

CENTER FOR TRANSPORTATION RESEARCH

Quantitative Analysis of Hurricane Harvey Impacts on Texas Maritime Facilities

Background

- Hurricane Harvey disrupted Texas port operations in August and September 2017, resulting in significant regional and national economic impacts
- Quantifying port disruptions helps stakeholders understand the extent of past disasters and existing resilience capabilities
- Objectives:
 - 1. Quantify impact by comparing vessel arrivals during typical operations (2016) with those during Hurricane Harvey (2017) using NVC
 - 2. Examine Hurricane Harvey impact on vessel delay by determining changes in ship dwell time and time in port using mean dwell time and dwell time distribution

Data Sources

- Automatic Identification System (AIS) vessel tracking data
 - Location coordinates of individual vessels at ~70 sec intervals, cargo types, timestamp, other attributes
 - Publicly available from USCG
- Anchorage and container terminal GIS layers
 - Locations of ship queuing and port service areas
 - Publicly available from NOAA

Study Area

Two levels of analysis show impacts at facility level and regional level (multiple ports)

- Houston anchorage: waiting area for vessels seeking service at Houston port terminals located in Gulf
- **Barbour's Cut Container Terminal:** container terminal operated by Port Houston

Kyle Bathgate, Antonio Perez de la Cruz, and Zhanmin Zhang

Methods

- Methods used to assess hurricane impacts:
 - Net Vessel Count (NVC): count of vessels in anchorage or at port (queue size)
 - Usage-capacity ratio: indicates berths usage and relates terminal activity
 - Dwell time distribution: statistical distribution fitting to describe wait times
- Statistical tests
 - Bayesian changepoint detection to identify length of disruption and recovery time
 - KS test to test distribution fit for dwell time datasets
 - Two-tailed KS test to verify dwell time datasets come from different distributions
 - Welch's t-test to determine if means of dwell (2016 and 2017) are different

Barbour's Cut Terminal Results

Statistic	2016	2017
Count, n	82	65
Mean, µ	22.55 hr	26.45 hrs
Std Dev, σ	9.86 hrs	8.06 hrs

120

120

Houston Anchorage Results

Statistic	2016	2017
Count, n	2,180	1,155
Mean, µ	62.7 hrs	80.7 hrs
Std Dev, σ	93.1 hrs	95.1 hrs

Findings and Discussion

• Hurricane Harvey resulted in a mean increase of **4 hours in port** and 18 hours in anchorage for freight vessels in the Houston area

• Vessel time in port and vessel dwell time in anchorage may be fit with statistical distributions

• AIS datasets show promise as a reliable data source for postdisaster impact analysis

• Bayesian changepoint detection analysis is effective technique for AIS data; Hurricane Harvey disruption on Houston ports lasted **2 months**

• TxDOT may use these methods and results to examine the impacts of hurricanes on Texas ports