data 
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Figure 4.17: Plot of data estimated with MLR-AVG vs. observed data 

 

 
Figure 4.18: Plot of data estimated with LOCAL vs. observed data 
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Figure 4.19: Plot of data estimated with NBLR vs. observed data 

 

 
Figure 4.20: Plot of data estimated with GLOBAL vs. observed data 

4.3.4 Historical Models 

Table 4.7 and Figures 4.21 to 4.22 show the performance of the HIST-MED, HIST-AVG, 
and FACTOR models. Clearly, these models do not perform as well as the linear regression 
models, since they cannot use current data from other detectors to refine the prediction. Of the 
three, FACTOR performs the best since it can at least make use of data observed earlier at the 
current detector; however, the averaging process still leaves substantial error. Interestingly, 
HIST-MED and HIST-AVG both appear to have a substantial positive bias, overestimating the 
true volume by approximately twenty vehicles, while FACTOR does not suffer from this 
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problem. Also, using the average was more accurate than using the median when considering 
historical data, similar to the result found with the linear regressions. 

 

 
Figure 4.21: Plot of data estimated with HIST-AVG vs. observed data 

  

 
Figure 4.22: Plot of data estimated with FACTOR vs. observed data 
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Table 4.7: Results from other models 
  HIST-MED  HIST-AVG  FACTOR  FUZZY  
 RMSE   45.15  44.21 40.37  35.01 
Bias   20.6+  20.3+  0.51+  2.02+  

 

   
Figure 4.23: Plot of data estimated with CST vs. observed data 

4.3.5 CST Model 
Table 4.7 and Figure 4.23 show the performance of the CST imputation method. 

Although outperforming the historical models in terms of RMSE, it still falls significantly short 
of the performance of the linear regression models. Again, it should be noted that by only 
considering missing volume, the experimental setup did not favor one of CST's strengths, 
namely, its ability to simultaneously estimate consistent values of volume, speed, and occupancy. 

4.3.6 Conclusion 

To help improve the quality of traffic data, imputation algorithms have been developed to 
make estimates about missing data. This paper compared eleven such algorithms; eight of these 
existed in the past literature, and three (LOCAL, GLOBAL, and CST) were developed in the 
course of this research. Of these, the linear regression-based models were the most accurate in 
predicting the true values of randomly deleted observations. However, their data requirements 
are the most significant, and in practice it may be desirable to have a ``backup'' imputation model 
ready to use if all of the input data are not available. Conversely, the imputation methods based 
on historical observations have minimal data prerequisites, but are much less accurate. The 
performance of the CST imputation algorithm lie between these two, and more research is 
needed to fully determine its suitability for this application. 

Although this paper gives guidance regarding such algorithms, there remains much future 
work in this area. First, more sophisticated regression models (such as nonparametric regression) 
or time series techniques can be compared alongside these eleven algorithms. Second, additional 
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data sets should be considered, to examine whether these findings can be generalized. Third, 
more realistic experiments replicating actual causes of missing data (such as power outages, or 
regular communication downtime for maintenance) can be conducted, providing a better view of 
how these algorithms might perform in practice. 

4.4 Extrapolation by Kriging 
While the imputation methods described in Section 4.3 are appropriate for estimating 

missing values of data at detector locations, they are less useful for estimating traffic data where 
no detectors are present. Kriging methods can be used to predict count values at unmeasured 
locations while also assessing the errors of these predictions. These methods rely on the notion of 
autocorrelation in error terms/unobserved factors over space, where the level of autocorrelation 
is a function of distance. Meanwhile, the values to be predicted may have their own predictive 
factors (e.g., number of lanes and facility type). These create a “trend” estimate, µ(s); so, in 
general, the spatial data can be expressed as follows:  

 
Z(s)i = µ(s)i + ε(s)i,          (4.5) 
 

where Z(s)i is the variable of interest (actual count here) and s gives location (x,y coordinates of 
site i. Z(s)i is composed of a deterministic trend µ(s)i and a random error component ε(s). These 
ε(s) values are correlated over space. Features of “trend” (often called “drift” in other studies), or 
the expected value of Z(s), divide Kriging methods into three categories: If µ(s) is constant 
across locations or unknown, one can rely on Ordinary Kriging. Trends that depend on 
explanatory variables and unknown regression coefficients must rely on Universal Kriging. If the 
trend is known, one has Simple Kriging. The “Geostatistical Analyst” tool and “Spatial Analyst” 
tool in ArcGIS can be used to fit and then apply these different Kriging methods. 

Weak stationarity is assumed in all three of these methods, so that the correlation 
between Z(s) and Z(s + h) does not depend on actual locations, but only the distance h between 
the two sites. This is necessary to ensure replication. Furthermore, thanks to weak stationarity, 
the variance of Z(s+h) - Z(s) equals 2γ(h) for any s and h, where 2γ(h) is used as the y-axis in a 
“variogram” and γ(h) is used in a “semivariogram.” 

4.4.1 Universal Kriging  
In Universal Kriging, µ(s) can be a deterministic function of any form. A simple 

assumption is to use a linear function where µ(s)=Xβ, (where X contains explanatory variables 
like number of lanes and facility type). In contrast, ε(s) reflects unobserved variation (e.g., local 
land use patterns, presence of subway routes).  

For purposes of prediction, Kriging is performed on the Z(s) values. The sum of 
interpolated random component ε(s) and the estimated µ(s) values together lead to the estimated 
Z(s) values. The following section first introduces how the random component ε(s) is estimated 
with Kriging.  

4.4.2 Interpolating Random Components using Variograms 
As noted above, weak stationarity ensures the following: 
 

γ(h) = 1/2 var [Z(s+h) – Z(s)]         (4.6) 
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Where var [Z(s+h) – Z(s)] is the variance (over all sites) between counts at sites s and s + h. The 
first step is to select an appropriate semivariogram model for a given dataset. There are several 
types of commonly used models such as exponential, spherical, and Gaussian models. The model 
specifications for these models are shown as equations (4.7)-(4.9) and plotted in Figure 4.24: 
 

1. Exponential  

      (4.7) 
2. Spherical 

     (4.8) 
3. Gaussian 

      (4.9) 
 

 
Figure 4.24: Several semivariance model specifications 

These models all rely on three parameters that shape their functions and indicate spatial 
dependency. c0 is called the “nugget effect.” It reflects the discontinuity at the origin of the 
variogram caused by factors such as sampling error and short scale variability. (In theory the 
value of the variogram γ(h) for h = 0 should be zero.) Here, a is called the “range.” This scale 
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factor determines the threshold distance at which γ(h) stabilizes flattens. c0+c1 is the maximum 
γ(h) value, called the “sill,” with c1 referred to as the “partial sill” (Cressie, 1993). Figure 4.25 
illustrates these parameters: 

 

 
Figure 4.25: Illustration of Semivariogram 

4.4.3 Estimation of Parameters 
It is simpler to estimate the three shape parameters using Ordinary Kriging, when all Z(s) 

values enjoy the same mean. In Universal Kriging, the vector of parameters β needs to be 
estimated (along with c0, c1 and a) because 

 
E[(Z(si)-Z(sj))2]  
= var [(Z(si)-Z(sj)] + (µ(si)- µ(si))2       (4.10) 
= 2γ (si-sj) + ∑kβk(xk(si)-xk(sj)))2  
 
One approach is to use a serious of feasible general least square models (GLS) to 

estimate β and ∑ iteratively, where ∑ indicates the covariance matrix of error terms (ε) and is a 
function of a, c0 and c1. 

Step 1. Obtain a starting value of β (e.g., β=0). 
Step 2. Compute residuals e=Z-Xβ (where X is the matrix of explanatory information 

across all sites). 
Step 3. Estimate the variogram from residuals to get an estimate of ∑. 
Step 4. Update estimate of β based on GLS: β= (X’∑-1 X)-1X∑-1Z. 
Step 5. Repeat the above steps until parameter estimates converge.  
 
Another approach to Universal Kriging is to use restricted maximum likelihood 

estimation (REML) by assuming the errors follow a normal distribution, so that dataset’s log-
likelihood enjoys the following proportionality: 

 
LL ∝ -|∑|-1/2[(Z-Xβ)’ ∑-1(Z-Xβ)]       (4.11) 
 

c0 

c0+c1 

a
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The likelihood can be maximized with respect to all unknown parameters using forms of 
Newton-Raphson or other optimization techniques. 

In traditional kriging methods, the distance h refers to the Euclidean distance between the 
estimated and observed locations. Therefore, traditional kriging can only deal with continuous 
space with consistent characteristics. In many cases, however, non-Euclidean distances are more 
reasonable. For example, the transport of smog is blocked by hills and mountains; animals 
migrate around lakes, mountains, and settlements; and vehicles travel on road networks.  

One approach to calculate such network distances based on vectors. Another, more 
convenient way is to use the “cost weighted distance,” a geographic information system (GIS) 
raster function that calculates the cost of travel from one cell to another, subject to constraints.  

However, no matter which approach is used, the calculation of network distance is not 
trivial. It is substantially more computationally intensive than simply using spatial coordinates to 
calculate the Euclidean distance. Thus, unless the region of interest involves a small-scale 
network with a few points/nodes (at most a few hundred), using Euclidean distance is preferable. 
If the network distance is to be used, it can be achieved by modifying the open-source code 
written by Lafleur (1998). after network distances between all points have been calculated. If the 
Euclidean distance is to be used, ArcGIS’s toolbox can be applied. 

Texas’s SPTC or saturation count data have been used to forecast future year counts 
(temporal extrapolation) and between existing SPTC sites (spatial interpolation). Every year in 
Texas, close to 28,000 sites are monitored for 24 hours to obtain a day’s traffic count. For the 
period 1999 through 2005, 27,363 of these sites have records count for all seven years. Table 4.8 
provides some descriptive statistics of these traffic counts over different years.  

