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Statistical Inference Without Excess Data 
Using Only Stochastic Gradients 

Tianyang Li, and Liu Liu and Anastasios Kyrillidis and Constantine Caramanis 

Abstract 
We present a novel statistical inference framework for convex empirical risk minimization, using 
approximate stochastic Newton steps. The proposed algorithm is based on the notion of fnite 
differences and allows the approximation of a Hessian-vector product from frst-order information. 
In theory, our method effciently computes the statistical error covariance in M -estimation, both for 
unregularized convex learning problems and high-dimensional LASSO regression, without using 
exact second order information, or resampling the entire data set. We also present a stochastic 
gradient sampling scheme for statistical inference in non-i.i.d. time series analysis, where we sample 
contiguous blocks of indices. In practice, we demonstrate the effectiveness of our framework on 
large-scale machine learning problems, that go even beyond convexity: as a highlight, our work can 
be used to detect certain adversarial attacks on neural networks. 
Keywords: Statistical Inference; Frequentist Inference; M -estimation; High Dimensional Statistics; 
Time Series; Convex Optimization; 

1. Introduction 

Statistical inference is an important tool for assessing uncertainties, both for estimation and prediction 
purposes (Friedman et al., 2001; Efron and Hastie, 2016). E.g., in unregularized linear regression 
and high-dimensional LASSO settings (van de Geer et al., 2014; Javanmard and Montanari, 2015; 
Tibshirani et al., 2015), we are interested in computing coordinate-wise confdence intervals and 
p-values of a p-dimensional variable, in order to infer which coordinates are active or not (Wasserman, 
2013). Traditionally, the inverse Fisher information matrix (Edgeworth, 1908) contains the answer 
to such inference questions; however it requires storing and computing a p × p matrix structure, 
often prohibitive for large-scale applications (Tuerlinckx et al., 2006). Alternatively, the Bootstrap 
method is a popular statistical inference algorithm, where we solve an optimization problem per 
dataset replicate, but can be expensive for large data sets (Kleiner et al., 2014). 

While optimization is mostly used for point estimates, recently it is also used as a means for 
statistical inference in large scale machine learning (Li et al., 2018; Chen et al., 2016; Su and Zhu, 
2018; Fang et al., 2017). This manuscript follows this path: we propose an inference framework 
that uses stochastic gradients to approximate second-order, Newton steps. This is enabled by the 
fact that we only need to compute Hessian-vector products; in math, this can be approximated using 

rf (θ+δv)−rf (θ) r2f(θ)v ≈ , where f is the objective function, and rf , r2f denote the gradient δ 
and Hessian of f . Our method can be interpreted as a generalization of the SVRG approach in 
optimization (Johnson and Zhang, 2013) (Appendix E); further, it is related to other stochastic 
Newton methods (e.g. (Agarwal et al., 2017)) when δ → 0. We defer the reader to Section 6 for 
more details. In this work, we apply our algorithm to unregularized M -estimation, and we use a 
similar approach, with proximal approximate Newton steps, in high-dimensional linear regression. 

© 2020 . 
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Our contributions can be summarized as follows; a more detailed discussion is deferred to 
Section 6: 

o For the case of unregularized M -estimation, our method effciently computes the statistical error 
covariance, useful for confdence intervals and p-values. Compared to state of the art, our scheme 
(((iii))) guarantees consistency of computing the statistical error covariance, (((iiiiii))) exploits better the 
available information (without wasting computational resources to compute quantities that are 
thereafter discarded), and (((iiiiiiiii))) converges to the optimum (without swaying around it). 

o For high-dimensional linear regression, we propose a different estimator (see (13)) than the 
current literature. It is the result of a different optimization problem that is strongly convex with 
high probability. This permits the use of linearly convergent proximal algorithms (Xiao and 
Zhang, 2014; Lee et al., 2014) towards the optimum; in contrast, state of the art only guarantees 
convergence to a neighborhood of the LASSO solution within statistical error. Our model also 
does not assume that absolute values of the true parameter’s non-zero entries are lower bounded. 

o For statistical inference in non-i.i.d. time series analysis, we sample contiguous blocks of indices 
(instead of uniformly sampling) to compute stochastic gradients. This is similar to the Newey-West 
estimator (Newey and West, 1986) for HAC (heteroskedasticity and autocorrelation consistent) 
covariance estimation, but does not waste computational resources to compute the entire matrix. 

o The effectiveness of our framework goes even beyond convexity. As a highlight, we show that 
our work can be used to detect certain adversarial attacks on neural networks. 

