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Executive Summary 
Transportation agencies often own extensive networks of monocular traffic cameras, which are typically used 

for traffic monitoring. However, the data captured by such cameras can also be of great value 

for transportation planning and operations applications, particularly when large data sets may be 

systematically analyzed. We implemented an approach to use data collected by existing monitoring cameras 

to automatically analyze data at locations where pedestrian safety may be a concern. Our methodology utilizes 

an artificial intelligence to identify pedestrians in traffic camera feeds. Results are stored and aggregated, and 

therefore may be queried for further analyses. The approach may leverage hardware such as GPUs and 

distributed computing clusters to further enable the analysis of large data volumes. Post-recognition analysis 

utilizes unsupervised learning methods to identify the spatial and temporal patterns of pedestrian positions, 

which are then correlated to specific scenarios such as usage of crosswalk, compliance with traffic signals, 

and pedestrian-vehicle interactions. Meaningful applications of this methodology include the identification 

of potential safety concerns, measuring the effectiveness of proposed safety strategies, and identifying the 

need for improvements. This report provides preliminary results based on data from City of Austin cameras 

and discusses outputs such as pedestrian volume estimation and crossing hot-zones identification in the 

context of Smart Cities, and identifies potential challenges and limitations. 

Introduction 
Walking is one of the most sustainable modes of transportation, and promoting walking can contribute to the 

development of healthy and livable community. Urban planning and transportation agencies often make 

substantive changes to a wide range of built environment features seeking to foster physical activity. The 

increased choice of non-motorized modes such as walking for transportation can also reduce traffic 

congestion, decrease energy consumption and improve air quality (Saunier et.al. 2011). However, pedestrians 

are the most vulnerable group among all non-motorized modes and endure the highest share of fatal road 

collisions. Pedestrian safety has received significant attention in transportation engineering and planning in 

recent decades. For this project, we designed and implemented a prototype pipeline to collect and store data 

from traffic cameras. Collected data was analyzed using a method for automated video content recognition 

and analysis which was developed in the previous project stage. This report describes the use and extension 

of our framework to the study of pedestrian movement patterns along and across roadways. The outcomes of 

this work are expected to support the planning and evaluation of future safety improvements.  

Due to their low maintenance and operational cost, video sensors, such as pan-tilt-zoom (PTZ) 

cameras, are commonly installed along freeways and arterial streets (Kastrinaki et.al. 2003). However the use 

of camera video data in system performance/safety assessment or strategic planning is not widespread. Traffic 

management centers (TMCs) primarily use traffic video data from roadside cameras to identify incidents, 

prepare the response for emergency situations and manage traffic in special events (Kuciemba and Swindler, 

2016). Video data is also used to manually conduct traffic studies such as collecting traffic counts by mode, 

turning movement counts for traffic signal timing applications, and conducting safety analysis by observing 

the behavior of traffic in weaving zones (Zangenebpour et al., 2015). In practice, analysis software is often 

implemented to support real-time traffic operations, commonly focusing on vehicle detection and tracking. 

Examples include safety analysis for intersections and corridors, identification of unusual events on corridors, 

generation of traffic counts and queue lengths, and for vehicular emission analysis by estimating traffic speeds 

(Hu et al., 2004; St-Aubin et al., 2013; St-Aubin et al., 2015; Morris and Trivedi, 2008; Morris et al., 2012).  

The analysis of historical data from video camera feeds is less common in practice due to the 

significant storage and computing resources required to support it. Additionally, the effort involved in 



 

manually extracting meaningful information from video data is prohibitive for most public agencies. Most 

users discard traffic-monitor data after specified time periods (typically ranging from one day to one year) 

depending on the recording purpose (Kuciemba and Swindler, 2016). An additional challenge in considering 

pedestrian data is that regular roadside cameras are installed to have wide and deep view of fields, while 

pedestrian activities occupy only a small portion of the view. At many locations pedestrians are only 

sporadically present, especially when compared to vehicle flows. Further, because pedestrians are smaller 

than cars they are more easily obstructed by other objects within the scene.  

Pedestrian safety analysis involves identifying factors leading to unsafe conditions at a particular 

location, and has traditionally been conducted based on the judgment and experience of traffic safety 

professionals. The collection and analysis of video data at critical locations provides an opportunity to capture 

and analyze traffic conflicts based on a permanent, verifiable account of road user behavior, thus reducing 

the need to rely on ad-hoc decision-making (Sayed et al., 2013). However, if analyses are conducted by human 

observers, there is a limitation in the number of locations and analysis periods that may be considered. 