Table 4.8: 24-HourTraffic Counts  

Year Number 
of Sites Minimum Maximum *  Mean Standard 

Deviation 
1998 27616 0 98040 5484.5 9483 
1999 27663 0 99000 5762.5 10384 
2000 27750 0 99000 5966.9 10656 
2001 27905 0 99000 6181.5 11012 
2002 27963 0 99000 6260.0 11036 
2003 27921 0 99000 6389.6 11224 
2004 27944 0 99000 6505.4 11404 
2005 27910 0 99830 6676.1 11536 

Over all 
years 27363 0 99000 6153.3 0 

Note: The 99000 values shown here may not be real numbers, but they are consistent over years and cannot be 
distinguished from other numbers such as 99830, so they have been kept here, which may cause data quality 
problems.  
 

The change in traffic counts over these seven years presents an approximately linear 
pattern. The magnitude or the slope of the change, however, varies significantly across different 
sites. In order to reasonably extrapolate future traffic counts, each site was analyzed using 
ordinary least square (OLS) regression based on all seven years’ traffic counts. Assuming counts 
change linearly with time, two parameters can describe the equation for the traffic counts at each 
site. These are the slope and the average count (which together can also provide an intercept 
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term). Figure 4.26 is a histogram of all slope parameters for Texas’ 27,363 SPTC sites. Due to 
the long right-side tail, the horizontal axis uses a logarithmic scale, and traffic counts at most 
sites increase by around 100 each year. For the 6799 sites experiencing volume reductions, the 
most common reduction in daily count per year is 20 vehicles. 

Figure 4.27 shows the distribution of the traffic count averages (over 7 years) also with a 
logarithmically-scaled horizontal axis. As shown, most traffic sites average around 6,000 
vehicles/day. To give a sense of relative change in counts, Figure 4.28 is a histogram of slope-to-
mean count values. 

After the mean count value and the slope are calculated, traffic counts at these saturation 
sites in future years can be extrapolated, assuming that the changes in traffic volumes follow a 
linear pattern. As an example, Figure 4.29 provides year 2006 for the predicted values for all 
27,363 SPTC sites.  
 

 
Figure 4.26: Distribution of Slope Parameters for 24 Hour Counts across SPTC Sites 
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Figure 4.27: Distribution of Mean 24 Hour Traffic Counts across SPTC Sites 

 

 

Figure 4.28: Distribution of Slope-to-Mean Count Values (Relative Change) 
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Figure 4.29: Predicted Counts for all SPTC Sites in 2006 

4.4.4 Spatial Interpolation of Count Data via Kriging Analysis 

Spatial Interpolation of AADT Data 

Ideally, traffic counts at locations between SPTC and ATR sites should be estimated 
using universal Kriging based on considering the network distances between locations of 
interest. Due to data availability and computational time requirements, such an approach is not 
feasible with these Texas data. For example, it can be expected that the traffic counts at each site 
depend on variables like the number of lanes, speed limit, functional class, and area type. 
Unfortunately, such information was not availably linked to the traffic count dataset. The 
research team did receive a location file for all SPTC sites. Table 4.9 summarizes traffic count 
variables by districts changing patterns for sites in different districts.  
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Table 4.9: Patterns of Change for SPTC Values by Districts 

District 
Number of 

SPTC 
Sites 

Change in 
24 Hour 
Traffic 

Count/Yea
r (Slope) 

Average 
24 Hour 
Traffic 
Count 

Slope / 
Mean, (%) 

Abilene 1075 34 2800 1.22% 
Amarillo 1141 52 3754 1.38% 
Atlanta 1209 83 4530 1.84% 
Austin 1258 210 9636 2.18% 

Beaumont 952 104 7159 1.45% 
Brownwood 877 18 2307 0.77% 

Bryan 1192 176 5568 3.17% 
Childress 713 17 1278 1.36% 

Corpus Christi 1181 197 5933 3.33% 
Dallas 1433 321 10795 2.98% 
El Paso 386 183 9301 1.97% 

Fort Worth 1278 247 9764 2.53% 
Houston 1246 354 12977 2.73% 
Laredo 506 59 3522 1.69% 

Lubbock 1661 39 2565 1.52% 
Lufkin 1336 36 3724 0.96% 
Odessa 728 55 3815 1.43% 
Paris 1405 62 3466 1.78% 
Pharr 1019 309 9229 3.35% 

San Angelo 686 38 2255 1.67% 
San Antonio 1425 266 8919 2.99% 

Tyler 1697 81 4970 1.63% 
Waco 1392 216 6551 3.29% 

Wichita Falls 962 75 3438 2.18% 
Yoakum 1511 68 3873 1.75% 

 
To make better use of location information, this study used ESRI’s ArcGIS ® software to 

obtain some road information from street map (provided by TxDOT’s Michael Chamberlain) by 
joining road links (vector layer) to the point layer of SPTC sites. Each site obtained attributes of 
the road section that is closest to it. However, only road “class” is available in the street map file. 
Some basic visual checks suggest that the “class” variable indicates roads’ functional class, but 
because the documentation for street map is not available, the precise definition of the variable 
“class” could not be determined. Table 4.10 provides count information by class. Over 85% of 
sites are coded Type 1, so this class variable would not prove so useful in a universal Kriging 
approach.  
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Table 4.10: Traffic Counts Changing Patterns for Sites at Different Classes 

Class 
Number 
of SPTC 

Sites 

Change in 24 
Hour Traffic 
Count/Year 

(Slope) 

Average 
24 Hour 
Traffic 
Count 

Slope / 
Mean, (%) 

1 24031 80 3539 2.26 
2 3746 515 19986 2.58 
3 74 336 17252 1.95 
4 11 74 25660 0.29 
5 5 147 13075 1.12 
6 18 311 13247 2.35 
7 8 745 18271 4.08 
8 83 37 2504 1.48 
9 219 58 8598 0.68 
10 13 184 4032 4.57 
11 1 299 19691 1.52 
13 24 97 7718 1.25 
19 1 585 13456 4.35 

 
However, one can estimate traffic counts for each class separately. Hence, traffic counts 

on segments of the same class were spatially interpolated using Kriging. While using network 
distances interpolating spatial dependencies between locations along a network is behaviorally 
most reasonable, it is far more computationally intensive at the outset (E.g., for Class 1 road 
segments, the distances would have to be calculated 24,031x24,031 times. Fortunately, several 
existing studies (e.g., Hoef et al., 2006; and Kruvoruchko and Gribov, 2004) on small networks 
imply that using Euclidean distances can yield satisfactorily results, even when the dependencies 
arise over network. To ensure computational tractability, the Kriging method used here relies on 
Euclidean distances. The following two examples show how Class 1 and Class 2 road segments’ 
AADT are estimated. They both use exponential form for the semi-variogram (Equation (4.7)). 
For Class 1 segments, range (a) is 0.254, partial sill (c1) is 3.772E7 and nugget value (c0) is 
1.743E7. For Class 2 segments, range (a) is 0.147, partial sill (c1) is 2.382E8 and nugget (c0) is 
5.228E8. The fitted prediction lines are shown in Figures 4.30 and 4.31.  

Based on the calibrated semivariograms, traffic counts on all segments of these two 
classes can be predicted, as in Figure 4.32. The color shades indicate AADT levels, with the 
darkest spots representing AADT estimates above 19,918 vehicles per day and the lightest spots 
representing AADT lower than 679. It should be noted that there is probably something of an 
“edge effect” at the Texas border, due to a lack of count data. In other words, count prediction 
for areas outside the net of data points is less reliable. 
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Figure 4.30: Semivariogram Fitting for AADT on Class 1 Segments 

 

 
Figure 4.31: Semivariogram Fitting for AADT on Class 2 Segments 

 

(a) Estimates of Class 1 Locations (b) Estimates of Class 2 Locations  

Figure 4.32: Kriging-based Estimates of Traffic Counts for Year 2006 (Vehicles/day) 
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4.5 Assessing Goodness of Fit 
In order to validate the Kriging method, the study used 80% of the Class 1 observations 

to interpolate AADT values and compare these estimates to the actual AADT values for the 
remaining 20% of observations. Differences in these values were evaluated using the error ratio 
indicator, where 

        (4.12) 

The spatial distribution of these error ratios are shown in Figure 4.33, and their histogram 
is shown in Figure 4.34. The mean of these errors is -0.16 (or -16%) with a standard deviation 
0.68. Apparently, the spatial interpolated values tend to over-estimate AADT by about 16%, and 
in locations with very low or very high AADT values (e.g., the various 99,000 values, which 
may be unknown), the estimation does not perform very well.  

 
Figure 4.33: Differences between Kriging Estimates and Observed Traffic Counts 
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Error Ratio 

Figure 4.34: Histogram of Differences between Kriging Estimates and Observed Traffic Counts 

4.5.2 Summary 

This section describes a process that can be used to estimate real-time and longer-term 
traffic counts throughout a network based on limited information, using ArcGIS tools. Though 
such methods can be further refined (for example, by including more influential factors and 
using network distances between all count locations), these predictions make effective use of 
temporal and spatial information in existing data sets. These predicted values can be used as 
estimates of traffic conditions at unmonitored sites in any year, facilitating system management, 
data analysis, and investment decisions.  

Further, kriging can be applied over large geographic scales (such as an entire state) even 
with sparse detector coverage; of course, accuracy is improved with greater coverage. At the 
same time, kriging has several drawbacks: it is at best a coarse approximation of traffic volumes, 
and does not account for the actual transportation infrastructure or demand patterns, and can only 
be applied at aggregate time-scales. Still, when only sparse data exist, kriging is the best 
interpolation method. 
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Chapter 5.  Prototype System Test 

Chapters 3 and 4 studied and developed individual components of an integrated data 
archive, emphasizing organizational, methodological, and technical aspects of such a system. In 
particular, the following challenges were addressed: 

• A common data format was identified, allowing any type of traffic detector 
(including innovative technologies) to provide input to the archive at any reporting 
frequency. 