2. Unregularized M -estimation 

In unregularized, low-dimensional M -estimation problems, we estimate a parameter of interest: 

θ? = arg min EX∼P [`(X; θ)] , where P (X) is the data distribution, 
θ∈Rp 

using empirical risk minimization (ERM) on n > p i.i.d. data points {Xi}n : i=1

nX b 1 θ = arg min `(Xi; θ). 
θ∈Rp n 

i=1 

Statistical inference, such as computing one-dimensional confdence intervals, gives us information 
beyond the point estimate θb, when θ bhas an asymptotic limit distribution (Wasserman, 2013). E.g., 
under regularity conditions, the M -estimator satisfes asymptotic normality (van der Vaart, 1998, 
Theorem 5.21). I.e., 

√ 
n(θ b− θ?) weakly converges to a normal distribution: � � � � √ 

n θ b− θ? → N 0, H?−1G?H?−1 , 

2 where H? = EX∼P [rθ ̀ (X; θ
?)] and G? = EX∼P [rθ ̀ (X; θ?) rθ ̀ (X; θ?)>]. We can perform 

statistical inference when we have a good estimate of H?−1G?H?−1 . In this work, we use the 
plug-in covariance estimator Hb−1 G bHb−1 for H?−1G?H?−1, where: 

n nX X b 1 2 b 1 θ)> H = r θ ̀ (Xi; θb), and G = rθ ̀ (Xi; θb) rθ ̀ (Xi; b . n n 
i=1 i=1 

2 
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Observe that, in the naive case of directly computing G b and Hb−1, we require both high computational-
and space-complexity. Here, instead, we utilize approximate stochastic Newton motions from frst 

Hb−1 G bHb−1 order information to compute the quantity . 

2.1. Statistical inference with approximate Newton steps using only stochastic gradients 

Based on the above, we are interested in solving the following p-dimensional optimization problem: 

nX 
θ b= arg min f(θ) := 1 fi(θ), where fi(θ) = `(Xi; θ). 

θ∈Rp n 
i=1 � � � �> 

Notice that Hb−1 G bHb−1 can be written as 1 P n Hb−1rθ ̀ (Xi; θb) Hb−1rθ ̀ (Xi; θb) , which n i=1 

can be interpreted as the covariance of stochastic –inverse-Hessian conditioned– gradients at θb. Thus, 
the covariance of stochastic Newton steps can be used for statistical inference. 

Algorithm 1 Unregularized M-estimation statistical inference � � 
1 1: Parameters: So, Si ∈ Z+; ρ0, τ0 ∈ R+; do, di ∈ 2 , 1 Initial state: θ0 ∈ Rp 

2: for t = 0 to T − 1 do // approximate stochastic Newton descent 
3: ρt ← ρ0(t + 1)−do 

4: Io ← uniformly sample So indices with replacement from [n] � � P 
5: gt 

0 ← −ρt S
1 
o i∈Io 

rfi(θt) 

6: for j = 0 to L − 1 do // solving (1) approximately using SGD 
j ← O(ρ4 τ4 7: τj ← τ0(j + 1)−di and δt t j ) 

8: Ii ← uniformly sample Si indices without replacement from [n] � � P j j 
j+1 j rfk(θt+δ g )−rfk(θt) 1 t t 0 9: g ← g − τj + τj gt t j t Si k∈Ii δ

10: end for 
t 

√ ḡt 1 PL j 11: Use So · for statistical inference, where ḡt = ρt L+1 j=0 gt 
L 12: θt+1 ← θt + gt 

13: end for 

Algorithm 1 approximates each stochastic Newton Hb−1rθ ̀ (Xi; θb) step using only frst order 
information. We start from θ0 which is suffciently close to θb, which can be effectively achieved 
using SVRG (Johnson and Zhang, 2013); a description of the SVRG algorithm can be found in 
Appendix E. Lines 4, 5 compute a stochastic gradient whose covariance is used as part of statistical 
inference. Lines 6 to 12 use SGD to solve the Newton step, * + X � 

1 1 min rfi(θt), g + g, r 2f(θt)g , (1) So 2ρt g∈Rp 
i∈Io 

which can be seen as a generalization of SVRG; this relationship is described in more detail in 
Appendix E. In particular, these lines correspond to solving (1) using SGD by uniformly sampling a 
random fi, and approximating: h i j j rf(θ+δ g)−rf (θ) rfi(θ+δ g)−rfi(θ) t t r 2f(θ)g ≈ j = E j | θ . (2) 

δt δt 

3 
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Finally, the outer loop (lines 2 to 13) can be viewed as solving inverse Hessian conditioned stochastic 
gradient descent, similar to stochastic natural gradient descent (Amari, 1998). 

