

Exploring the use of Machine Learning to Estimate Transit
Ridership Based on Socio-Demographic Variables and
Transportation System Characteristics

Model Development and Validation
!
Natalia Ruiz Juri: nruizjuri@mail.utexas.edu
Gopindra Nair: gopindra@utexas.edu

This document is part of a package that contains the scripts for developing machine learning
models that predict transit ridership along bus-routes in the Dallas-Fort Worth region. The folder
structure of the package and the tools required for running the scripts are described. Following
this, the preprocessing steps for generating the final dataset used for training and testing the
machine learning models are briefly explained. Finally, the machine learning algorithms that were
used and the model results are discussed.

The project folder structure is as shown in Figure 1. The parent folder, contains
three folders – , and . The folder structure with the initial set of files (before
any of the script files are executed) is shown in more detail in Section A1 of the Appendix.

 Within the folder, another folder named stores all the input data files required
for this project. More information on the input data files is provided in Section 2. The folder
will be populated with more data files that are derived from the input data files as the data
processing scripts are executed.
 The folder contains all the scripts that are used for preprocessing, model
estimation and prediction. The scripts are written in the Jupyter Notebook format and have the

extension IPYNB. Files of this format may be opened and executed in software such as
and . The folder also contains a folder named which has the

 file. is a python file that contains the code for a GIS function that
translates geographical attributes (or polygon features) from one shapefile geometry to another.
This function in the is called by some of the IPYNB script files in the folder.
 The folder is initially empty. When the script in the
folder is executed, the folder will be populated with plots of the goodness-of-fit and a
file that stores the predicted ridership information.

All the scripts used for this project were developed using the Anaconda distribution of Python.
Specifically, Python 3.7 was used as the interpreter. The steps for installing Anaconda and all the
libraries required for running the scripts developed for this project are as follows.

1. Download and install the most recent version of Anaconda from:
https://www.anaconda.com/products/individual.

2. The installation procedure would have installed a program named
and a program named . First, open the program .

 provides a command-line interface for accessing Python development
tools and for managing the Python development environment. Figure 2 shows the

 interface.

3. This project requires the installation of several Python packages in addition to those that
are included in a standard installation of Python. When installing packages specific to a
project, it is advisable to do so in a separate Python environment. Therefore, in this step,
create a new Python environment named “Transit_Prediction” based on Python 3.7 using
the following command:

4. Activate the newly created Python environment using the command:

5. Install the packages required for this project by executing the following commands:

6. Open Jupyter Lab using the command:

The above command would also start a Jupyter server in the background. Jupyter Lab will
be opened in the default internet browser. The interface of Jupyter Lab is as shown in
Figure 3. All the scripts used in this project can be accessed by double-clicking on the
script name in the tab on the left side.

7. To quit Jupyter lab, select -> and then close the JupyterLab tab in the
browser. To open Jupyter Lab the next time, simply open and follow
instruction 4 and instruction 6.

The procedure mentioned above for installing Python libraries and accessing Jupyter notebooks
uses the command-line tool. Alternatively, the user could also use the

 tool which has a Graphical User Interface for performing the same operations.
Instructions for using the can be found at
https://docs.anaconda.com/anaconda/navigator/getting-started/.

the number of houses in the census tracts. All in all, a total of 218 socio-demographic and
employment counts are computed at the census tract level.

 This notebook computes the distance buffers for each
transit route and aggregates the socio-demographic and employment counts within the
buffers. A buffer of a transit route is the geometry of the area that is within a threshold
distance from any point along the transit route. The aggregated socio-demographic
counts for a buffer is computed by taking the sum of socio-demographic counts of the
census tracts that overlap with the buffer. If a census tract overlaps only partially with the
buffer, the socio-demographic count of the census tract is multiplied by the fraction of the
area of overlap of the census tract before adding it to the buffer. The aggregated
employment counts for a buffer area are also calculated similarly except that TSZs are
considered instead of census tracts.

The aggregated feature counts are computed for buffer distances of 200m, 400m,
800m and 1600m. Additionally, the aggregated features counts are also computed for the
buffer bands of 200-400m, 400-800m and 800-1600m by differencing the feature counts
in the smaller distance buffer area from the feature counts in the higher distance buffer
area. For example, the aggregated feature count within the buffer band of 400-800m will
be the difference between the aggregated feature count in the 400m buffer and the
aggregated feature count in the 800m buffer. In this manner, for each socio-
demographic/employment related census-tract/TSZ level feature, a total of seven
aggregated features (4 for full distance buffers and 3 for banded buffers) are computed,
which results in a total of 218 x 7 = 1526 aggregated feature counts for each route.