Automated approaches to effectively recognize, analyze and store pedestrian activities over time are needed. 

In this paper we implement a flexible framework for analyzing historic video from traffic cameras to the study 

of pedestrian movements and safety (Huang et al. 2017; Xu et al. 2018).  

The proposed framework is more general than traditional traffic video analysis tools, which are 

typically designed to accomplish a single type of analysis. Further, the proposed approach separates the 

expensive computational steps of object recognition from the subsequent data-intensive analysis, allowing 

the utilization of different hardware and software resources at various stages for maximum efficiency. The 

prototype application analyzes video recordings over time and generates two types of visual summaries of 

pedestrian activities: a visualization of locations where pedestrians are present, and a display of their 

trajectories. These capabilities and potential applications are exemplified using camera data gathered from 

three locations in Austin.  

Background 
The following sections provide an overview of the challenges involved in detecting and identifying objects 

in video data frames, including special considerations when studying pedestrians movements. We also discuss 

how methodology such as the one implemented in this study may support content-based search and analysis 

of archived video data. 

Object detection and recognition  

By definition, video is a representation of moving pictures constructed by sequential frames of images; an 

image is defined as a collection of red, green, and blue (RGB) pixels used to illustrate visual information 

(Borkar and S. S. Katariya, 2017). The identification of objects in video data streams is typically conducted 

at the frame level (i.e., for each of the images that compose the video stream). Given that video streams consist 

of a large number of frames, content recognition and analysis is a time-consuming process. However, the 

differences between contiguous frames are often minor, and a considerable amount of redundant information 

is present in video data. To accelerate the process of identifying relevant detail, we have applied the “key 

frame” extraction approach, therefore utilizing a compact frame-set as the representation of information in 

the entire video (Zheng et al., 2015).  

 In recent years, neural-network-based image-recognition methods have evolved quickly and detection-

accuracy has significantly improved (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). Approaches based 

on neural networks are now capable of detecting multiple types of objects at different scales (Szegedy, 2013; 
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Ciresan et al, 2012; Impiombato et al., 2016; Ren et al., 2017). Very recently, methods based on deep learning have 

been proposed to support video analytics for smart cities (Wang and Sng 2015). 

In our approach, we propose to use the “You Only Look Once” (YOLO) library for object detection 

and recognition. YOLO is unique in its ability to detect objects quickly enough for real-time applications 

(Impiombato et al., 2016). YOLO’s object detection and recognition has been integrated into one neural-

network approach, resulting in an algorithm that can effectively take into consideration the global information 

of a frame and is less sensitive to the effects that shadows have on recognition. To our knowledge, this is the 

first time YOLO has been applied to the analysis of traffic data.  

Pedestrian Tracking  

The detection and tracking of main road users (e.g., pedestrians, cyclists, and vehicles) remains a hot topic in 

the field of computer vision, with a research focus often on developing an automated process to identifying 

object trajectories and therefore avoiding time-consuming manual processing. While significant work exists 

on the topic of vehicle tracking, fewer studies look into pedestrian tracking, which is significantly complex 

at urban signalized intersections because of pedestrians’ non-rigidity, more varied appearance, and less 

organized movements. Pedestrians may change their direction of movement frequently, while vehicles must 

follow lanes and have limited turning options (Hussein et al., 2015). Additionally, pedestrians often move in 

groups, making detection and tracking of individual movements even more complicated (Zangenehpour et 

al., 2015).  

Content Based Analysis and Search  

Maintaining large quantities of image data requires significant storage resources. Further, large working 

bandwidths are often needed to transfer the structural details of image characteristics (Hanjalic and Xu, 2005). 

Content Based Image Retrieval (CBIR) requires complex processing algorithms to enable the transfer of 

actual physical information, including the large number of pixels, redundant bits, contrast, hue, and other 

characteristics from the corresponding file (Borkar and Katariya, 2017; Chun et al., 2008; Yuan and Zhang, 

2010; Kumar et al., 2015). The identifications of the correct features to be retrieved is feasible because similar 

images have semantically similar objects (Guo and Prasetyo, 2015). The efficiency of storage and 

transmission can be enhanced when only the useful contextual contents of an image are retrieved, rather than 

the full image (Kumar et al., 2015). 