In terms of parameters, similar to (Polyak and Juditsky, 1992; Ruppert, 1988), we use a decaying 
j step size in Line 8 to control the error of approximating H−1g. We set δt = O(ρ4 

t τj 
4 ) to control 

the error of approximating Hessian vector product using a fnite difference of gradients, so that it is 
smaller than the error of approximating H−1g using stochastic approximation. For similar reasons, 
we use a decaying step size in the outer loop to control the optimization error. 

The following theorem characterizes the behavior of Algorithm 1. P 1 Theorem 2.1 For a twice continuously differentiable and convex function f(θ) = n fi(θ) n i=1 
where each fi is also convex and twice continuously differentiable, assume f satisfes 

1 o strong convexity: ∀θ1, θ2, f(θ2) ≥ f(θ1) + hrf(θ1), θ2 − θ1i + αkθ2 − θ1k22; 2 

o ∀θ, each kr2fi(θ)k2 ≤ βi, which implies that fi has Lipschitz gradient: ∀θ1, θ2, krfi(θ1) − 
rfi(θ2)k2 ≤ βikθ1 − θ2k2; 

o each r2fi is Lipschitz continuous: ∀θ1, θ2, kr2fi(θ2) −r2fi(θ1)k2 ≤ hikθ2 − θ1k2. 

In Algorithm 1, we assume that batch sizes So—in the outer loop—and Si—in the inner loops— 
are O(1). The outer loop step size is � 

ρt = ρ0 · (t + 1)−do , where do 
1 
2 , 1 is the decaying rate. (3) ∈ 

In each outer loop, the inner loop step size is � 
τj = τ0 · (j + 1)−di , where di ∈ 1 

2 , 1 is the decaying rate. (4) 

The scaling constant for Hessian vector product approximation is � � 
δj = δ0 · ρ4 · τ 4 = o 1 . (5) t t j (t+1)2(j+1)2 

i h Then, for the outer iterate θt we have 
−do −2do E kθt − θbk2 . t , (6) and E kθt − θbk4 . t . (7) 2 2 

In each outer loop, after L steps of the inner loop, we have: 

i h 

E 

� �   2 2 ḡt 0 − [r 2f(θt)]
−1 g ρt 

0 1 (8) | θt g . , t t L 2 2 

and at each step of the inner loop, we have: 

E 

�gj+1 − [r 2f(θt)]
−1 

t 

�   4 4 
. (j + 1)−2di 0 0 (9) | θt g g . t t 2 2 

After T steps of the outer loop, we have a non-asymptotic bound on the “covariance”: 

E 

" 
#  . T − d

2 
o 
+ L− 1

2 , 
X T

ḡt ḡt H−1GH−1 − So 
T 

> 

(10) 
ρ2 
t 

t=1 2 

where H = r2f(θb) and G = 1 P n θ) rfi(θb)> 
i=1 rfi(b . n 

4 
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Some comments on the results in Theorem 2.1. The main outcome is that (10) provides a 
non-asymptotic bound and consistency guarantee for computing the estimator covariance using 
Algorithm 1. This is based on the bound for approximating the inverse-Hessian conditioned stochastic 
gradient in (8), and the optimization bound in (6). As a side note, the rates in Theorem 2.1 are 
very similar to classic results in stochastic approximation (Polyak and Juditsky, 1992; Ruppert, 
1988); however the nested structure of outer and inner loops is different from standard stochastic 
approximation algorithms. Heuristically, calibration methods for parameter tuning in subsampling 
methods ((Efron and Tibshirani, 1994), Ch.18; (Politis et al., 2012), Ch. 9) can be used for hyper-
parameter tuning in our algorithm. 

In Algorithm 1, {¯ does not have asymptotic normality. I.e., √ 1
PT ḡt � � }n 

i=1 does not weakly gt/ρt t=1 T ρt 

1 converge to N 0, H−1GH−1 ; we give an example using mean estimation in Appendix D.1. For So 

a similar algorithm based on SVRG (Algorithm 6 in Appendix D), we show that we have asymptotic 
normality and improved bounds for the “covariance”; however, this requires a full gradient evaluation 
in each outer loop. In Appendix C, we present corollaries for the case where the iterations in the 
inner loop increase, as the counter in the outer loop increases (i.e., (L)t is an increasing series). This 
guarantees consistency (convergence of the covariance estimate to H−1GH−1), although it is less 
effcient than using a constant number of inner loop iterations. Our procedure also serves as a general 
and fexible framework for using different stochastic gradient optimization algorithms (Toulis and 
Airoldi, 2017; Harikandeh et al., 2015; Loshchilov and Hutter, 2015; Daneshmand et al., 2016) in 
the inner and outer loop parts. 

Finally, we present the following corollary that states that the average of consecutive iterates, in 
the outer loop, has asymptotic normality, similar to (Polyak and Juditsky, 1992; Ruppert, 1988). 