 This notebook computes the schedule related
characteristics of each Transit route using the pickled GTFS data. The notebook computes
the frequency of routes, which is the average number of arrivals of buses of a given route
at stops along the route divided by the duration of the time period under consideration
(in hours). The frequency is computed for the 24-hour period of a day as well as for the
five time periods of,

1. AM Peak – 6:30 AM to 9:00 AM
2. Midday 1 – 9:00 AM to 12:00 noon
3. Midday 2 – 12 noon to 3:00 PM
4. PM Peak – 3:00 PM to 7:00 PM
5. Night – 7:00 PM to 6:30 AM (next day)

This notebook also computes the number of unique stops along a route.
 This notebook produces the final dataset with the features and

the dependent variable that can be used for fitting machine learning models. It combines
the features computed in and . It computes
the dependent variable of daily ridership along a route using the survey dataset.

 This notebook fits the different machine learning models and

evaluates goodness-of-fit. The tasks performed in this notebook are explained in detail in
Section 4.

Some of the notebooks take as input the output files generated by other notebooks. For example,
the notebook can be executed only after the dataset used for fitting the
models has been produced by the notebook . The flowchart in Figure 5 shows
the dependencies between the notebooks. The notebook at the head end of an arrow should be
executed only after the notebook at the tail end has been executed. The notebooks highlighted
in green are not dependent on any other notebooks. Therefore, the sequence of execution can
begin from these notebooks. As the notebook files are executed, the folder will be populated
with the final dataset for estimation and intermediate datasets that were used for processing. All
the results will be saved in the folder.
 The specific input and output files for each of the notebooks are provided in Section A2 in
the Appendix. The folder structure after all the scripts in the folder have been executed
will be as shown in Section A3 in the Appendix.

More than 1500 features were computed for each transit route. Since the use of a large number
of features can result in less accurate machine learning models (with a tendency to overfit), only
a subset of 41 features was selected for use in the machine learning models. The selected features
are shown in Table 1. Features that relate to combinations of multiple socio-demographic
characteristics of households (which formed a majority of the available features) were not

b02_HH_W2 No. of HHs with 2 workers within 200 meters from the route
b02_HH_W3 No. of HHs with 3+ workers within 200 meters from the route
b0204_HH_W1 No. of HHs with 1 worker between 200 and 400 meters from the route
b0204_HH_W2 No. of HHs with 2 workers between 200 and 400 meters from the route
b0204_HH_W3 No. of HHs with 3+ workers between 200 and 400 meters from the route
b0408_HH_W1 No. of HHs with 1 worker between 400 and 800 meters from the route
b0408_HH_W2 No. of HHs with 2 workers between 400 and 800 meters from the route
b0408_HH_W3 No. of HHs with 3+ workers between 400 and 800 meters from the route
b02_HH_C1 No. of HHs with 1 child within 200 meters from the route
b02_HH_C2 No. of HHs with 2+ children within 200 meters from the route
b0204_HH_C1 No. of HHs with 1 child between 200 and 400 meters from the route
b0204_HH_C2 No. of HHs with 2+ children between 200 and 400 meters from the route
b0408_HH_C1 No. of HHs with 1 child between 400 and 800 meters from the route
b0408_HH_C2 No. of HHs with 2+ children between 400 and 800 meters from the route
* ridership is the dependent variable

The complete dataset (after the removal of a route named “The Spur” because it had an unusually
high ridership for its length) had 160 routes. A random stratified splitting approach was used to
split this dataset into the training and testing datasets. Under this approach, the complete dataset
was first divided into quartiles based on ridership. From each quartile, 30% of the routes were
randomly selected without replacement and added to the testing dataset and the remaining 70%
were added to the training dataset. The resulting testing dataset had a total of 48 routes with 12
routes from each quartile and the resulting training dataset had a total of 112 routes with 28
routes from each quartile. All the machine learning models were trained using only data from the
training dataset. The testing dataset was used only to test the accuracy of the models.