Video retrieval follows the same principle of image retrieval except for the similarity measurements 

of image frames through color and bit mappings of stored videos (Sayed et al., 2013). However, moving from 

images to video adds several orders of complexity to the retrieval problem by adding a temporal dimension 

to indexing, analysis, and browsing (Saravanan et al., 2017). Video retrieval algorithms query multiple types 

of video content by comparing similarities in colors, shapes, pixel contents of frames, and bitmap properties 

(Borkar and Katariya, 2017; Sze et al., 2005). Content Based Video Retrieval (CBVR) deals with the problem 

of locating a specific video snippet within a large number of video files by searching content (Mirmehdi et 

al., 2000; Qiu and Lam, 2003). Using an approach similar to that proposed in this paper, Abdullah et al. utilize 

cloud computing to build a system to manage and analyze traffic monitoring data. The system supports vehicle 

detection using a cascade classifier (Abdullah et al., 2014). 

Several key issues in CBVR must still be addressed, including bridging the “semantic gap” between 

low-level features (such as color, texture, shape, motion) and high-level semantic meanings of content (such 

as people, vehicle speed, indoor and outdoor) (Saravanan et al., 2017). Promising intelligent systems are 

required to translate low-level feature representation of video into a model of high-level content 



 

representation. Content summarization is another feature urgently needed to enable efficient access to the rich 

content of video information for spatial and temporal analysis of visual media. Techniques such as key-frame 

extraction may be used for compact representation and fast browsing of video content. A third aspect of 

CBVR that requires further research is the dynamic updating of video databases, and corresponding dynamic 

matching of queries and databases (Ma et al., 2009). 

We addressed the high computational requirements of CBVR by taking advantage of distributed 

computing using Hive and Spark, using the latter and HiveQL as a standard query language for ad-hoc 

analysis needs. Hive was first introduced in 2009 as a data warehouse solution utilizing a Hadoop cluster and 

supports multiple types of data sources and file formats, including structured text format, such as CSV and 

JSON, and serialization formats, such as Avro, Parquet, and ORC (Thusoo et al., 2009). The supported data 

sources can be ingested in Hive as one or more tables. With files stored in Hadoop cluster, Hive can take 

advantages of aggregated IO performance backed up by the Hadoop Distributed File System (hdfs) (Shvachko 

et al., 2010). Hive provides a SQL like query language, known as HiveQL, for users to search tables in the 

system. HiveQL requests are transformed into a set of distributed computation tasks through a built-in query 

engine that supports both the MapReduce programming model and Spark programming model(Dean and 

Ghemawat, 2010; Zaharia et al., 2012). While Spark was initially proposed as an in-memory computing 

cluster framework and a distributed programming abstraction model, it has evolved to support interactive 

analysis with SQL-like queries with the recent development of DataFrame and SparkSQL features (Armbrust 

et al., 2015). SparkSQL follows the same query language specification as Hive, which significantly increases 

the interoperability between Spark and Hive. Although Hive has been successfully used for business analysis, 

and in many domains for scientific discoveries, the application of Hive in transportation is still limited (Xu 

et al., 2016).  

Data Workflow and Analysis Framework 
The following framework describe the approach used in this project to access, record and analyze video data 

streams from traffic monitoring cameras from the City of Austin. We also present an overview of the object 

detection and tracking methods used in this work, which are extension of the techniques presented in further 

detail in the project report for FY2017. Further technical details are available in published research papers by 

the authors. 

Data Pipeline  

The analysis framework implemented in this project requires recording video data streams generated by traffic 

monitoring cameras, processing the resulting files to generate a database of tracked objects, and querying 

such database to extract the desired information (Huang et al., 2017; Xu et al., 2018). Splitting the object 

recognition/tracking step and subsequent analyses allows us to use the most efficient tools for each task: deep 

learning for object detection and big data processing for the analysis. The resulting framework can efficiently 

and automatically process large-scale traffic video data and meet evolving analytic needs over time.  

To implement the framework, we have set up a multi-systems cross-domain video aggregation and 

analysis pipeline (Figure 1). Raw videos originate from IP cameras in the City of Austin (CoA) private 

network. To overcome the network’s limited accessibility, CoA set up a proxy server to forward selected 

video feeds from the IP cameras to a storage cluster hosted at the Texas Advanced Computing Center 

(TACC), where the recorded video can be processed by a high performance computing cluster. Processed 

data is saved in a storage server, which is accessed by our project server for results dissemination purposes. 

The project server also hosts tools and scripts to schedule video recoding and processing tasks.  