� In Algorithm 1’s outer loop, the average of consecutive iterates satisfes PT 

Corollary 2.1 � 2 
1 �PT � θt E (11) and t=1 

 − θ b θt . T , − θ b1√ t=1 (12) T = W +Δ, 2 T T 
1 H−1GH−1), and Δ = oP (1) when T →∞ and L →∞ ( where W weakly converges to N (0, So 

+ T do−1 1 E[kΔk22] . T 1−2do + ). L 

Corollary 2.1 uses 2nd , 4th moment bounds on individual iterates (eqs. (6), (7) in the above 
theorem), and the approximation of inverse Hessian conditioned stochastic gradient in (9). 

3. High dimensional LASSO linear regression 

In this section, we focus on the case of high-dimensional linear regression. Statistical inference in 
such settings, where p � n, is arguably a more diffcult task: the bias introduced by the regularizer is 
of the same order with the estimator’s variance. Recent works (Zhang and Zhang, 2014; van de Geer 
et al., 2014; Javanmard and Montanari, 2015) propose statistical inference via de-biased LASSO 
estimators. Here, we present a new ` 1-norm regularized objective and propose an approximate 
stochastic proximal Newton algorithm, using only frst order information. 

We consider the linear model yi = hθ?, xii + �i, for some sparse θ? ∈ Rp. For each sample, 
�i ∼ N (0, σ2) is i.i.d. noise. And each data point xi ∼ N (0, Σ) ∈ Rp. 

o Assumptions on θ: (((iii))) θ? is s-sparse; (((iiiiii))) kθ?k2 = O(1), which implies that kθ?k1 . 
√ 
s. 
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o Assumptions on Σ: (((iii))) Σ is sparse, where each column (and row) has at most b non-zero entries;1 

(((iiiiii))) Σ is well conditioned: all of Σ’s eigenvalues are Θ(1); (((iiiiiiiii))) Σ is diagonally dominant P 
(Σii − j=i|Σij | ≥ DΣ > 0 for all 1 ≤ i ≤ p), and this will be used to bound the ` ∞ norm of 6
Sb−1 (Varah, 1975). A commonly used design covariance that satisfes all of our assumptions is I . 

We estimate θ? using: * ! + 
n n � �2 b 1 S b− 1 > 1 1 > 

X X 
θ = arg min θ, xix i θ + x i θ − yi + λkθk1, (13) 

θ∈Rp 2 n n 2 
i=1 i=1 � � � P � �� �� P � � � b 1 n > � 1 n > where Sjk = sign n i=1xixi jk � n i=1xixi jk � − ω 

+ is an estimate of Σ by soft-�qP � 
1 n > log p thresholding each element of with ω = Θ (Rothman et al., 2009). Under our n i=1xixi n 

assumptions, S b is positive defnite with high probability when n � b2 log p (Lemma F.3), and this 
guarantees that the optimization problem (13) is well defned. I.e., we replace the degenerate Hessian 
in regular LASSO regression with an estimate, which is positive defnite with high probability under 
our assumptions. 

We set the regularization parameter � q � 
log p λ = Θ (σ + kθ?k1) , n 

which is similar to LASSO regression (Bühlmann and van de Geer, 2011; Negahban et al., 2012) and 
related estimators using thresholded covariance (Yang et al., 2014; Jeng and Daye, 2011). 

Point estimate. Theorem 3.1 provides guarantees for our proposed point estimate (13). 

Theorem 3.1 When n � b2 log p, the solution θ b in (13) satisfes   q �q  log p log p θ b− θ?  . s (σ + kθ?k1) . s 
� 
σ + 

√ 
s , (14) 

1 n n   q �q√ √ � √   log p log p θ b− θ?  . s (σ + kθ?k1) . s σ + s , (15) n 2 n 

−Θ(1)with probability at least 1 − p . 

Confdence intervals. We next present a de-biased estimator θbd (16), based on our proposed 
estimator. θbd can be used to compute confdence intervals and p-values for each coordinate of θbd , 
which can be used for false discovery rate control (Javanmard and Javadi, 2018). The estimator 
satisfes: " # 

n � � X 
θbd b S−1 1 > b= θ + b yi − x i θ xi . (16) n 

i=1 

Our de-biased estimator is similar to (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard 
and Montanari, 2014, 2015). however, we have different terms, since we need to de-bias covariance 

1. This is satisfed when Σ is block diagonal or banded. Covariance estimation under this sparsity assumption has been 
extensively studied (Bickel and Levina, 2008; Bickel et al., 2009; Cai and Zhou, 2012), and soft thresholding is an 
effective yet simple estimation method (Rothman et al., 2009). 
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estimation. Our estimator assumes n � b2 log p, since then S b is positive defnite with high probability 
(Lemma F.3). The assumption that � Σ is diagonally dominant guarantees that the ` ∞ norm k Sb−1k∞ � 

1 1 is bounded by O with high probability when n � 2 log p. DΣ DΣ 

Theorem 3.2 shows that we can compute valid confdence intervals for each coordinate when 
1 1 n � ( s (σ + kθ?k1) log p)2 . This is satisfed when n � ( s (σ + 

√ 
s) log p)2 . And the DΣ DΣ 

covariance is similar to the sandwich estimator (Huber, 1967; White, 1980). 

