APRIL 13, 2022

EVALUATION OF SEAMLESS BRIDGES (TXDOT NO.0-7011)

CENTER FOR TRANSPORTATION RESEARCH SYMPOSIUM

XIAOYI CHEN

Ph.D. candidate, Department of Civil Architectural and Environmental Engineering

Research team: Jay Malviya, Behdad Mofarraj Kouchaki, Xiaomeng Ge, Todd Helwig, Juan Murcia-Delso, Jorge G. Zornberg TxDOT project team: Joanne Steele, Andy Naranjo, Lianxiang Du, Michael Hyzak, Niyi Arowojolu, Edward Galbavy, Pan Gil Choi

Background

- Conventional bridges have expansion joints to accommodate deck expansion/contraction.
- The expansion joints have issues:
 - Deterioration of bridge elements
 - High maintenance costs
 - Bad rideability due to bumps

The only good joint is no joint. --Henry Derthick

Expansion joints of a conventional bridge (Griffith., 2018)

Expansion joints between pavement and bridge (Beer., 2021)

Background

Behavior: Axial and Bending Effects

- Sources of axial effects:
 - Seasonal temperature change (critical: $-\Delta T$)
 - Concrete shrinkage, and creep

- Sources of bending effects:
 - Differential embankment settlement
 - Traffic load

Develop comprehensive design guidelines for implementing seamless bridge technology in Texas.

- Provide guidance on bond breakers/bases for transition slab and characterize the slab-base interaction.
- Develop analytical models to study the structural response and develop guidelines for optimal length and reinforcing steel of transition slab.
- Identify **design issues for standard bridge structures** associated with seamless connections.
- Monitor the field performance of a seamless bridge.

<u>monitoring</u>

Experimental Testing on Slab-base Interaction

	Phase I: Unit-cell direct shear tests	Phase II: Full-scale push-off tests
Specimens	Concrete block (15 in. $ imes$ 15 in.)	Concrete slab (5 ft. \times 2 ft.)
Bond breakers	11 different interface conditions	Promising bond breakers from Phase I
Loading protocol	Monotonic	Cyclic (expansion-contraction)

Test Matrix

	Series	Base type	Interface material/Bond breaker
Phase I	1	AASHTO Gravel No.8	-
	2	Grade 3 Aggregate	-
	3		Two LDPE sheets
	4	Hot-mix asphalt (HMA)	-
	5		Two LDPE sheets
	6	Cement stabilized base (CSB)	_
	7		1 in. Type D HMA
	8		Woven geotextile
	9		Non-woven geotextile
	10		One LDPE sheet
	11		Two LDPE sheets
Phase II	1	CSB	One LDPE sheet
	2		Two LDPE sheets
	3		Single-sided spike LDPE sheet
	4		Double-sided textured LLDPE sheet
	5		Felt paper
	6	1 in. HMA on CSB	Double-sided textured LLDPE sheet
	7		Felt paper

Test Specimens

Compaction of cement stabilized bases

Smooth LDPE

Single-sided spike HDPE

textured LLDPE

Felt paper

CSB with bond breakers

CSB + 1 in. HMA layer with bond breakers

Effects of Bond Breakers

9/12

Structural Analysis of Seamless System

Develop finite element models to study the axial and bending response of the **entire seamless bridge-CRCP system**.

Parametric Study: Slab-base Interaction

• A higher restraint dissipates the movement faster and requires a shorter length of transition slab (250 ft for $\mu = 0.5$ vs 150 ft for $\mu = 1.5$), but generates larger axial forces in the system.

THANK YOU!