 



7 

 

 

 

Figure 1. Camera access and processing pipeline overview. 

Figure 2 illustrates the main characteristics of the video processing framework. Object Recognition 

(Labeling) is the first of three main components in the algorithm. It identifies and labels all candidate objects 

from original input data/image files using a deep-learning based algorithm. Object Tracking (Tracking), 

which compares recently recognized objects with previously recognized objects, is the second, in which we 

use background subtraction techniques to differentiate moving objects from stills or background objects and 

filter out redundant objects. A complete list of all target objects with corresponding detailed information is 

stored in a structured data file. The structured output data obtained from early components can be registered 

as Dataframe for further analysis work using Spark framework. Finally, the Object Analysis (Analyzing) 

module provides efficient Dataframe querying capabilities through Spark/HIVEQL.  

 

 

Figure 2. Overview of video processing steps. 

Video Processing and Analysis  

The video content recognition process is based on Darknet, an open source open source neural network 

framework (Impiombato et al, 2016). The core algorithm utilizes YOLOv2, a convolution-neural-network-

based object-detection system, to analyze each frame of an input video. For each frame, the algorithm outputs 

a list of objects recognized through a pre-trained model. Each object is defined by its location in the frame, 

class label, and confidence of recognition. In the CoA application, we have limited recognition to seven class 

labels: person, car, bus, truck, bicycle, motorcycle, and traffic light.  



 

To improve the performance and maximize utilization of multi-node computing clusters, we have 

also adapted the YOLO implementation for parallel execution, which enables parallel recognition of multiple 

frames using pthread within individual compute nodes and inter-node communication using MPI. 

Specifically, one thread is used to pre-fetch n frames, while n extra worker threads are assigned to labeling. 

Each worker thread takes care of one individual frame. Since there is no dependency, ideal linear scaling can 

be achieved for videos with longer duration. For video recordings from different times/locations, multiple 

video files can be processed independently and concurrently across multiple nodes. To maximize resource 

utilization, longer videos can be split into portions and distributed to multiple nodes for parallel processing. 

A non-maximum suppression (NMS) algorithm with the locally maximal confidence measure is used to 

remove unnecessary or duplicated objects. In addition to content recognition, we also implemented a method 

to extract the background (i.e., non-moving features) of the video as part of the process output. Interested 

readers can refer Huang et al., 2017 and  Xu et al., 2018 for more details.  

Figure 3. Pseudo code for tracking pedestrians. 

Pedestrian Identification and Tracking 

The recognition algorithm can identify new individuals in a frame when they are in reasonable proximity to the 

camera, and provided that the view is unobstructed. However, tracking individuals across frames remains 

challenging. The vehicle tracking algorithm proposed relies on the intersection over union value between identified 

objects across frames, which is not effective when tracking pedestrians (Xu et al., 2018). For the CoA application, 

we used an approach based on proximity of predicted positions of objects from different frames.  

As shown in Figure 3, the algorithm is initialized with the set of recognized “person” objects in each frame. 

For each recognized object in the first frame we initialize a trajectory. A recognized object in the subsequent frame 

is associated to the closest trajectory. Once a trajectory has at least two distinct positions, direction and velocity of 

the trajectory can be estimated. In subsequent frames, we compute the distance between all identified objects and 

the predicted positions of existing trajectories at that frame. If an object’s minimum distance to a trajectory is 

greater than that in a pre-defined threshold, the algorithm generates a new trajectory. Otherwise, the object position 

is added to the trajectory whose predicted position is the closet.  

A Case Study of Pedestrian Safety  
In the context of this study more than 1,000 video files were recorded for the purpose of algorithmic 

development and testing. This section describes the implementation of the proposed methodology to the 

Input: N = {nij | i: frame index, j: object index} as 

the set of recognized objects found in each frame 

Output: T= { tij | i: trajectory index, j: object index 

within this trajectory} as the set of objects stored 

by a list of trajectories 

1: Initialize T with each object found in the 

starting frame 

2: for each nij in N 

3: for each tk in T 

4: dists <= distance( nij.location, pred(tk, i ) ) 

5: if min (dists) < threshold 

6: add nij to targMin(min_dists) 

7: else add nij as a new trajectory 
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analysis of pedestrian activity at four locations, and exemplifies some of the visuals that may be generated 

based on the processing and analysis outputs. 