• A novel data reliability algorithm, based in continuous set theory, was developed 
to flag suspicious data according to three criteria: the degree to which data respect 
fundamental traffic laws, spatial consistency with nearby detectors, and temporal 
consistency with previously observed data at the same location. 

• Several error correction and imputation procedures were studied and developed, 
using a variety of statistical techniques. While imputed data are not suitable for all 
applications of a data archive, they are highly useful for others, and the accuracy of 
these systems was studied. 

 
This chapter describes a test of these using field data from northwest Houston, collected 

in October 2007. Three detectors are used for this test: two side-fire radar detectors, and one 
ATR. Data from each of these detectors was converted into a common format, and entered into a 
flat-file database.  

The analysis in this task is driven by one of the primary motivations for implementing 
such an archive: using other ITS detectors to augment ATRs in AADT counts. Thus, the focus is 
on the suitability of using neighboring ITS detectors to estimate missing or unreliable ATR data.  

Of course, it is impossible to compare truly missing ATR data to the actual volumes on 
that day; for this reason, missing data was simulated by randomly deleting selected observations, 
applying the imputation procedure, and comparing the imputed value to the actually-observed 
value. Both sporadic communication failures and longer power outages were simulated, by either 
deleting individual observations, or by deleting a block of observations. 

The remainder of this technical memo describes this test in greater detail. First, the data 
are described, followed by the results of the reliability analysis on the ATR data. Two different 
imputation techniques are then compared, and the results discussed. The memo concludes with a 
summary of the key findings from this experiment. 

5.1 Data Acquisition and Processing 
Traffic data was obtained from three detectors in northwest Houston. Two of these 

detectors are side-fire radar (IDs 1083 and 3989, respectively located on US-59 at SH 288 and on 
US-290 at Telge) operated by the Houston Traffic Management Center, and the other is an ATR 
operated by the Transportation Planning and Programming division of TxDOT (Station 3, ID 66, 
located 4.5 miles west of FM 1960). Thus, the ATR and detector 3989 are closely located in 
northwest Houston, while detector 1083 is farther away, located downtown (Figure 5.1). All 
available data were obtained for October 2007; this month was chosen for its lack of public 
holidays, and to avoid demand fluctuations that occur in the summer. The ATR provides hourly 
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volumes for each lane, while the side-fire detectors provide per-lane volume, speed, occupancy, 
and vehicle classifications at a 30-second resolution. 

October has a total of 744 hours; of these, the ATR reported data for all but 72 hours, 
indicating 90.3% data availability. Likewise, this month has a total of 89,280 thirty-second 
intervals. Detectors 3989 and 1083 respectively report data for 88,967 and 80,268 of these, 
indicating 99.6% and 89.9% data availability for this month, respectively. 

The ATR and radar detectors report this information in considerably different formats: 
the ATR uses a text spreadsheet, while the radar detectors use a flat-file database. For further 
analysis, software was written to post-process the data, converting these data into a common 
format, allowing direct comparison.  
 

 
Figure 5.1: Location of detectors used in this study. 

5.2 Reliability Analysis 
The reliability index (RI) calculation procedure, described in Section 4.2, was applied to 

the ATR data. Because data was only available for one nearby detector (3989) and no 
intermediate onramps, the “network reliability” calculation had to be modified as follows: first, 
the average ratio between the 3989 and ATR volumes was calculated; second, the 3989 volume 
was divided by this ratio; and third, this value was input as the only upstream detector for the 
network reliability procedure. Essentially, we are assuming that the on- and off-ramp volumes 
vary in direct proportion with the volume at station 3989. Although not entirely accurate, this 
provides a reasonable approximation to the missing data at these locations. 

The results of this analysis are shown in Table 5.1 and Figure 5.2, providing a histogram 
of reliability indices. In Table 5.1, the column marked “Cumulative” indicates the percentage of 
the data attaining at least a certain reliability level; that is, 51% of the data have a RI of 9 or 
higher, 60% have an RI of 8 or higher, and so on. Note that over half of the data have an RI of 
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either 9 or 10, and nearly 80% of the data has an RI of 5 or higher, indicating that a significant 
majority of the data is highly reliable. 

Table 5.1: Distribution of reliability indices 
 

Reliability 
Index

Proportion Cumulative 

0 0% 100% 
1 10% 100% 
2 0% 90% 
3 1% 90% 
4 10% 89% 
5 13% 79% 
6 2% 66% 
7 4% 64% 
8 10% 60% 
9 24% 51% 

10 27% 27% 

 
 

  
Figure 5.2: Histogram of reliability indices. 

5.3 Simulation Experiments 
Field data are found missing for a variety of reasons; sporadic communication errors 

result in occasional “dropped” data at randomly distributed times, while routine system 
maintenance creates a regular pattern of missing data. Other events, such as power outages, 
result in blocks of data missing, but at unscheduled intervals. 
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Using the data described above, simulation experiments were performed to examine the 
performance of data imputation algorithms for different types of missing data. In order to study 
the accuracy of these algorithms, the following procedure was adopted: first, selected 
observations were deleted (forming the “missing” data). Next, two imputation procedures were 
applied: double linear regression, and historical imputation. Finally, the imputed data was 
compared to the actual observation (the one which was deleted), allowing the accuracy to be 
assessed. Note that the missing data must be created artificially, by deleting from actual 
observations, because it is impossible to measure the accuracy of the imputed data unless the 
actual observation is known for comparison. 

The first experiment is intended to represent irregular communication failures, and is 
simulated by randomly deleting ten percent of the (hourly) ATR data observations from October 
2007. The remaining ninety percent of the data is used to calibrate two models: 

Double linear regression relates the hourly volumes measured at the two radar detectors 
(3989 and 1083) to the hourly volume measured at the ATR, that is, 

்ோݍ  ൌ ߚ  ଵ଼ଷݍଵ଼ଷߚ    ଷଽ଼ଽݔଷ଼ଽ଼ߚ 
 

where qATR, q1083, and q3989 are the volume readings at the ATR, 1083, and 3989, respectively, 
while β0, β1083, and β3989, are regression parameters. Note that q1083 and q3989 are actually 
observed, while qATR is the imputed value. A “least squares” estimate of the regression 
parameters is made; that is, β0, β1083, and β3989 collectively minimize the average squared 
difference between the actual ATR volume reading and ߚ  ଵ଼ଷݍଵ଼ଷߚ    ,ଷଽ଼ଽݔଷ଼ଽ଼ߚ 
according to the calibration data set. 

When applied to the observations from October 2007, the following relation was 
established: 

்ோݍ  ൌ െ144.2  ଵ଼ଷݍ0.4576  െ  ଷଽ଼ଽݔ0.00472
 
Regression analysis also provides an indication of confidence in the equation, called the 

R-squared value, which ranges between zero (no relation between radar detectors and missing 
data) and one (exact correspondence). The R-squared value for this equation is 0.989, which is 
extremely good, and indicates a very close fit between the calibrated equation and the observed 
data. Another measure of the equation’s validity is the t-statistic, which shows how well each of 
the input data (side-fire radar volumes) predicts the missing ATR data. The t-statistics for 
detectors 1083 and 3989 are 0.674 and 106.8, respectively, indicating the detector 3989 is 
extremely useful in predicting the missing ATR data, while detector 1083 is somewhat less 
useful. This is in accordance with intuition, since detector 3989 is located very close to the ATR 
station, while detector 1083 is located much farther away, on a different facility. 

Historical imputation adopts a different method for predicting missing data: rather than 
deriving an equation based on detectors at other locations, historical imputation is accomplished 
by replacing the missing observation with a “historical average.” For this experiment, the 
historical average is defined as the mean volume corresponding to the hour of the day that is 
missing. This method has the advantages of being simpler and not relying on the presence other 
data (for example, double linear regression cannot be applied if either of the input detectors is 
also missing data); the clear disadvantage is that a purely historical method cannot model any 
deviation from past patterns.  
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After calibrating both of these models using ninety percent of the data, the remaining ten 
percent were used to test their accuracy. Double linear regression proved much more accurate: 
the average absolute error was 7.55%, as compared to 23.8% with historical imputation. This 
difference can also be seen graphically: Figures 5.3 and 5.4 plot the actual observations 
(horizontal axis) against the imputed values (vertical axis); the accuracy of the linear regression 
model is clearly evident in these figures. Notice that historical imputation can only predict one of 
twenty-four possible values (one for each hour), providing less flexibility for modeling actual 
field conditions. 

A second experiment was performed in order to test the suitability of these imputation 
methods for generating AADT counts, one of the main motivations for this project. Current best 
practices have stringent data requirements: if an hour’s observation is missing, that day cannot be 
used in the calculation of AADT. Factoring approaches exist in the literature, but suffer from the 
same limitation as historical imputation, namely, assuming that past conditions are replicated 
perfectly in the present. However, the regression approaches have the potential to bypass this 
limitation to some extent, by using concurrent data from other locations.  

The following experimental setup was adopted: twenty-four consecutive hours of data 
were chosen, corresponding to one of the days in October. For each of these hours, volume at the 
ATR location was imputed using the double linear regression equation calibrated in the first 
experiment. The total daily volume estimated in this way is then compared to the actual total 
daily volume measured at the ATR site. Table 5.2 shows the results of this comparison (note that 
October 23-26 data are missing, since ATR data are missing for these days, and cannot be used 
for comparison. 