1 Theorem 3.2 Under our assumptions, when n � max{b2 , 2 } log p, we have: 
DΣ 

√ 
n(θbd − θ?) = Z + R, (17) � h i� � P �b 1 n bwhere the conditional distribution satisfes Z | {xi}n ∼ N 0, σ2 · S−1 > S−1 , i=1 n i=1 xixi 

1 s (σ + kθ?k1) log√ p 1 √ 
s) log√ p −Θ(1)and kRk∞ . . s (σ + with probability at least 1 − p . DΣ n DΣ n 

Our estimate in (13) has similar error rates to the estimator in (Yang et al., 2014); however, no 
confdence interval guarantees are provided, and the estimator is based on inverting a large covariance 
matrix. Further, although it does not match minimax rates achieved by regular LASSO regression 
(Raskutti et al., 2011), and the sample complexity in Theorem 3.2 is slightly higher than other 
methods (van de Geer et al., 2014; Javanmard and Montanari, 2014, 2015), our criterion is strongly 
convex with high probability: this allows us to use linearly convergent proximal algorithms (Xiao 
and Zhang, 2014; Lee et al., 2014), whereas provable linearly convergent optimization bounds for 
LASSO only guarantees convergence to a neighborhood of the LASSO solution within statistical 
error (Agarwal et al., 2010). This is crucial for computing the de-biased estimator, as we need the 
optimization error to be much less than the statistical error. 

In Appendix A, we present our algorithm for statistical inference in high dimensional linear 
regression using stochastic gradients. It estimates the statistical error covariance using the plug-in 
estimator: ! 

nX 
1 > > Sb−1 (x θ b− yi)

2 xix Sb−1 , n i i 
i=1 

which is related to the empirical sandwich estimator (Huber, 1967; White, 1980). Algorithm 2 
computes the statistical error covariance. Similar to Algorithm 1, Algorithm 2 has an outer loop part 
and an inner loop part, where the outer loops correspond to approximate proximal Newton steps, and 
the inner loops solve each proximal Newton step using proximal SVRG (Xiao and Zhang, 2014). To 
control the variance, we use SVRG and proximal SVRG to solve the Newton steps. This is because in 
the high dimensional setting, the variance is too large when we use SGD (Moulines and Bach, 2011) 
and proximal SGD (Atchadé et al., 2017) for solving Newton steps. However, since we have p � n , 
instead of sampling by sample, we sample by feature. When we set Lt = Θ(log(p) · log(t)), we can o � � 

max{1,σ}polylog(n,p) estimate the statistical error covariance with element-wise error less than O √ 
T � � 

with high probability, using O T · n · p2 · log(p) · log(T ) numerical operations. And Algorithm 3 
θbd calculates the de-biased estimator (16) via SVRG. For more details, we defer the reader to 

Appendix A. 

7 
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4. Time series analysis 

In this section, we present a sampling scheme for statistical inference in time series analysis using 
M -estimation, where we sample contiguous blocks of indices, instead of uniformly. 

We consider a linear model yi = hxi, θ?i+�i, where E[�ixi] = 0, but {xi, yi}n may not be i.i.d. i=1 
n 1 as this is a time series. And we use ordinary least squares (OLS) θ b= arg minθ 

P 
(hxi, θi − yi)

2 
i=1 2 

to estimate θ?. Applications include multifactor fnancial models for explaining returns (Bender 
et al., 2013; Rosenberg and McKibben, 1973). For non-i.i.d. time series data, OLS may not be the 
optimal estimator, as opposed to the maximum likelihood estimator (Shumway and Stoffer, 2011), 
but OLS is simple yet often robust, compared to more sophisticated models that take into account 
time series dynamics. And it is widely used in econometrics for time series analysis (Berndt, 1991). 
To perform statistical inference, we use the asymptotic normality � � � � √ 

n θ b− θ? → N 0, H?−1G?H?−1 , (18) 

�P � �P P � 
1 n 1 n n where H? = limn→∞ n i=1 r2fi(θ?) and G? = limn→∞ n i=1 j=1 rfi(θ

?) rfj (θ
?)> , 

with fi(θ) = 1 (hxi, θi − yi)
2. The difference compared with the i.i.d. case (Section 2) is that G? 