Locations and video recordings  

The use case analyzed for the CoA application consists of locations where pedestrians frequently cross a 

street in order to understand the impact of measures designed to promote street crossings at designated safe 

areas, such as crosswalks. We selected four camera locations (Table 1) and used the video aggregation 

pipeline to record video segments throughout the day. Automated recording capabilities were developed to 

support the collection of longer video data streams, which may be used to conduct meaningful before/after 

analyses. As an example, the intersection of Anderson Lane and Burnet Road will be equipped with a 

Pedestrian Hybrid Beacon (PHB), and the methods discussed in this report will be used to compare pedestrian 

behavior before/after the deployment of such devices. 

 

Table 1. Data collection summary 

 Lamar & 24th Lamar & 38th Lamar & 45th Anderson & Burnet 

Time range 2018.04.28 

00:44~23:59 

2018.04.20 

06:00~15:30 

2018.04.20 

06:00~15:00 

Various dates in 

August 2018 

Number of files 24 10 16 ~1,000 / ongoing 

Average size per video file ~315MB ~592MB ~530MB ~ 300MB 

Total size ~7.5GB ~6GB ~8.5GB ~300GB 

Average durations ~15 mins ~30 mins ~29.5 mins 15 mins 

 

Experimental Design and Results 

After labeling all video content, all “person” objects were selected and used for tracking. A drawback of this 

preliminary approach is that an object is considered a person as long as it shares visual similarities to human 

features. Therefore, identified objects include pedestrians, cyclists and motorists. This limitation may be 

addressed through further algorithmic refinement in future project stages. 

 

  

Figure 4. Visual summaries from recordings at Lamar Boulevard and 45th Street,  

including location summary (left) and tracking summary (right).  



 

Figures 4–6 exemplify the two types of visual summaries generated based on labeling and tracking 

results. The background image in such figures is extracted from the data stream during the processing stage. 

The first visual summary in Figure 4 is a location summary showing the positions of “person” objects across 

videos files. The second visual summary is a tracks, summary displaying identified trajectories. Results from 

different video files are rendered using different colors. Figure 6 shows the two visual summaries for 

recordings at Lamar Boulevard and 45th Street. The results from Lamar Boulevard and 38th Street and Lamar 

Boulevard and 24th Street are presented in Figures 5 and 6, respectively.  

 

  

Figure 5. Visual summaries from recordings at Lamar Boulevard and 38th Street, 

 including location summary (left) and tracking summary (right).  

  

Figure 6. Visual summaries from recordings at Lamar Boulevard and 24th Street, 

 including location summary (left) and tracking summary (right).  

Location summary views are generally more cluttered, with seemingly many pedestrians identified 

in the middle of road. However, our approach is likely to be overestimating the presence of pedestrians on 

the street because “person” objects are not limited to pedestrians; they also include cyclists, motorists, and 

drivers with open roofs/windows. Misidentifications are most likely responsible for the tracks seen to follow 

the roadway direction.  

The location summary view complements the track view by identifying spots frequented by 

pedestrians, or where pedestrians tend to stand for longer time intervals. For example, in Figure 5, clusters at 

the top left of the frame correspond to a bus stop. The track view in Figure 5 also suggests locations where 

pedestrians cross the street on their way from/to the stop, which is not always on the crosswalk.  
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At the Lamar Boulevard and 24th Street location there is a park with jogging trails on the left side of 

the road and an apartment complex on the right (Figure 6). Both summary views show significant pedestrian 

activity along the roadside and crossing the road.  

In addition to visual summary, we can also create histograms to show summary statistics of activities 

over a period of time for a given location, using the activity index (AI) formula, as follows:  

 

𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝑰𝒏𝒅𝒆𝒙 (𝑨𝑰) =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒆𝒓𝒔𝒐𝒏 𝑰𝒅𝒆𝒏𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑭𝒓𝒂𝒎𝒆𝒔 𝒐𝒇 𝒗𝒊𝒅𝒆𝒐𝒔 
 

 

The AI can be used as a singular numerical indicator of pedestrian usage of the road for a given video. 

A higher value indicates more personal activities presented in the video for unit time. The measure can be 

used for comparison purposes across different locations and times. Figure 7 shows a histogram from 07:00 to 

22:00 at the intersection of Lamar and 24th.  

 

 

Figure 7. Activity index distribution at Lamar and 24th on April 28, 2018. 

The detection and tracking of pedestrians can be exported as a delimited file for further analysis. 

