A Map-Matching Algorithm for Applications in Multimodal Transportation Network Modeling (15-5081)
Kenneth Perrine, Alireza Khani, Ph. D., and Natalia Ruiz-Juri, Ph. D.
_ AT AUSTIN

Objectives

Mapping georeferenced data to an underlying map - e.g. GTFS shapes \rightarrow Node-link road representation

- Integrate DTA traffic model w/ transit planning model - Validate DTA traffic model w/ GPS tracks

Share data sources that vary by resolution \& accuracy

Background

Geometric vs. Topological
. Global vs. Local - Trackpoint density
Heuristics (overpasses, turns, speed, etc.)
Challenge: A wrong routing decision leads to more wrong decisions. WE NEED MULIIPLE HYPOTHESES!

Example

Experiments
Trackpoint sets:

- CapMetro GTFS: 84 routes $\cdot 170$ shapes $\cdot 45,476$ points $\cdot 1,383$ miles $\cdot 2$ in -3472 ft apart, avg. 161 ft
GPS 1-sec.: 22 routes $\cdot 44$ journeys $\cdot 44,298$ points 283 miles $\cdot 0$ to 14 ft apart, avg. 34 ft

Trackpoint Set
Trackpoint Set Underlying Map
\#1 CapMetro GTFS
\#2 GPS 1-sec.
\#3 CapMetro GTFS
Underlying Map
NMC CAMPO
NMC CAMPO
OpenStreetMap
-
OpenStreetMap

Maps of Austin, TX area:
Discontinuities

Routing Accuracy

- NMC CAMPO DTA: 11,393 nodes • 13,353 links
OpenStreetMap: 123,046 nodes • 300,199 links
0
0
0

In hand-checked cases, 3068 of 45,476 GTFS points

Conclusions
No heuristics, multiple hypotheses, quasi-global algorithm

- High routing accuracy at regional scale
- Future work:
. Observe link curvature
- Computational speedups
- Fixing underlying topology

Check It Out!
Source code (GPL license, Python):
http://ctr.utexas.edu/nmc/nmc-mapmatcher

Acknowledgements
This research was partially supported by the U.S. De partment of Transportation through the DataSupported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center, as well as the Capital Area Metropolitan Planning Organization (CAMPO) and the Texas Department of Transportation.