Numerical measures and graphical plots were used to assess the Goodness-of-fit of the different
machine learning models.

The Coefficient of Determination () was used as a measure of the goodness-of-fit of the fitted
models. The is the proportion of variance in the outcome variable that is explained by the
predictors. Consider records of the outcome variable indexed as , , …, . Let the

predicted outcome for these records be , , …, . Then is computed as follows,

 , (1)

 , (2)

 . (3)

where is the observed mean of the outcome, is the sum of squared residuals and is the

sum of squared totals. For assessing model fit, the following metrics based on were computed.
1. Train - where the model is fitted using the training dataset and is computed with

respect to the training dataset.
2. Test - where the model is fitted using the training dataset and is computed with

respect to the testing dataset. A value for Test that is much lower than the Train
could indicate that the machine learning model has been overfitted.

3. Cross Validated - Here, the original training dataset is split into five parts. Then,
considering each of the individual parts as a new testing dataset and the remaining four
parts as a new training dataset, the model is fitted using only the new training dataset and
the value is calculated with respect to the new testing dataset. The cross-validated
is the mean of the s obtained for the five new testing datasets. An illustration of the
splitting of the original training dataset into the training and testing datasets for cross-
validation if provided in Figure 6.

 The Train , Test and Cross-Validated values computed by the
notebook are summarized in the file in the folder.

technique that is commonly used for hyperparameter tuning. The use of 5-fold cross-validation
was already explained in Section 4.3.1 in the context of computing Cross Validated . For
hyperparameter tuning, the Cross Validated is computed for a range of hyperparameter
values. Finally, the hyperparameters are assigned the values that produce the best Cross Validated

. Once the hyperparameters are tuned, the parameters are estimated once again with the
complete training dataset (instead of part of the training dataset as done in the cross-validation
procedure).
 For tuning the parameter, a range of 100 values between ~0.5 to ~550 were tested.
Note that the search space was not uniformly split to produce the 100 values. Values in the lower
end of the search space were closer to each other than values in the higher end. The best fit was
produced by . The goodness-of-fit evaluation plots and metrics for the Lasso Regression
model are provided in Figure 9.

The Polynomial Lasso Regression is an extension of Lasso Regression where the feature set used
for prediction includes the original features as well as polynomial transformations of the original
features. The transformed features can include powers of the original features and products of
powers of the original features. For this project, we estimate one model where the features set is
expanded by also including the squares of all the original features and another model where the
feature set is expanded by including the square roots of all the original features. We did not
consider products of the original features in the new feature set because this would cause the new
feature set to become extremely large relative to the number of records in the database and
therefore more likely to cause overfitting. The goodness-of-fit evaluation plots and metrics for the
Lasso Regression model with squares of the features are provided in Figure 10 and that for the
Lasso Regression model with square roots of the features are provided in Figure 11. The optimal

 values for these models were found to be 44.4 and 31.3 respectively.

A2 Inputs and Outputs of Notebook Files

Notebook Inputs Outputs
DataPickling Data/Inputs/GTFS/DART GTFS (GTFS Folder) Data/GTFS/routes.pickle

Data/Inputs/GTFS/FWTA GTFS (GTFS Folder) Data/GTFS/shapes.pickle
Data/Inputs/NCTCOG_CONSOLIDATED_DART_THET_DCTA_Sep0315.xlsx Data/GTFS/stop_times.pickle

Data/GTFS/stops.pickle
Data/GTFS/trips.pickle
Data/GTFS/gtfs_schedule.pickle
Data/survey_2014.pickle

ConsolidateTSZCensusData Data/Inputs/Market Segmentation/TAZ_Emp_IGxInd.csv Data/census_SD.pickle
Data/Inputs/Market Segmentation/TAZ_HH_SxWxIG.csv Data/Census_SD (Shape folder)
Data/Inputs/Market Segmentation/TAZ_HH_WxIGxC.csv
Data/Inputs/Market Segmentation/TAZ_HH_WxVxIG.csv
Data/Inputs/TSZ5352 (Shape folder)

Data/Inputs/dfw_census (Shape folder)

RouteBufferFeatures Data/census_SD.pickle Data/route_buffer_dat.pickle
Data/GTFS/shapes.pickle