The average error in calculating daily volumes in this way is 3.43%, which is smaller 
than that used when predicting individual hourly volumes. (This is in accordance with statistical 
results such as the Central Limit Theorem.) This suggests that regression can be a powerful tool 
for estimating daily volumes when missing data are present. 
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Figure 5.3: Imputed vs. actual observations, double linear regression 

 

 
Figure 5.4: Imputed vs. actual observations, historical imputation 
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Table 5.2: Observed vs. imputed volumes for daily traffic counts 
Day Observed volume Imputed volume Error 

1 101905 106232 +4.07% 
2 103435 108158 +4.37% 
3 105106 110689 +5.04% 
4 108477 113539 +4.46% 
5 123713 127162 +2.71% 
6 105033 107918 +2.67% 
7 86796 87206 +0.47% 
8 100991 108445 +6.87% 
9 102613 108862 +5.74% 
10 105311 110859 +5.00% 
11 110641 113633 +2.63% 
12 124126 126811 +2.11% 
13 106645 109447 +2.56% 
14 89082 87356 –1.97% 
15 98464 101924 +3.39% 
16 104179 109658 +5.00% 
17 103401 110089 +6.08% 
18 109041 114358 +4.65% 
19 123007 127213 +3.31% 
20 107282 110100 +2.56% 
21 89285 88848 –0.49% 
22 98441 103314 +4.72% 
26 127322 129209 +1.46% 
27 119568 118932 –0.53% 
28 95107 93286 –1.95% 
29 104402 108589 +3.86% 
30 107249 111343 +3.68% 
31 105179 109116 +3.61% 
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Chapter 6.  Conclusions 

This research has addressed a number of issues related to the storing and archiving of 
data collected by ITS equipment, and its suitability for use in a variety of applications. Both the 
research literature and agency experience indicate that data quality is one of the most significant 
barriers preventing widespread adoption of this type of data sharing. To this end, a new 
technique for quantifying confidence in ITS data has been developed, evaluating data according 
to its fundamental consistency (consistency with basic physical constraints), network consistency 
(consistency with nearby detectors), and historical consistency (consistency with past data at the 
same detector). Missing data is a major factor as well, and a comparison of imputation methods 
was undertaken. Our results indicate that the linear regression-based models are the most 
accurate, although they have higher input data requirements. While imputing missing values 
based on historical data is less accurate, this approach is almost always usable. 

A prototype system was constructed, incorporating these routines, and receiving data 
from an ATR and a side-fire radar detector. This system is flexible with regard to input data type, 
and is capable of receiving data from virtually any traffic detector once a small program is 
written to translate the detector data into the standard format. A web interface was constructed, 
allowing any user to access stored data and generate reports. Implementation guidelines are also 
given to show how such a system can be constructed incrementally. 

Appendices to the main text illustrate other interesting findings, including an example 
application to transportation planning, and a demonstration suggesting that reducing the amount 
of stored data need not significantly degrade the quality of stored data – statistical time-series 
analysis techniques can be used to recover omitted data with a high degree of accuracy.  

Given the technical feasibility of implementing a data archive, as illustrated by the 
prototype system, and given the potential benefits of a rich data source to transportation planners, 
operations personnel, and others, the advantages of implementing a shared archive should be 
evident. Although institutional barriers still exist, the future outlook for this type of data sharing 
is bright.  
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Appendix A: Equipment Guidebook 

A data archive intended for long-term use should be able to accommodate new and 
innovative detector technologies introduced at a later date. As described in Chapter 3, this is 
accomplished on the database side by converting all recorded data into a common format, 
allowing all data to be treated identically by the archive. 

In the course of this research, an assessment was made of both standard and innovative 
detector technologies. Strengths and weaknesses of each technology were identified, relative to 
implementation and suitability for data archiving (e.g., data quality). This guidebook summarizes 
the technical research performed in this manner, describing the following technologies in this 
order:  

• Video detection technology 

• Wireless location technology 

• Laser detection 

• Infrared technology 

• Radar and acoustic traffic sensors 

• Inductive loop detectors 

• Weigh-in-motion 

• Wireless magnetic technology 

• Intelligent road studs (IRS) 

• Aerial image analysis 
 
A list of references is provided along with each technology. 

Video Detection Technology 
Description: Video cameras placed alongside a roadway can be used for traffic detection 

and monitoring, providing real-time images of traffic conditions (Figure A.1). 
 

   
(Source: City of Overland Park, Kansas) 

Figure A.1: Video detection technology 
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How it Functions: Cameras continuously record images of traffic conditions, which can 

be analyzed to extract a variety of information. 
Data Provided: Image analysis algorithms can be applied to video data to obtain traffic 

volumes, vehicle classification, occupancy, or speed by identifying and isolating individual 
vehicles.  

Advantages: At least in theory, nearly all desired traffic data can be extracted from video 
footage. Further, these systems are non-intrusive, and do not require roadway disruption for 
installation or maintenance. 

Disadvantages: The performance of image analysis algorithms can suffer in poor 
weather, darkness, glare, or shadows; these can be partially mitigated by installation of lighting 
near the camera, or by installing multiple cameras to improve resolution and accuracy. 

 
Additional Information:  
Chang, S., Chen, L., Chung, Y., and Chen, S. “Automatic License plate Readers.” IEEE 

Transactions of ITS, Volume 5, Issue 1 pp 42-53, 2004. 
Tseng, B.L., Lin, C., and Smith, J.R. “Real Time Video Surveillance for Traffic Monitoring 

Using Virtual Line Analysis” 2002 IEEE International Conference on Multimedia and 
Expo, Vol.2 pp 541-544 

Douret, J., Benosman, R., “A multi-cameras 3D volumetric method for outdoor scenes: a road 
traffic monitoring application.” Proceedings of the 17th International Conference on 
Pattern Recognition, 2004. 

Lee, H., Daehwan, K., Daijin, K., Bang, S. Y., “Real-Time Automatic Vehicle Management 
System Using Vehicle Tracking and Car Plate Number Identification” Proceedings. 2003 
International Conference on Multimedia and Expo Volume 2, Issue , 6-9 July 2003 
Page(s): II - 353-6 vol.2 
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Wireless Location Technology 
Description: Wireless devices, such as cellular phones, can serve as traffic probes that 

can collect data based on direct observations (Figure A.2). 

 
Figure A.2: Wireless location technology 

How it Functions: The locations of cellular phones or other devices can often be 
triangulated using either ground infrastructure (such as phone towers) or global positioning 
satellites (GPS). (While the former is less accurate, power requirements are smaller.) By 
observing this information over time, vehicle trajectories and speeds can be obtained. 

Data Provided: Real-time speed and travel times can be directly observed. Further, 
volume can be indirectly observed, if the approximate penetration of wireless probes in the 
driving population is known. 

Advantages: Agencies are not required to deploy or maintain any infrastructure; rather, 
the probe devices are privately owned. Thus, this technology has very low deployment and 
operational costs. 

Disadvantages: The accuracy of the triangulation can be problematic, especially with 
parallel facilities that are closely located (for instance, a freeway and a frontage road). Further, 
privacy issues are extremely important, and users must either be assured of the anonymity of the 
data, or receive some benefit (such as free real-time travel information) in return for the use of 
their wireless device as a traffic probe. 

 
Additional Information:  
Fontaine, M. D. , Smith, B. L. “Improving the effectiveness of traffic monitoring based 

on wireless technology” Virginia Transportation Research Council 05-R17 , 2004. 
Fontaine, M. D., Smith, B. L, “ Investigation of the Performance of Wireless Location 

Technology-Based Traffic Monitoring Systems” Journal of Transportation Engineering , March 
2007 

Wunnava, S., Yen, K., Babij, T., Zavaleta, R., Romero, R., Archilla, C., “Travel Time 
Estimates Using Cell Phones on Highways and Roads” Final Report Prepared for the Florida 
Department of Transportation, Florida International University, January 29, 2007 
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Laser Detection 
Description: A laser is installed above the roadway, emitting a beam aimed at a 

photodiode array placed on the pavement (Figure A.3). 
 

 
Figure A.3: Laser detection technology 

How it Functions: Vehicles passing underneath the laser break the beam, allowing the 
photodiode array to detect its presence.  

Data Provided: Volume is directly measured; two closely-spaced detectors can also 
provide speed information. Vehicle classification can also be attempted, based on vehicle length. 

Advantages: Lasers have been found to outperform loop detectors as well as video 
detection in conditions of rain and fog. Further, the system does not distract drivers and poses no 
safety risk. 

Disadvantages: Detection accuracy is diminished in stop-and-go traffic. Also, some 
research indicates that laser detectors perform less well in extreme temperatures. 

 
Additional Information:  
Cheng, H. H., Shaw, B. D., Palen, J., Lin, B., Chen, B., and Wang, Z. “Development and 

Field Test of a Laser-Based Nonintrusive Detection System for Identification of Vehicles on the 
Highway.” IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 2, June 2005  
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Infrared Technology 
Description: Infrared transmitters and receivers are located on the roadside, and detect 

passing vehicles (Figure A.4). 
 

 
(Source: Sumitomo Electric USA, Inc.) 

Figure A.4: Infrared technology 

How it Functions: Passing vehicles can be observed through disturbances in the infrared 
beam. 

Data Provided: Volume, speed, vehicle classification, and lane position are all recorded 
by infrared detectors. 

Advantages: Infrared systems are highly accurate, and a single installation can provide 
data on up to twenty lanes. Further, installation and maintenance do not disturb traffic flow, since 
the devices are located on the side of the road. 

Disadvantages: Infrared detection can be expensive, and the signal can be scattered due 
to rain or snow. Further, the roadside location makes equipment vulnerable to collisions and 
vandalism. 

 
Additional Information:  
Kotzenmacher, J., Minge, E., and Hao, B., “Evaluation of Portable non-intrusive traffic 

detection system,” Minnesota Department of Transportation, St. Paul, Minnesota. IMSA Journal, 
2004. 
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Radar and Acoustic Traffic Sensors 
Description: A radar or acoustic device is installed either on the side of the roadway, or 

above one or more travel lanes (Figure A.5). 
 