2 
1 n now includes autocovariance terms. We use the plug-in estimate H b = 
P 

2fi(θb) as before, n i=1 r
and we estimate G? using the Newey-West covariance estimator (Newey and West, 1986) for HAC 
(heteroskedasticity and autocorrelation consistent) covariance estimation � � n l nP P P 1 G b = rfi(θb) fi(θb)> + w(j, l) rfi(θb) rfi−j (θb)> + rfi−j (θb) rfi(θb)> , (19) n 

i=1 j=1 i=j+1 

where w(j, l) is sample autocovariance weight, such as Bartlett weight w(j, l) = 1−j/(l + 1) (Bartlett, 
1946), and l is the lag parameter, which captures data dependence across time. Note that this is 
an essential building block in time series statistical inference procedures, such as Driscoll-Kraay 
standard errors (Driscoll and Kraay, 1998; Kraay and Driscoll, 1999), moving block bootstrap 
(Kunsch, 1989), and circular bootstrap (Politis and Romano, 1992, 1994). 

In our framework, we solve OLS using our approximate Newton procedure with a slight mod-
ifcation to Algorithm 1. Instead of uniformly sampling indices as in line 4 of Algorithm 1, we 
uniformly select some io ∈ [n], and set the outer mini-batch indexes Io to the random contiguous 
block {io, io + 1, . . . , io + l − 1} mod n, where we let the indexes circularly wrap around, as 
in line 4 of Algorithm 5, and this sampling scheme is similar to circular bootstrap. Here l is the 
lag parameter, similar to the Newey-West estimator. And the stochastic gradient’s expectation is 
still the full gradient. The complete algorithm is in Algorithm 5, and its guarantees are given in 
Corollary B.1. Our approximate Newton statistical inference procedure is equivalent to using weight 
w(j, l) = 1 − j/l in the Newey-West covariance estimator (19), with negligible terms for blocks that 
wrap around, and this is the same as circular bootstrap. Note that the connection between sampling 
scheme and Newey-West estimator was also observed in (Kunsch, 1989). Following (Politis and 
Romano, 1992), we can set the lag parameter such that l · n−1/3 → 0, and run at least n outer loops. 
In practice, other methods for tuning the lag parameter can be used, such as (Newey and West, 1994). 
For more details, we refer the reader to Appendix B. 

8 

http:terms.We


STATISTICAL INFERENCE WITHOUT EXCESS DATA USING ONLY STOCHASTIC GRADIENTS 

Approximate Newton Bootstrap Inverse Fisher information Averaged SGD 

Lin1 (0.906, 0.289) (0.933, 0.294) (0.918, 0.274) (0.458, 0.094) 
Lin2 (0.915, 0.321) (0.942, 0.332) (0.921,0.308) (0.455 0.103) 

Table 1: Linear regression (low dimensional): synthetic data confdence interval (coverage, length) 

Approximate Newton Jackknife Inverse Fisher information Averaged SGD 

Log1 (0.902, 0.840) (0.966 1.018) (0.938, 0.892) (0.075 0.044) 
Log2 (0.925, 1.006) (0.979, 1.167) (0.948, 1.025) (0.065 0.045) 

Table 2: Logistic regression (low dimensional): synthetic data confdence interval (coverage, length) 
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Figure 1: Distribution of two-sided Z-test p-values under the null hypothesis (high dimensional) 

5. Experiments 

5.1. Synthetic data Pp
ip The coverage probability is defned as 1 
=1 

interval for the ith coordinate. The average confdence interval length is defned as 

P[θ?i Ĉi], where Ĉi is the estimated confdence ∈ Pp
i=1

In our experiments, 

1 u
i( Ĉ l

i− Ĉ ), p 
l
iwhere [ Ĉ u

i
ˆ, C ] is the estimated confdence interval for the ith coordinate. 

coverage probability and average confdence interval length are estimated through simulation. Result 
given as a (α, β) indicates (coverage probability, confdence interval length). 

Low dimensional problems. Table 1 and Table 2 show 95% confdence interval’s coverage and 
length of 200 simulations for linear and logistic regression. The exact confgurations for linear/logistic 
regression examples are provided in Appendix H.1.1. Compared with Bootstrap and Jackknife (Efron 
and Tibshirani, 1994), Algorithm 1 uses less numerical operations, while achieving similar results. 
Compared with the averaged SGD method (Li et al., 2018; Chen et al., 2016), our algorithm performs 
much better, while using the same amount of computation, and is much less sensitive to the choice 
hyper-parameters. And we observe that calibrated approximate Newton confdence intervals (Efron 
and Tibshirani, 1994; Politis et al., 2012) are better than bootstrap and inverse Fisher information 
(Table 3). 