Data/GTFS/gtfs_schedule.pickle

RouteScheduleFeatures Data/GTFS/gtfs_schedule.pickle Data/route_schedule_dat.pickle
RouteFeatures Data/survey_2014.pickle Data/route_est_dat.csv

Data/route_buffer_dat.pickle Data/route_est_dat.pickle
Data/route_schedule_dat.pickle

MLPrediction Data/route_est_dat.pickle Results/ (all files)

A3 File Structure After Running the Scripts
AI Transit Prediction
├───Data
│ │ census_SD.pickle
│ │ route_buffer_dat.pickle
│ │ route_est_dat.csv
│ │ route_est_dat.pickle
│ │ route_schedule_dat.pickle
│ │ survey_2014.pickle
│ │
│ ├───Census_SD
│ │ Census_SD.cpg
│ │ Census_SD.dbf
│ │ Census_SD.prj
│ │ Census_SD.shp
│ │ Census_SD.shx
│ │
│ ├───GTFS
│ │ gtfs_schedule.pickle
│ │ routes.pickle
│ │ shapes.pickle
│ │ stops.pickle
│ │ stop_times.pickle
│ │ trips.pickle
│ │
│ └───Inputs
│ │ 2014RouteID_ModeID.xlsx
│ │ NCTCOG_CONSOLIDATED_DART_THET_DCTA_Sep0315.xlsx
│ │
│ ├───dfw_census
│ │ dfw_census.cpg
│ │ dfw_census.dbf
│ │ dfw_census.prj
│ │ dfw_census.shp
│ │ dfw_census.shx
│ │
│ ├───GTFS
│ │ ├───DART GTFS
│ │ │ agency.txt
│ │ │ calendar.txt
│ │ │ calendar_dates.txt
│ │ │ feed_info.txt
│ │ │ nodes.txt
│ │ │ routes.txt
│ │ │ route_direction.txt
│ │ │ shapes.txt
│ │ │ stops.txt
│ │ │ stop_times.txt

│ │ │ trips.txt
│ │ │
│ │ └───FWTA GTFS
│ │ agency.txt
│ │ calendar.txt
│ │ calendar_dates.txt
│ │ feed_info.txt
│ │ routes.txt
│ │ shapes.txt
│ │ stops.txt
│ │ stop_times.txt
│ │ transfers.txt
│ │ trips.txt
│ │
│ ├───Market Segmentation
│ │ TAZ_Emp_IGxInd.csv
│ │ TAZ_HH_SxWxIG.csv
│ │ TAZ_HH_WxIGxC.csv
│ │ TAZ_HH_WxVxIG.csv
│ │
│ └───TSZ5352
│ TSZ5352.DBF
│ TSZ5352.prj
│ TSZ5352.shp
│ TSZ5352.shx
│
├───Notebooks
│ │ ConsolidateTSZCensusData.ipynb
│ │ DataPickling.ipynb
│ │ MLPrediction.ipynb
│ │ RouteBufferFeatures.ipynb
│ │ RouteFeatures.ipynb
│ │ RouteScheduleFeatures.ipynb
│ │
│ ├───.ipynb_checkpoints
│ │ ConsolidateTSZCensusData-checkpoint.ipynb
│ │ DataPickling-checkpoint.ipynb
│ │ MLPrediction-checkpoint.ipynb
│ │ RouteBufferFeatures-checkpoint.ipynb
│ │ RouteFeatures-checkpoint.ipynb
│ │ RouteScheduleFeatures-checkpoint.ipynb
│ │
│ └───MyLib
│ │ LayerFuse.py
│ │ __init__.py
│ │
│ ├───.ipynb_checkpoints
│ │ LayerFuse-checkpoint.py
│ │

│ └───__pycache__
│ LayerFuse.cpython-37.pyc
│ __init__.cpython-37.pyc
│
└───Results
 AdaBoost.png
 AdaBoost_Imp.png
 DecisionTree.png
 DecisionTree_Imp.png
 DecisionTree_tree.png
 fit_summary.csv
 GradientBoost.png
 GradientBoost_Imp.png
 LassoCV.png
 LassoCVLog.png
 LassoCVSq.png
 LassoCVSqrt.png
 LassoCV_Coef.png
 Predictions.csv
 RandomForest.png
 RandomForest_Imp.png
 RidgeCV.png
 RidgeCV_Coef.png