 
(Source: SmarTek Systems) 

Figure A.5: Radar/acoustic transportation technology 

How it Functions: Radar or acoustic signals are emitted by the device, and the resulting 
reflection used to collect traffic data. 

Data Provided: Speed, volume, length-based classification, and lane position are all 
directly obtained from the radar system. 

Advantages: Radar systems are reliable under a variety of weather conditions, and have 
only a moderate cost. 

Disadvantages: Accuracy is reduced for slow-moving traffic, and large vehicles (such as 
trucks) create both “shadowing” effects that mask vehicles in other lanes, as well as an 
overcounting effect if the truck is mistakenly counted as multiple vehicles in the same lane; this 
latter effect is most common if the truck passes very close to the detector.  

 
Additional Information:  
Kotzenmacher, J., Minge, E., and Hao, B., “Evaluation of Portable non-intrusive traffic 

detection system,” Minnesota Department of Transportation, St. Paul, Minnesota. IMSA Journal, 
2004. 

Michalopoulos, P., Hourdakis, J., “Review of Non-Intrusive Advanced Traffic Sensor 
devices for advanced traffic management systems and recent advances in video detection” 
Proceedings of the Institute of Mechanical Engineers, Vol. 215 Part 1, 2001  
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Inductive Loop Detectors 
Description: A circular loop is placed in the pavement, and connected to an electronics 

box on the side of the road (Figure A.6). 
 

 
(Source: HowStuffWorks) 

Figure A.6: Inductive loop detector technology 

How it Functions: Large metallic objects passing over loops induce a current, which is 
then observed to detect the presence of a vehicle. 

Data Provided: Volume and occupancy are directly measured. Two detectors located in 
close sequence can be used to obtain speed data. Attempts at vehicle classification can also be 
made, based on speed and occupancy. 

Advantages: Loop detectors are a well-known and well-studied technology in place 
throughout the world. Installation is relatively inexpensive, and power requirements are low. 

Disadvantages: Being located within the pavement, installation, and maintenance 
requires traffic disruption; as a result, malfunctioning detectors are often not repaired until the 
next construction project in that area. Loop detectors are also subject to pavement damage due to 
vehicles or thermal stresses. 

 
Additional Information:  
Lin, L., Han, X. B., Ding, R., Li, G., C-Y Lu, S., Hong, Q., “A New Rechargeable 

Intelligent Vehicle Detection Sensor.” Journal of Physics: Conference Series 13 (2005) 102-106. 
Coifman, B., Krishnamurthy, S., “Vehicle re-identification and travel time measurements 

across freeway junctions using the existing detector infrastructure” Transportation Research Part 
C 15 (2007) 135-153  

Oh, C., Ritchie, S. G., “Recognizing Vehicle Classification Using Blade Sensors” Pattern 
Recognition Letters 28 (2007) 1041 -1049  

 
  



 

90 

Weigh-in-Motion 
Description: Additional equipment is added to current or newly-constructed weigh-in-

motion stations, allowing additional information to be recorded (Figure A.7). 
 

 
(Source: New Brunswick Department of Transportation) 

Figure A.7: Weigh-in-motion technology 

How it Functions: Weigh-in-motion technology often uses bending plates, piezoelectric 
sensors, or fiber-optic load sensors to detect vehicle weight, and transmit this information to a 
nearby station, often wirelessly. By equipping such stations with additional sensors to detect 
vehicle speed, additional information can be collected while taking advantage of the existing 
communications infrastructure used to transmit this data. 

Data Provided: Weigh-in-motion stations already record vehicle weight, which can be 
an excellent proxy for vehicle classification. Obtaining volume from these sensors is not difficult 
and, as mentioned above, speed data can also be collected given installation of the proper sensor. 

Advantages: Measuring weight is extremely useful for vehicle classification, and is 
rarely collected with other types of detector. Furthermore, weigh-in-motion stations are already 
equipped with communication devices, indicating that recording other data at these locations can 
be done with a lower installation cost. 

Disadvantages: Although technology has improved, weigh-in-motion technology still 
has substantial error when measuring vehicle weight. Furthermore, as they are located within the 
pavement, lane closures are needed, even to install additional sensors in the first place. 

 
Additional Information:  
Li, Z., Xiao-Ming Yang; and Zongjin Li “Application of Cement-Based Piezoelectric 

Sensors for monitoring Traffic Flows” Journal of Transportation Engineering, July 2007 Pages 
565 – 573 
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Wireless Magnetic Technology 
Description: Magnetic equipment (such as giant magneto-resistive technology, 

magnetometers, or magnetic impedance sensors), a microcontroller, a fast semiconductor 
memory, and a radio transmitter are installed on or near the roadway (Figure A.8). 

 

 
(Source: Federal Highway Administration) 

Figure A.8: Wireless magnetic technology 

How it Functions: Moving vehicles generate perturbations in the magnetic field. The 
microcontroller captures the magnetic signal, and performs an analog-digital conversion to 
process it; the results are then transmitted to a remote computer using radio wavelengths. with 
A/D conversion and processes signal. Number, speed, and length of the car are stored in ROM 
and transmitted through Radio frequency to a PC. 

Data Provided: Volume and speed are measured directly 
Advantages: Magnetic technology requires relatively little power to operate, since they 

can utilize the change in magnetic field to assist with the power requirements, and the detectors 
can operate in a “sleep” mode, greatly reducing power consumption when no vehicles are 
present. 

Disadvantages: Magnetometers are less effective at determining the exact vehicle 
perimeter, making calculations of vehicle length and occupancy less accurate unless used in 
combination with other sensors. 

 
Additional Information:  
Coleri, S., Cheung, S., and Varaiya, P., “Sensor Networks for Monitoring Traffic” 2005 
Cheung, S. Y., S. C. Ergen and P. Varaiya “Traffic Surveillance with Wireless Magnetic 

Sensors,” ITS World Congress, November 2005. 
Nishibe, Y., Ohta, N., Tsukada, K., Yamadera, H., Nonomura, Y., Mohri, K., Uchiyama, 

T. “Sensing of a Passing Vehicle Using a Lane Marker on a Road with Built In Thin Film MI 
Sensor and Power Source” IEEE Transactions on Vehicular Technology. Vol. 23, Issue 6, pp 
1827–1834 , Nov. 2004 

Doran, V. P. A., Crawford, C. B., “Trial and Evaluation of Intelligent Road Studs for 
Hazard Warning.” The Institute of Electrical Engineers, 2004 
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Intelligent Road Studs 
Description: Optical sensors are placed inside road studs located on the ground (Figure 

A9). 
 

 
(Source: Better Roads for the Government/Contractor Project Team) 

Figure A.9: Intelligent road stud technology 

How it Functions: Two light-activated optical sensors detect passing vehicles within 
each lane. Solar-powered batteries provide power, needing to be replaced approximately every 
three years. 

Data Provided: Volume, speed, and vehicle classification can be obtained from the 
optical sensors. 

Advantages: Location inside a road stud provides some protection against vehicle 
impact, while also easing installation and maintenance. 

Disadvantages: This technology is new, and conclusive results on accuracy and ease of 
implementation are not yet available. 

 
Additional Information:  
Doran, V. P. A., Crawford, C. B., “Trial and Evaluation of Intelligent Road Studs for 

Hazard Warning.” The Institute of Electrical Engineers, 2004 
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Aerial Image Analysis 
Description: Aerial images are analyzed to obtain traffic data (Figure A.10). 
 

 
(Source: MapMart) 

Figure A.10: Aerial image technology 

How it Functions: Aerial imagery (such as from a satellite or aircraft) is combined with 
a computer map and image analysis software, allowing traffic density and queue lengths to be 
observed and measured. 

Data Provided: Density, queue lengths 
Advantages: Aerial imagery provides data for all roadways in a given region, which may 

not be possible using traditional detectors that only provide data at the point of installation. 
Further, since all locations are observed simultaneously, the data is always internally consistent. 

Disadvantages: As a static observation, aerial photos cannot provide direct information 
on volume, speed, or other dynamic phenomena. Further, it is costly to obtain such data on a 
regular basis, and continuous observation is most likely prohibitive. 

 
Additional Information:  
Leitloff, J., S. Hinz, U. Stilla “Automatic Vehicle Detection in Space Images Supported 

by Digital Map Data” CMRT05. IAPRS, Vol. XXXVI, Part 3/W24 2005 
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Appendix B: Survey Distributed to Texas TMCs 

The following survey was distributed to nine traffic management centers in Texas; five 
responses were received.  

 
Utilizing the Data Collected at Traffic Management Centers for Planning Purposes 

Through Non-Traditional Sources and Improved Equipment 
 
Thank you for your participation in this project! Due to your experience in traffic 

operations, you are in the best position to offer us guidance on this project, and we 
greatly appreciate your help. 

 
1. What type of sensors or detectors does your TMC use? (e.g., loop detectors, 

CCTV cameras, video-based detection) 
 
2. Approximately how many of these sensors or detectors do you control? 
 
3. What type of data is recorded by these sensors or detectors? 
 
4. What procedures (if any) are performed on the data from the detectors to 

verify that they are accurate and functioning properly?  
 
5. Is this data stored or archived in any way? (If “no”, skip to question 9) 
 
6. Briefly describe how and where this data is stored. 
 
7. How does one access this data? (e.g., is there a software program that helps 

you retrieve it?) 
 
8. How often is this data used? 
 
9. What are the most common uses for this data? 
 
10. What is your opinion about how your TMC archives its data? Do you have 

any suggestions for how this might be improved? 
 
11. There is interest in using archived ITS data for planning purposes as well. 

What do you foresee as the biggest obstacle in this type of data sharing? 
 
