Low-Cost Centimeter-Accurate Mobile Positioning

Todd Humphreys, Ken Pesyna

Department of Aerospace Engineering and Engineering Mechanics

University of Texas at Austin

Better Streets | Oct. 26, 2015
The Challenge of Autonomous Perception

Digital Maps: An Indispensable Additional Sensor

HERE 360 Blog
Nokia HERE: Mapping and Location Intelligence
Google’s Autonomous Car Strategy: Also Map-Based
GNSS Has Been Marginalized as Sensor for Autonomous Cars

“... GPS has limited resolution ... the difficulty remains as the GPS is unavailable in many places.” -- Li, Qingquan, et al.

Organizers of the China Future Challenge 2010 (like DARPA Grand Challenge) forbade the use of GPS/GNSS

The first 8 finishers in the China Future Challenge 2014 all depended crucially on Velodyne’s 3D Lidar sensor

Google’s autonomous cars also use Velodyne sensors, along with cameras. They use nothing more than standard SPS L1 C/A GPS (a u-blox unit) with 1-3 meter accuracy
Question to Daimler autonomy team rep. at ION GNSS+ 2015:

Q: “With such an emphasis on vision sensors for lane keeping, how will your cars react to snow-covered roads and heavy rain?”

A: “Our autonomy strategy does not cover these cases; the car will instruct the driver to take over.”
Sub-decimeter-accurate (1-sigma), low-cost GNSS positioning is key to improving the reliability and percent availability of autonomous driving
GNSS Positioning Today

Introduction

Location-based Searches
Driving Directions
Location Sharing
Fitness Tracking
Where it’s Going

Virtual Reality Augmented Reality Large-scale Mapping Autonomous Driving
SPS GNSS Accuracy Gains Have Stalled

- Prior to 2000
 - Intentional degradation
 - 50+ meter errors
- May 2, 2000
 - Degradation turned off
- Since 2000
 - Steady Improvements
 - Leveling off
 - Meter-level precision

Average Civilian GPS Positioning Errors

Source: NOAA National Geodetic Survey
A Dramatic Increase in Accuracy
Carrier Phase Positioning

Introduction

Carrier Phase Differential GNSS (CDGNSS)
Two critical factors for mainstream cm-accurate GNSS users will be **time to fix and cost**. Keeping these tolerably low will require network RTK or PPP-RTK with a dense network:

1. As compared to traditional PPP (sparse reference network), network RTK and PPP-RTK have faster convergence times.
2. As the number of users increases, it makes sense to shift costs from the user devices to the network: **if having a 15-km spaced reference network (dense) enables <$50 precise positioning for millions of users, it makes economic sense.**
Envisioned Dense RTK Network in Austin
December 2014: Successful RTK positioning solution with a smartphone
Handheld RTK result with some signals passing through Ken’s body
GNSS “light painting” with a smartphone