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Virtual Waveform Design for Millimeter-Wave

Vehicular Joint Communication-Radar

Abstract

Automotive joint communication and radar (JCR) waveforms with fully digital baseband generation

and processing can now be realized at the millimeter-wave (mmWave) band. Prior work has developed a

mmWave wireless local area network (WLAN)-based automotive JCR that exploits the WLAN preamble

for radars. The performance of target velocity estimation, however, was limited. In this paper, we

propose an adaptive virtual JCR waveform design for automotive applications at the mmWave band. The

proposed system transmits a few non-uniformly placed preambles to construct several receive virtual

preambles for enhancing velocity estimation accuracy, at the cost of only a small reduction in the

communication data rate. We evaluate JCR performance trade-offs using the Cramér-Rao Bound (CRB)

metric for radar estimation and a novel distortion minimum mean square error (MMSE) metric for

data communication. Additionally, we develop three different MMSE-based optimization problems for

the adaptive JCR waveform design. Simulations show that an optimal virtual (non-uniform) waveform

achieves a significant performance improvement as compared to a uniform waveform. For a radar

CRB constrained optimization, the optimal radar range of operation and the optimal communication

distortion MMSE (DMMSE) are improved. For a communication DMMSE constrained optimization

with a high DMMSE constraint, the optimal radar CRB is enhanced. For a weighted MMSE average

optimization, the advantage of the virtual waveform over the uniform waveform is increased with

decreased communication weighting. Comparison of MMSE-based optimization with traditional virtual

preamble count-based optimization indicated that the conventional solution converges to the MMSE-

based one only for a small number of targets and a high signal-to-noise ratio.

Preeti Kumari and Robert W. Heath Jr. are with the Wireless Networking and Communications Group, the University of

Texas at Austin, TX 78712-1687, USA (e-mail: {preeti kumari, rheath}@utexas.edu). Sergiy A. Vorobyov is with the Aalto
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the National Science Foundation under Grant No. ECCS-1711702 and CNS-1731658. This paper was presented in part at the

IEEE ICASSP Conference, March 2017 [1] and at the IEEE ICASSP conference, April 2018 [2].
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I. INTRODUCTION

Millimeter-wave (mmWave) spectrum is an enabling technology to realize high data rate

communication and high resolution radar sensing for many demanding applications, such as

autonomous driving [3]. Traditional mmWave radars employ heavy analog pre-processing due to

the use of low-speed analog-to-digital converters (ADC) and frequency-modulated continuous-

wave (FMCW) technology [4]. While effective for initial implementations, analog designs are

restrictive and limit the performance as well as flexibility for futuristic radar designs [5]. To

address these concerns, mmWave communications hardware with high-speed ADCs can be lever-

aged to realize a mmWave radar system with fully digital time-domain baseband processing [6].

Further improvements can be achieved by combining radar and communication into a single

joint mmWave system that uses a common waveform to enable hardware reuse. These new

joint mmWave waveforms will provide advantages in terms of cost, size, power consumption,

spectrum usage, and adoption of communication-capable vehicles.

The prior approaches on joint systems are mainly classified as either joint radar-communication

(JRC) waveforms or joint communication-radar (JCR) waveforms [7]. With JRC waveforms, the

communication messages are modulated on top of the radar waveforms, such as pulse position

modulation in [8], phase modulation in [9], or continuous phase modulation in [10]. Additionally,

the JRC waveforms have been realized by embedding communication information in the transmit

beamforming vectors [11]. These waveforms, however, do not support high data rates as the

communication signal must be spread to avoid disturbing the radar required properties. To achieve

high spectral efficiency without complex equalization filters, most of the JCR systems at sub-

6 GHz frequencies use orthogonal frequency-division multiplexing (OFDM) waveforms. The

communication and radar performances are, however, limited due to the bandwidth available.

Recently, a number of mmWave wideband JCR waveforms have been proposed that leverages

consumer wireless technologies [12]–[16]. In [12], a full-duplex IEEE 802.11ad-based radar

was proposed that exploits the preamble of a single-carrier (SC) physical (PHY) layer frame

to simultaneously achieve cm-level range resolution and Gbps data rates. A major limitation

in [12] is that the performance of the velocity estimator was poor due to the short length of

the preamble. In [13], an opportunistic radar was developed using an IEEE 802.11ad control

PHY packet, which contains a longer preamble than SC PHY, for a single target scenario.

Unfortunately, the probing signal duration is still small leading to poor velocity estimation, the
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data rate supported is at most 27.5 Mbps, and the update rate is very low. To enhance velocity

estimation resolution, [14] investigated the possibility of increasing radar integration time by

developing velocity estimation algorithms that exploit multiple fixed-length IEEE 802.11ad SC

PHY frames. Similar velocity enhancement techniques were used in [15] that proposed an IEEE

802.11ad media access control configuration to accommodate radar operations for vehicle-to-

infrastructure applications. In [16], an OFDM mmWave waveform was proposed for a bi-static

automotive JCR system that also exploited preambles from multiple frames at a constant spacing

for enhancing velocity estimation performance. The approaches in [14]–[16], however, require

increasing the total preamble duration to achieve desirable high-accuracy velocity estimation,

which would incur degradation in the communication data rate.

In this paper, we use sparse sensing techniques in the time domain to optimize the trade-

off between communication and radar performance for the waveform design of a JCR system.