High dimensional linear regression. Figure 1 shows p-value distribution under the null hypothesis 
for our method and the de-biased LASSO estimator with known covariance, using 600 i.i.d. samples 
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generated from a model with Σ = I , σ = 0.7, and we can see that it is close to a uniform distribution, 
similar results are observed for other high dimensional statistical inference procedures such as 
(Candes et al., 2018). And visualization of confdence intervals computed by our algorithm is shown 
in Figure 3. 

Time series analysis. In our linear regression simulation, we generate i.i.d. random explanatory 
variables, and the observation noise is a 0-mean moving average (MA) process independent of the 
explanatory variables. Results on average 95% confdence interval coverage and length are given in 
Appendix H.1.3, and they validate our theory. 

5.2. Real data 

Neural network adversarial attack detection. Here we use ideas from statistical inference to 
detect certain adversarial attacks on neural networks. A key observation is that neural networks are 
effective at representing low dimensional manifolds such as natural images (Basri and Jacobs, 2016; 
Chui and Mhaskar, 2016), and this causes the risk function’s Hessian to be degenerate (Sagun et al., 
2017). From a statistical inference perspective, we interpret this as meaning that the confdence 
intervals in the null space of H+GH+ is infnity, where H+ is the pseudo-inverse of the Hessian (see 
Section 2). When we make a prediction Ψ(x; θb) using a fxed data point x as input (i.e., conditioned 
on x), using the delta method (van der Vaart, 1998), the confdence interval of the prediction can be 
derived from the asymptotic normality of Ψ(x; θb) � � � h i � √ 

n Ψ(x; θb) − Ψ(x; θ?) → N 0, rθΨ(x; θb)> Hb−1 G bHb−1 rθΨ(x; θb) . 

To detect adversarial attacks, we use the score 

k(I−PH+GH+ )rθ Ψ(x;θb)k2 

krθ Ψ(x;θb)k , 
2 

to measure how much rθΨ(x; θb) lies in null space of H+GH+, where PH+GH+ is the projection 
matrix onto the range of H+GH+ . Conceptually, for the same image, the randomly perturbed 
image’s score should be larger than the original image’s score, and the adversarial image’s score 
should be larger than the randomly perturbed image’s score. 

We train a binary classifcation neural network with 1 hidden layer and softplus activation 
function, to distinguish between “Shirt” and “T-shirt/top” in the Fashion MNIST data set (Xiao et al., 
2017). Figure 2 shows distributions of scores of original images, adversarial images generated using 
the fast gradient sign method (Goodfellow et al., 2014), and randomly perturbed images. Adversarial 
and random perturbations have the same ` ∞ norm. The adversarial perturbations and example images 
are shown in Appendix H.2.1. Although the scores’ values are small, they are still signifcantly larger 
than 64-bit foating point precision (2−53 ≈ 1.11 × 10−16). We observe that scores of randomly 
perturbed images is an order of magnitude larger than scores of original images, and scores of 
adversarial images is an order of magnitude larger than scores of randomly perturbed images. 

High dimensional linear regression. We apply our high dimensional inference procedure to the 
dataset in (Rhee et al., 2006) to detect mutations related to HIV drug resistance, where we randomly 
sub-sample the dataset so that the number of features is larger than the number of samples. When 
we control the family-wise error rate (FWER) at 0.05 using the Bonferroni correction (Bonferroni, 
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Figure 2: Distribution of scores for original, randomly perturbed, and adversarially perturbed images 

1936), our procedure is able to detect verifed mutations in an expert dataset (Johnson et al., 2005) 
(Table 4), and the details are given in Appendix H.2.2. Another experiment with a genomic data set 
concerning ribofavin (vitamin B2) production rate (Bühlmann et al., 2014) is given in the appendix. 

Time series analysis. Using monthly equities returns data from (Frazzini and Pedersen, 2014), we 
use our approximate Newton statistical inference procedure to show that the correlation between US 
equities market returns and non-US global equities market returns is statistically signifcant, which 
validates the capital asset pricing model (CAPM) (Sharpe, 1964; Lintner, 1965; Fama and French, 
2004). The details are given in Appendix H.2.3. 

6. Related work 

Unregularized M-estimation. This work provides a general, fexible framework for simultaneous 
point estimation and statistical inference, and improves upon previous methods, based on averaged 
stochastic gradient descent (Li et al., 2018; Chen et al., 2016). 