12. A variety of innovative detector technologies have been proposed in recent 

years, such as in-vehicle transponders, license plate readers, digital aerial image 
processing, telematics, and so on. Are you familiar with these technologies? Do you feel 
such technologies would be useful for your TMC? If so, what gaps in current detector 
coverage would these help fill? 
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Appendix C: Analysis of Variability in Count Data 

To assist in developing measures of data reliability, ATR data has been obtained from 
Texas, and its variability has been analyzed. Due to a lack of information on variables such as 
urban or rural classification, number of lanes, or functional class for each ATR site, the analysis 
is limited to the effects of day of week (DOW), month of year (MOY) and year. Using Florida 
and Minnesota’s ATR data sets, Gadda et al. (2007) provide a sense of the impact of other 
variables on AADT estimate uncertainty and error.  

According to the FHWA, AADT across large-scale networks can be estimated by taking 
short-period traffic counts (SPTCs) and adjusting for year-to-year trends, month of year (MOY) 
and day-of-week (DOW) factors developed using count data obtained from permanent automatic 
traffic recorder (ATR) stations. 

Of course, all estimates are only estimates. Uncertainty is involved. This analysis seeks to 
quantify this uncertainty by essentially treating ATR sites like SPTC sites and examining the 
mis-prediction that accompanies one or more day’s data. AADT can be determined precisely at 
sites having permanent ATRs that are accurately recording traffic flows throughout the year. 
There are totally 208 ATRs’ data available in Texas, but a certain portion of these 208 sites are 
not functioning properly in any given year. Thus, of the 7 years (1999-2005), there are totally 
900 year-long records (or roughly 130 per year) with adequate data. Based on these 900 year-
long records, month-of-year and day-of-week factors could be created expressly and precisely 
for each location. Thus a year’s AADT can also be estimated from each day’s SPTC using the 
following formula: 

 
AADTest,i =VOLi × Mi × Di × Ai × Gi           (C.1) 
 

where AADTest,i is the estimate of annual average daily traffic count at location i, VOLi is the 
actual 24-hour axle volume, Mi is the applicable “seasonal” (MOY) factor, Di is the applicable 
DOW factor, Ai is an axle-correction factor for location i, and Gi is a traffic growth factor. In this 
study, vehicle counts (rather than axle counts) were given and traffic growth through inter-
sample years is not considered, so Ai and Gi are both equal 1.0, and the equation reduces to: 
 

AADTest,i =VOLi × Mi × Di        (C.2) 
 

Quantifying Errors in Count Estimation 
Mi and Di can be calculated as the ratio of the average daily traffic for the applicable 

month (for Mi , e.g., all days in January) or day (for Di, e.g., all Mondays in the year) in question. 
Since both actual and estimated AADT values were available for all ATR sites in Texas, 
percentage errors in AADT estimation were calculated as follows: 

        (C.3) 

 
These are computed as absolute errors, for purposes of averaging, and to achieve a sense 

of the overall magnitude of uncertainty. It should be noted here that at present, the actual vehicle 
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counts provided as the average of a specific day of week in each month of the year (e.g., the 
average count for all Mondays in January). Thus, the AADTest,i here is already an average of 4 or 
5 days’ AADT estimates. Thus, the values effectively represent a 96- or 120- hour count, not a 
24-hour count, and the resulting errors are expected to be 50% lower than an error calculated 
using actual 24-hour daily vehicle counts.  

As Figure C.1 shows, most factoring errors (%errori) are around 10%, with the highest at 
31%. In addition, based on the information from these 900 records, Figures C.2 through C.4 
provide factoring errors that emerge in different months, different days of the week, and different 
years are provided in Figures C.2 through C.4. It appears that factoring errors are highest on 
Sundays (19% average) and Mondays (13%), and lowest on Fridays (6%), when travel patterns 
may be most stable. In terms of season, average uncertainty appears greatest in September 
(almost 14%), but the differences across months of the year is not so great (ranging from over 
9% to just under 14%). Errors appear to peak in 2004, but no time trends are clearly visible. 

 

 
Average % Error 

Figure C.1 Histogram of Errors in Predicting AADT from A Single Count Record  
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Figure C.2 Average Errors in AADT Estimation Errors by Day of Week  

 

 
Figure C.3 Variation in AADT Estimation Errors by Month of Year 
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Figure C.4 Variation in AADT Estimation Errors by Year 

Summary of Count Estimation Errors 
This analysis uses TxDOT’s ATR dataset to evaluate AADT estimation errors. In 

general, if one is using a 4- to 5-day count to estimate AADT, typical errors or mis-prediction are 
expected to range from 6% to 19%, and average about 10%. And Fridays and February appear to 
offer best chance at prediction. Such values are lower than Gadda et al.’s (2007) prediction errors 
for Florida (where average error is 17.5% when using weekend counts, and 12.8% when using 
weekday counts) and Minnesota (17.8% and 11.3%, respectively), largely because of the 96- to 
120-hour count data that TxDOT provided (which reduces variation, relative to Florida and 
Minnesota’s 24-hour counts). Errors in actual AADT estimates are expected to be more than 
twice as high for estimates based on 24-hour counts and using proxy ATR MOY and DOW 
factors (rather than relying on the SPTC site’s own factors, as done here, which requires “perfect 
[365-day] information”).  
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Appendix D: Example Application—VDF Calibration 

As described in this document, there are many planning applications that can benefit from 
ITS data. One example is described in this appendix: calibration of volume-delay functions 
(VDFs) used in trip assignment. 

It is well-known that the travel time on a roadway depends on the traffic volume (or 
demand) on that segment. A VDF specifies the relationship between the roadway volume and 
average travel time needed to traverse that segment. VDFs are crucially important in trip 
assignment, the final step of four step planning process that assigns vehicles to the links of a 
network.  

Numerous research studies (TRB, 2000; Bureau of Public Roads, 1964; Bertini et al., 
2005)) have investigated the exact functional form of the travel time and volume dependency. 
The functional form of the VDF depends on the underlying traffic model used in the derivation. 
In this study, we derive VDFs from the simple Greenshields model, and also from the speed 
volume relationship specified in Highway Capacity Manual (HCM). VDFs were also obtained 
from calibration using detector data, and the CORSIM simulator was also used to generate travel 
time for different volume of traffic. CORSIM was also used to estimate the queuing delay due to 
traffic entering and exiting the freeway.  

The volume delay function proposed by Bureau of Public Roads (BPR) is one of the 
commonly used volume delay function. The generic BPR volume delay function has the 
following function form. 

ሻݒሺݐ  ൌ ݐ  כ ቆ1  ߙ ቀܿݒቁఉቇ 

 
In the above equation t(v) denote the travel time on link with volume v, capacity c and 

free flow travel time t0 . The commonly used α and β values are 0.15 and 4, respectively. 
The BPR function can be derived from the fundamental Greenshields traffic flow model, 

offering insight into the assumption of the BPR volume delay function. Let v denote flow on 
link, s space mean speed and k is the density. s0 is the free flow speed on the link, c is the 
capacity of the link, and kj is the jam density. We know from “speed-volume” relationship of 
Greenshields model that ݒ ൌ ݏ ݇ݏ כ ሺݏ െ ݇ݏݒ ሻݏ   ൌ ଶ4ݏ   – ቀݏ െ 2ݏ  ቁଶ   

ݏ  െ ݏ2  ൌ  ඨቆݏଶ4 െ ݇ݏݒ ቇ 

ݏ  ൌ 2ݏ  ۈۉ 
1ۇ   ඪ൮1 െ 4ݏ݇ݒ ൲ۋی

  ۊ
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ݏ  ൌ 2ݏ   ቆ1   ටቀ1 െ ቁቇݒܿ ܿ ݄ݐ݅ݓ   ൌ  ݇ݏ4  

 
We assume that drivers are moving with constant speed s and t is the time taken to cover 

the distance x. Let t0 be the time taken to cover the same distance x at free flow speed s0. 
ݐݏ  ൌ ݐݏ ൌ ݏݏ ݔ ൌ ݐݐ  ൌ 0.5 כ ቆ1   ට1 െ ൌ ݐ ቇݒܿ  0.5ݐ  כ ቆ1   ට1 െ  ቇݒܿ 

By Taylor series expansion,  
 ට1 െ ݒܿ  ൌ 1 െ 2ܿݒ െ  12ଷ כ ቀܿݒቁଶ െ 12ସ כ ቀܿݒቁଷ െ 52 כ ቀܿݒቁସ െ 72଼ כ ቀܿݒቁହ െ  … .. ට1 െ ݒܿ  ൌ 1 െ ൬ 2ܿݒ  12ଷ כ ቀܿݒቁଶ   12ସ כ ቀܿݒቁଷ  52 כ ቀܿݒቁସ  72଼ כ ቀܿݒቁହ  ڮ ൰  
 
Based on the field observations, the above term is approximated as 
 ට1 െ ܿݒ ൌ 1 െ 0.30 כ ቀܿݒቁସ

ൌ ݐ  0.5ݐ  כ ൬2 െ 0.30 כ ቀܿݒቁସ൰ ൌ ൬1ݐ െ 0.15 כ ቀܿݒቁସ൰  
 
By Taylor series approximation, ݐ ൌ ݐ  ൬1  0.15 כ ቀܿݒቁସ൰ 
 

The two main assumptions used in the above derivation are that road users travel with 
constant speed, and that there is no variability across drivers. 

The Greenshields model assumes a simple linear relationship between speed and density. 
So using the flow conservation equation we get a parabolic relationship between speed and 
volume. However, the observation on field suggests that the speed and flow relationship is not 
exactly parabolic. So Highway Capacity Manual (HCM) uses a piecewise non-linear curve to 
describe the speed –flow relationship: (The notation described in the previous section is used in 
this section as well.) 