Figure 8 shows an example of an export of pedestrian tracks that include road crossing. Each row represents 

a pedestrian track and corresponding video recording name, size (in number of frames where the track is 

recognized), start and end frame, and start and end location on the video. Crossing events are identified in the 

last columns.  

 

 

Figure 8. Example tracking result output file.  
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Limitations 

The work conducted during this project was critical to refine the methods proposed in the previous FY and 

provided a better understanding of the potential of these techniques. Through this work we also gained better 

insights on the current limitations of both the data gathering and framework and analysis techniques.  

The video recording pipeline is sensitive to the stability of all involved networks, and to that of computing 

resources. In some cases, the instability causes disruption of video recordings. The results of detection and tracking 

algorithms are also sensitive to various parameters, such as the detection cutoff threshold (based on detection 

confidence) that is used to determine which objects are included in the analysis and can directly affect the number 

of labeled objects. Other threshold values are used in the tracking algorithm to measure the distance among objects, 

and may affect the number of predicted tracks. We also found that people walking in groups are difficult to track 

consistently because their distance to the camera is far greater than their distance to other objects. As a result, the 

current approach is not appropriate to estimate pedestrian volumes.  

However, despite some limitations, the current framework can be used to better understand how 

pedestrians use the road and how the use pattern evolves over time or across locations. Results can also assist 

urban planners and traffic engineers in identifying location-based solutions to enhance pedestrian safety. 

Researchers can also generate a visual summary based on analysis needs for different locations or aggregated 

time periods. Figure 9 shows an example at the Lamar Boulevard and 24th Street location, divided into four 

different time periods. While pedestrian volume counts are not collectable, the qualitative change in pedestrian 

patterns over time is clear, and further quantification of the observed changes may be feasible.  

 

  

  

Figure 9. Aggregation over different times of day, from top left to bottom right:  

06:00–10:00, 10:00–13:00, 13:00–17:00, 17:00–21:00.  
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Figure 10 shows track detection (right) and hotspot summaries (left) at Anderson Lane and Burnet 

Road. In this case, only one pedestrian crossing event is indicated in the crossing tracking summary (shown 

on the right). However, the hotspot view clearly indicates two possible crossing events (shown on the left). 

Inspection of the original video shows that the second track is a relatively short track from a pedestrian 

running across the road quickly. Due to its short duration, the track was missed in the current model.  

 

  

Figure 10. Hotspot view of pedestrian detection location (left); (right) inferred pedestrian crossing event based on 

tracking algorithm. The missed crossing event in the pedestrian crossing summary (right) is due to significant speed 

differences (pedestrian running in missing track).  

 

Conclusions and future opportunities  
Artificial intelligence technologies can greatly reduce the effort involved in analyzing video data. 

Applications such as the one developed for CoA can accelerate research and analysis that has been 

traditionally based on manual video data analysis and can promote further work on video data application and 

integration. A unique advantage of the framework is to convert video recordings into query-able information 

that can accommodate multiple subsequent use cases without reprocessing. While the framework and specific 

applications are still in development, we have explored their potentials to support useful analyses with 

minimal effort compared to manual processing.  

The approach provides a space saving alternative for raw video data storage, as the output of 

recognized objects can be much smaller than the raw video files. The storage requirement is significantly 

reduced when the raw video is no longer needed. The data also becomes anonymized because identifiable 

information is not stored with recognized objects. Therefore, preserving useful key traffic information over a 

large region for long duration of time becomes a more practical task.  

The output information can also be combined with other datasets to conduct more complex analyses. 

For example, video data may be combined with loop detector data and signal timing plan data to understand 

pedestrian compliance with traffic signals. Traffic data from Bluetooth or Wavetronix sensors may support a 

more comprehensive assessment of pedestrian behavior by providing contextual information, such as vehicle 

speeds and traffic volumes.  

Further effort includes algorithmic refinement, and the extension of the web access interface We plan to 

enhance our object recognition system by introducing more object characteristics, and optimize our method to 

handle videos taken under severe weather conditions (e.g., night, rain, fog) with alternative solutions. 



 

The use cases presented in this work illustrate both the benefits and limitations of the proposed 

methodology. The video aggregation pipeline has the potential to support long-term road-usage monitoring. 

The flexibility of the data selection and filtering capabilities is expected to enable additional practical 

applications. In addition to the visual summaries described in this study, quantitative outputs can be generated 

to facilitate the comparison of conditions across different locations or time ranges and to evaluate the impact 

of infrastructure changes and construction scenarios, among others.  
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