Compared to (Chen et al., 2016) (and similar works (Su and Zhu, 2018; Fang et al., 2017) using 
SGD with decreasing step size), our method does not need to increase the lengths of “segments” (inner 
loops) to reduce correlations between different “replicates”. Even in that case, if we use T replicates 

do 1 

and increasing “segment” length (number of inner loops is t 1−do · L) with a total of O(T 1−do · L) 
4(1−do) stochastic gradient steps, (Chen et al., 2016) guarantees O(L− 1−

2 
do 
+ T − 

2
1 
+ T max{ 

2
1 − do ,0}− 

2
1 

· 
1−2do 1−2do 

L− do max{ ,0}− 1 
4 + T 2(1−do) 2 2 2 · L ) , whereas our method guarantees O(T − do 

). Further, (Chen 
et al., 2016) is inconsistent, whereas our scheme guarantees consistency of computing the statistical 
error covariance. 

(Li et al., 2018) uses fxed step size SGD for statistical inference, and discards iterates between 
different “segments” to reduce correlation, whereas we do not discard any iterates in our computations. 
Although (Li et al., 2018) states empirically constant step SGD performs well in statistical inference, 
it has been empirically shown (Dieuleveut et al., 2017) that averaging consecutive iterates in constant 
step SGD does not guarantee convergence to the optimal – the average will be “wobbling” around 
the optimal, whereas decreasing step size stochastic approximation methods ((Polyak and Juditsky, 
1992; Ruppert, 1988) and our work) will converge to the optimal, and averaging consecutive iterates 
guarantees “fast” rates. 
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Finally, from an optimization perspective, our method is similar to stochastic Newton methods 
(e.g. (Agarwal et al., 2017)); however, our method only uses frst-order information to approximate 

rf(θ+δv)−rf(θ) a Hessian vector product (r2f(θ)v ≈ ). Algorithm 1’s outer loops are similar to δ 
stochastic natural gradient descent (Amari, 1998). Also, we demonstrate an intuitive view of SVRG 
(Johnson and Zhang, 2013) as a special case of approximate stochastic Newton steps using frst order 
information (Appendix E). 

High dimensional linear regression. (Chen et al., 2016)’s high dimensional inference algorithm is 
based on (Agarwal et al., 2012), and only guarantees that optimization error is at the same scale as the 
statistical error. However, proper de-biasing of the LASSO estimator requires the optimization error 
to be much less than the statistical error, otherwise the optimization error introduces additional bias 
that de-biasing cannot handle. Our optimization objective is strongly convex with high probability: 
this permits the use of linearly convergent proximal algorithms (Xiao and Zhang, 2014; Lee et al., 
2014) towards the optimum, which guarantees the optimization error to be much smaller than the 
statistical error. 

Our method of de-biasing the LASSO in Section 3 is similar to (Zhang and Zhang, 2014; van de 
Geer et al., 2014; Javanmard and Montanari, 2014, 2015). Our method uses a new ` 1 regularized 
objective (13) for high dimensional linear regression, and we have different de-biasing terms, because 
we also need to de-bias the covariance estimation. In Algorithm 2, our covariance estimate is similar 
to the classic sandwich estimator (Huber, 1967; White, 1980). Previous methods require O(p2) space 
which unsuitable for large scale problems, whereas our method only requires O(p) space. 

Similar to our ` 1-norm regularized objective, (Yang et al., 2014; Jeng and Daye, 2011) shows 
similar point estimate statistical guarantees for related estimators; however there are no confdence 
interval results. Further, although (Yang et al., 2014) is an elementary estimator in closed form, 
it still requires computing the inverse of the thresholded covariance, which is challenging in high 
dimensions, and may not computationally outperform optimization approaches. 

Finally, for feature selection, we do not assume that absolute values of the true parameter’s 
non-zero entries are lower bounded (“beta-min” condition). (Fan et al., 2018; Loh, 2017; Loh and 
Wainwright, 2017; Bühlmann and van de Geer, 2011; Wainwright, 2009). 

Time series analysis. Our approach of sampling contiguous blocks of indices to compute stochastic 
gradients for statistical inference in time series analysis is similar to resampling procedures in moving 
block or circular bootstrap (Carlstein, 1986; Kunsch, 1989; Bühlmann, 2002; Davison and Hinkley, 
1997; Efron and Tibshirani, 1994; Lahiri, 2013; Politis and Romano, 1992, 1994; Kreiss and Lahiri, 
2012), and conformal prediction (Balasubramanian et al., 2014; Shafer and Vovk, 2008; Vovk et al., 
2005). Also, our procedure is similar to Driscoll-Kraay standard errors (Driscoll and Kraay, 1998; 
Kraay and Driscoll, 1999; Hoechle, 2007), but does not waste computational resources to explicitly 
store entire matrices, and is suited for large scale time series analysis. 
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