 
For 70  ݏ  ݏ  ݎ݄/݅݉ 75 ൌ  െݏ  ቈ൬ݏ െ 1603 ൰ כ ൬ݒ  ݏ30 െ ݏ340030 െ 1000 ൰ଶ.      3400 െ ݏ30 ൏ ݒ  ݏ ݄ݒ 2400 ൌ ݒ                                              ݏ   3400 െ   ݏ30
For 55  ݏ   ݎ݄/݅݉ 70
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ݏ ൌ  െݏ  ቈ൬7ݏ െ 3409 ൰ כ ൬ݒ  ݏ30 െ ݏ340040 െ 1700 ൰ଶ.      3400 െ ݏ30 ൏ ݒ  ݏ 2400 ൌ ݒ                                               ݏ   3400 െ  ݏ30
 

The freeway section analyzed in this study has a free flow speed of 70 mi/hr. So the 
HCM speed volume relationship for this section can be simplified as shown below. 
ݏ  ൌ  70 െ ቈ16.67 כ ൬ݒ െ 13001100 ൰ଶ. ൌ 70 െ 2.06 כ 10ି ሺݒ െ 1300ሻଶ.     1300 ൏ ݒ  ݏ 2400 ൌ ݒ                                70   1300 
 

A new volume delay equation can be derived using the above speed volume relationship. 
The new speed volume relationship is referred to as HCM volume delay equation in this study. 
In this derivation too we assume that all users travel with constant speed and that there is no 
variability across road users. ݏݏ ൌ ݐݐ   

ݐݐ  ൌ        7070 െ 2.06 כ 10ି ሺݒ െ 1300ሻଶ.   1300 ൏ ݒ  2400     ൌ ݒ                                    1         1300 
ݐ   ൌ 1ݐ        െ 2.943 כ 10ିଽ ሺݒ െ 1300ሻଶ.     1300 ൏ ݒ  2400     ൌ ݒ                                    ݐ         1300 
 
By using Taylor series approximation, 
ݐ  ൌ ሺ1ݐ         2.943 כ 10ିଽ ሺݒ െ 1300ሻଶ.ሻ 1300 ൏ ݒ  2400     ൌ ݒ                                    ݐ         1300 
 

It can be noted that the above volume delay function is convex and hence is suited for 
solving optimization problems, such as traffic assignment. 

Next, we compare expected travel time predicted by BPR volume delay equation and 
HCM volume delay equation to traverse a 10 mile-long link under different levels of congestion. 
The expected time to traverse the segment under free flow condition (volume = 0) is 8.57 
minutes. The BPR function predicts a smooth and continuous increase in travel time from the 
free flow condition with increasing congestion. The HCM delay function, on the other hand, 
predicts the travel time to be close to the free flow travel time until volume exceeds 1500 vph. At 
that point, the travel time is predicted to increase very steeply until capacity is attained. For 
volumes not exceeding 800 vph, the BPR and HCM functions predict similar travel time, after 
which the BPR function predict higher travel times, until volumes exceed 2000 vph, at which 
point the HCM function predicts a higher travel time. At capacity, the BPR volume delay 
function predicts the travel time to be 9.9 minutes, which is 15% more than the free flow 
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condition. By contrast, The HCM volume delay function predicts a travel time of 10.6 minutes at 
capacity, which is about 24% more than free flow case.  

 

 
Figure D.1: BPR and HCM Volume Delay Function 

Calibration of generic BPR Volume Delay Function 
Calibration is the adjustment of model parameters to improve model’s ability to 

reproduce the field observation (5). As discussed earlier, the functional form of generic volume 
delay function is: ݐሺݒሻ ൌ ݐ  כ ቆ1  ߙ ቀܿݒቁఉቇ 

In the above equation, the parameters α and β are parameters can be determined by 
calibration. The calibration process typically involves solving an optimization formulation to 
find the model parameters that generate predictions closest to the field observation. The 
goodness-of-fit measure used in this study is sum of squared differences (SSD) between the 
model prediction and field observation. We seek to find the values of α and β that minimize the 
SSD between travel time predicted by BPR volume delay function, and travel time measured in 
the field. The desired values of α and β can be determined by solving the following optimization 
formulation. ݁ݖ݅݉݅݊݅ܯఈ,ఉ ൫ݐሺݒሻ െ ሻ൯ݒሺݐ

ଶ  
.ݏ ሻݒሺݐ  ݐ ൌ ݐ  כ ቆ1  ߙ ቀݒܿቁఉቇ   ݅ ൌ  1,2,3 ሻݒሺݐ …  ݒ Observed travel time on the field corresponding to volume 
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The data required for calibration was obtained from an autoscope detector located close 
to the intersection of IH35E and Regal Road in Dallas (Figure D.2). The detector reports average 
speed and volume data at every 2 minutes. The time taken to cover the link at speed measured by 
the detector for different volumes is denoted as the measured travel time. The data reported by 
detector is aggregated for 16 minutes, and then used for calibration. Twenty-four-hour data from 
6 PM on Monday, Jan 31st, 2007, to 6 PM on Tuesday Feb 1st, 2007, was used for calibration. 
The section capacity was assumed to be 2400 vph per lane.  

 

   
Figure D.2: Location of the detector used for calibration. 

The optimization formulation was solved using an inbuilt Matlab optimization program 
based on the “Nelder- Mead” method. The optimal solutions obtained after solving the 
calibration problem are: 

α = 0.856 
β = 0.9156 

 
A comparison of travel time predicted using calibrated BPR volume delay function and 

measured travel time is shown in Figure D.3.  
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Figure D.3: Calibrated BPR and Measured travel time 

The calibrated BPR volume delay function returns a unique expected travel time for a 
given volume. On the other hand, measured travel time incorporates the effect of variability 
across the drivers. At the same volume, different drivers tend to travel at different speeds and 
hence experience different travel time. When volume exceeds 1300 vph, we can see that some 
drivers are experiencing very high travel times. These conditions point to the existence of an 
unstable situation. If the demand exceeds the capacity of the freeway, then it would create a 
bottleneck and thus resulting in a start and stop condition. It must be noted that the BPR function 
models only an average situation and hence does not capture these extreme situations. On the 
whole the calibrated BPR function prediction closely matches the average measured travel time 
for a given volume. 

Figure D.4 shows a comparison of expected travel time predictions by Calibrated BPR, 
BPR, and HCM volume delay function for different volumes. The expected travel time 
prediction of the calibrated BPR function is significantly higher than the BPR and HCM travel 
time predictions. The calibrated BPR function predicts a continuous and monotonic increase in 
travel time with increasing volume, whereas the BPR and HCM volume delay predicts the travel 
time to be close to free flow condition till a volume 1200 vph, and a marginal increase thereafter. 
At the maximum volume of 2000 vph, calibrated BPR predicts the travel time to be 70% more 
than the free flow condition while BPR and HCM volume delay function predicts the travel time 
to be only about 7% more than free flow condition.  
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Figure D.4: Calibrated BPR, BPR, and HCM volume delay functions 

CORSIM Volume Delay Function 
One of the main assumptions made in the derivation of BPR and HCM volume delay 

function is that all road users are travelling with constant speed. In reality, drivers tend to 
accelerate and decelerate frequently. The constant speed assumption is relaxed by measuring the 
travel time using CORSIM simulator. The car following model is the underlying traffic 
propagation model used by the CORSIM simulator. In car following models, drivers are allowed 
to accelerate and decelerate while traversing the distance. CORSIM also explicitly models the 
variability of drivers using the roadway. 

A hypothetical roadway 10 mile long was constructed in CORSIM and the time taken to 
travel the roadway was measured for different volume. Ten types of drivers were considered for 
simulation. Each driver class is characterized by a free flow speed. The average free-flow speed 
across all the driver class was set to 65 mph (maximum free-flow allowed in CORSIM). The 
travel time variation with volume predicted by BPR and HCM for this hypothetical link is also 
computed. The CORSIM, BPR and HCM volume delay function for the roadway considered is 
shown in Figure D.5. 

The average travel time calculated by CORSIM simulation is more than the travel time 
predicted by BPR and HCM volume delay functions for all possible flows on the link. CORSIM 
simulations predict that the travel time increases almost uniformly with increasing volume. BPR 
and HCM volume delay function predict the travel time to be close to free-flow case till a 
volume of 1200 vph and from the volume of 1200 vph to 2400vph, travel time increases very 
steeply with increasing volume. It is interesting to note that at capacity of 2400 vph, the average 
travel time obtained from CORSIM simulation is close to expected travel time predicted by 
HCM volume delay function. 
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Figure D.5: Comparison of CORSIM, BPR and HCM Volume Delay Function 

Queuing Delays 
The entry and exit of traffic through ramps induce delay on the free flow of traffic on the 

freeways. If large volume of traffic is trying to enter or exit the freeway then it could result in 
formation of queues. The queuing delay is a function of the through traffic and volume of 
entering or exiting traffic. The CORSIM simulator is used to calculate the queuing delay for 
different volumes of through and entering or exiting traffic. Figure D.6 plots the queuing delay 
for different combinations of through volume and entry volume.  
 

 
Figure D.6: Queuing delay for different entry volume at entry ramps 
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It can be seen that the queuing delay increases with increasing through volume for a 
given constant volume of traffic entering through the ramps. The magnitude of increase in 
queuing delay becomes steeper as the through volume increases. The queuing delay also 
increases with increasing entry volumes. There is significant increase in queuing delay as entry 
volume increases from 200 vph to 1000 vph. However, CORSIM predicts only small increase in 
queuing delay as the entry volume increases from 1000 vph to 2000 vph.  

The queuing delay for different combination of through volume and percentage of 
through volume traffic exiting the freeway is depicted in Figure D.7. 
 

Figure D.7: Queuing delay for different exit ramp volumes 
 
As can be seen from the figure, the queuing delay increases with increasing through 

volume of traffic for a given exit volume percentage. The slope of the queuing delay increases 
with increasing through volume for a given percentage of exit volume. The queuing volume also 
clearly increases with increasing percentage of traffic exiting the freeway. At capacity of 2400 
vph, the queuing delay is 10 seconds when only 10% of through traffic is exiting, while the delay 
is about 50 seconds when 70 % of through traffic exits. 

Conclusion 
The VDF is used to calculate expected travel time of a roadway and is commonly used in 

trip assignment phase of the four step transportation planning process. The widely used BPR 
volume delay function is derived from the fundamental Greenshields model to offer insights into 
the assumption used in the derivation. A new HCM volume delay function is obtained from the 
speed-volume relationship specified in the HCM User Manual. The BPR volume delay function 
was found to predict higher travel time for low volume of traffic while the HCM volume delay 
function predicts higher travel time for high volume of traffic.  

The generic BPR contain parameters that can be determined by calibration. BPR volume 
delay function was calibrated using the data obtained from a detector located close to the 
intersection of I35E and regal road in Dallas. Calibration process involves solving an 
optimization formulation to find the BPR parameters so that BPR travel time prediction closely 
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matches the detector data. The calibrated BPR travel time predictions were found to be 
significantly higher than the travel time predictions of commonly used BPR and HCM volume 
delay functions.  

Traversing the roadway with constant speed and lack of variability across drivers are the 
two main assumptions used in BPR and HCM volume delay functions. These assumptions are 
relaxed by calculating the time taken to traverse the roadway using CORSIM. CORSIM 
simulation is based on car following models where drivers are allowed to accelerate and 
decelerate. CORSIM simulations predict the travel time to increase uniformly with increasing 
volume. On the other hand, BPR and HCM volume delay function predict the travel time to be 
the same as free flow condition till a certain threshold volume and the travel time increases 
rapidly when the volume exceeds this threshold volume. 

Large volume of entering and exiting traffic could result in the formation of queues in 
freeway. CORSIM simulator is used to calculate the queuing delay for different combination of 
through traffic and entering or exiting traffic on a freeway. As expected, the queuing delay was 
found to increase with increasing through volume. The slope of queuing delay was not uniform 
but was also increasing with increasing through volume. An increase in the entering\exiting 
volume was also found to increase the queuing delay. 
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Appendix E: Data Reduction 

In Chapter 2, several obstacles to ITS data archiving were noted, including the 
management of very large amounts of data. In this section we will present a promising technique 
to reduce the amount of data to be stored, while at the same time we can recover—to a certain 
accuracy—the data discarded. Furthermore, this technique also enables us to make judicious 
statements about the level of aggregation. Numerical experiments illustrate its effectiveness. This 
routine is not considered a key part of the prototype system because storage space is not likely to 
be a concern; however, the findings are of sufficient interest to report in this appendix. 

Motivation 
Loop detectors typically collect data almost continuously. Hence it is quite likely that 

subsequent observations are closely related to each other, which leads to the hypothesis that it is 
not really necessary to store all the data recorded by the detectors. This is especially true from 
the perspective of transportation planners. However, at the same time, it is also imaginable that 
the operations division does want to have access to the highest resolution data. Therefore, we 
have a trade-off to make about the level of aggregation. The choice of aggregation level has 
already received some attention in literature (see, for instance, Turner et al., 1999). However, to 
the best of our knowledge, no attempt has been made to recover the discarded data in the process 
of aggregation. Next we will present a model that both makes statements about the level of 
aggregation and possesses the ability to recover discarded data to a certain extent. The crucial 
observation that underlies this model is that subsequent recorded data values are somehow 
dependent. 

The Proposed Method 
In order to illustrate the proposed approach, we consider the DalTrans data on May 9-10, 

20071. A plot of the 5-minutes speed data used is given in Figure E.1. As we have noticed above, 
subsequent data values might show a certain dependence structure. However, the modeling of 
dependence is not straightforward. Instead we will examine a weaker and simpler type of 
dependence, i.e. correlation. Loosely speaking, correlation is a measure of a linear relationship 
between subsequent random observations. Mathematically, correlation is defined as follows. 
Given the random variables X and Y, with expectations EX and EY, and standard deviations σX 
and σY, respectively, the correlation (coefficient) of X and Y (ρXY) is given by 

 

,),(

yX
XY

YXCov
σσ

ρ =  

where 
( )( )( )EYYEXXEYXCov −−=),(  

 
denotes the covariance of X and Y.  

                                                 
1 http://ttidallas.tamu.edu/detectordataarchive/archive/DalTrans/ 
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Figure E.1: Speed data for sensor with ID 10043 1084 

One of the fundamental properties of the correlation coefficient is that |ρXY| = 1 if and 
only if there exist numbers a ≠ 0 and b such that Pr(Y=aX+b) =1. Furthermore, if ρXY = 1, then a 
> 0, and if a < 0, then a < 0. A more detailed discussion on correlation coefficients can be found 
in Casella and Berger (2002). 

Since we are dealing with time series, we will change notation accordingly. Instead of X 
and Y, we will use the indexed collection of random variables {Xt}, which simply denotes the 
following time series of length N: X1, X2, …, Xt-1, Xt, …, XN. When correlations are computed 
within observations from a single time series, it is customary to refer to correlation as 
autocorrelation since correlations are computed with the other values in the same time series. 
Furthermore, autocorrelations can be computed at different lags. For instance, if autocorrelations 
are computed for Xt-1 and Xt, then we have lag 1 values. On the other hand, if we use Xt-10 and 
Xt, then we will compute lag 10 autocorrelations values. One can imagine that in such a way, an 
autocorrelation function arises, where the independent variable is the time lag. When we estimate 
the autocorrelation function, we call the resulting autocorrelation function the sample 
autocorrelation function. More details on this estimation procedure can be found in Brockwell 
and Davis (2004). 

The sample autocorrelation for our speed data is given in Figure E.2. As can be seen from 
the figure, the autocorrelation is the highest at lag 1 (0.92), i.e. the linear relationship is strongest 
between values Xt-1and Xt. Therefore, we will investigate the following. Since subsequent speed 
observations are related in a linear fashion (at least, to some degree), one might consider not 
storing every other speed measurement in the central database. Moreover, after estimating the 
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linear relationship between Xt-1and Xt, we will be able to predict Xt once we know Xt-1. More 
specifically, in our case we will choose to discard the even numbered observations (thereby 
reducing the storage cost by one half). The linear functional relationship between Xt-1and Xt is 
obtained via the least squares method, which resulted in 

57.392.0 1 += −tt XX  
where t is an even number greater than or equal to 2. These steps are pictorially summarized in 
Figure E.3, where we have shown a lagplot (a plot of Xt-1 versus Xt) and the estimated linear 
relationship.  

 

 
Figure E.2: Sample auto-correlation function for speed data 
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Figure E.3: Lagplot and the least squares line 

In Figure E.4, we have shown the result of the recovery operation: based on the odd 
numbered observations and the above estimated linear relationship, we predict the even 
numbered observations. The resulting mean absolute error (MAE) between the predicted and 
observed values was found to be 3.9 mph. Further, suppose we are interested in 15-minutes 
averages as is often the case in planning applications. There are two ways obtaining these. The 
first is based on the 5 minutes speed data, the second is based on the predicted data. Figure E.5 
depicts the errors (defined as observed 15 minutes averages minus predicted 15 minutes 
averages). The MAE in this case is 1.66 mph.  
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Figure E.4: Predicted and observed speeds 

 

 
Figure E.5: Errors when calculating 15-minute averages 
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Conclusions 
In this section we have developed a new technique to determine the data aggregation 

level. The distinguishing feature is that it is able to recover data that has been discarded, at least 
to a certain degree. Here we illustrated the method via data that is reported every 5 minutes, 
which are aggregates themselves. It is conjectured that the proposed method gives smaller errors 
when higher resolution data is used, e.g. data recorded every 20 seconds. 

Recall that the objective of this technique is to facilitate data sharing. As we have seen, 
many data sharing architectures store both the highest resolution data as well as 5 minutes 
aggregates, or they store only the aggregated data. The proposed technique opens a way for 
intermediate storage: There is no need to store all recorded data since we are able to recover the 
discarded data. With a judiciously chosen aggregation level, there is less need to store averages 
since it is easier to compute these when needed.  
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Appendix F: Training Workshop 

A workshop has been developed in order to disseminate the findings of this project. 
Including breaks and time for questions, this workshop is intended to require three to four hours 
of time. The material is divided into seven modules, each focusing on one aspect of the research: 

 
Module 1: Introduction 
Module 2: Basic Features 
Module 3: Implementation Plan 
Module 4: Measuring Data Reliability 
Module 5: Corridor-Level Imputation 
Module 6: Regional Imputation 
Module 7: Conclusion 
 
This appendix includes the slides developed for this workshop; these may be reproduced 

as handouts for workshop attendees. 



 

118 



 

119 

 



 

120 



 

121 



 

122 



 

123 



 

124 



 

125 



 

126 



 

127 



 

128 



 

129 



 

130 



 

131 



 

132 



 

133 



 

134 



 

135 



 

136 



 

137 



 

138 



 

139 



 

140 



 

141 



 

142 



 

143 



 

144 



 

145 



 

146 



 

147 



 

148 

 


	Technical Report Documentation Page
	Title Page
	Disclaimers
	Acknowledgments
	Products
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. ITS Data and Case Studies in Data Archiving
	Chapter 3. Prototype System
	Chapter 4. Data Reliability and Imputation
	Chapter 5. Prototype System Test
	Chapter 6. Conclusions
	References
	Appendix A: Equipment Guidebook
	Appendix B: Survey Distributed to Texas TMCs
	Appendix C: Analysis of Variability in Count Data
	Appendix D: Example Application—VDF Calibration
	Appendix E: Data Reduction
	Appendix F: Training Workshop