We exploit the preamble of a communication frame as a radar pulse. The radar pulses are

placed in a non-uniform fashion by varying the frame lengths, and their locations form a

restricted difference basis [17]. Then, we use a few non-uniformly placed pulses in a coherent

processing interval (CPI) to construct a virtual difference co-waveform with several uniform

virtual preambles. This virtual increase in the radar pulse integration time enables enhanced

velocity estimation at a given communication rate as compared to a uniform waveform [14].

The virtual pulse approach is conceptually similar to the staggered pulse repetition intervals

(PRI) used in the classical long-range radar [18, Ch. 17] and sparse sampling/arrays used in

the undersampled frequency/angle/channel estimation [17], [19], [20]. Most of the existing

sparse sensing approaches are focused on optimizing the sparse antenna array configurations

by maximizing the antenna aperture for a given number of antenna elements. In this paper,

however, we design a virtual JCR waveform using a novel minimum mean square error (MMSE)-

based optimization that accurately quantifies the trade-off between communication and radar

performance.

We make the following key assumptions in our proposed mmWave JCR waveform design.

First, we assume that the location and relative velocity of a target remain constant during a

CPI. This is justified by the small enough acceleration and velocity of a target relative to the

radar sensor, as found in automotive applications [21]. Second, we assume full-duplex radar

operation due to the recent development of systems with sufficient isolation and self-interference

cancellation [22], [23]. Third, we assume perfect data interference cancellation on the training
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part of the received JCR waveform because the transmitted data is known at the radar receiver.

These assumptions are explained in more detail in Section II.

The main contributions of this paper are summarized as follows.

• We propose a novel formulation for a wideband JCR system that transmits virtual waveform

at the mmWave band. This formulation captures the nuances of the frequency-selective

sparse mmWave channel description for both communication and radar systems. Addition-

ally, we develop a generic virtual JCR waveform structure in the system model that can be

further tuned to achieve optimal JCR performance using sparse sensing techniques.

• We develop a novel effective distortion minimum mean square error (DMMSE) metric

for communication that is comparable with the radar Cramér-Rao bound (CRB) metric for

velocity estimation. The MMSE-based metrics enable us to accurately quantify the trade-off

between communication and radar systems.

• We formulate three different optimization problems for designing an adaptive JCR waveform

that meets the Pareto-optimal bound. The first one minimizes the radar CRB under the

constraint of a minimum communication DMMSE. The second one minimizes the commu-

nication DMMSE for a given minimum radar CRB. The third one considers a more flexible

weighted average of communication and radar performance for the JCR system.

• We solve the proposed JCR optimization problems for a uniform waveform and for virtual

waveforms that can be represented in closed-form and contain no holes in their corre-

sponding difference co-waveforms, such as nested virtual waveforms or Wichmann virtual

waveforms. The use of specific virtual waveform configurations reduces the computational

complexity for finding the optimal JCR waveform design.

• We carry out simulations to study the performance trade-offs in the JCR waveform design

and compare the optimal performances achieved by different JCR waveform solutions. We

explore the effects of signal-to-noise ratio (SNR), the number of preambles used, and the

number of radar targets on the virtual waveform design. The simulation parameters are based

on automotive applications and the IEEE 802.11ad-based standard. The results suggest that

virtual waveforms are highly desirable at high SNR with low target density (i.e., a small

ratio of target count to the number of preambles) and at low SNR with high communication

DMMSE. Comparison of MMSE-based optimization with more traditional virtual pream-

ble (VP) count-based optimization indicates that the traditional solution converges to the

MMSE-based one only at low target density and high SNR.



5

The work in this paper is a significant extension of our previous conference contributions

[1], [2]. In addition to a detailed exposition on the adaptive JCR waveform design, we have

included a multi-target radar model and a frequency-selective communication channel model for

demonstrating the superiority of virtually placed preambles as compared to uniformly placed

preambles.

The rest of the paper is organized as follows. We formulate an integrated model for our

proposed JCR system in Section II. For the proposed system, we develop a radar processing

technique in Section III. Then, we describe the performance metrics and the associated trade-

off for the JCR waveform design in Section IV. In Section V, we develop three optimization

problems for the adaptive JCR waveform design. In Section VI, we outline the main idea of

virtual waveform design and different specific solution approaches for waveform optimization.

We describe the simulation results and performance evaluations in Section VII. Finally, we

conclude our work and provide directions for future work in Section VIII.

Notation: We use the following notation throughout the paper: The notation NC(u, σ2) is used

for a complex Gaussian random variable with mean u and variance σ2. The projection matrix

onto the null space of matrix A is defined as Π⊥A = I − A(A∗A)−1A∗. The operators | · |

represents the cardinality of a matrix, Conv (·) denotes the convex hull, and Tr [·] indicates the

trace of a square matrix. The notation (·)T, (·)∗, and (·)c stand for transpose, Hermitian transpose,

and conjugate of a matrix/vector, while (·)−1 represent the inverse of a square full-rank matrix.

Additionally, vec(·) vectorizes a matrix to a long vector, diag(·) forms a vector into a diagonal

matrix, while � and ⊗ represent Khatri-Rao and Kronecker product of matrices.

II. SYSTEM MODEL

In this section, we formulate transmit (TX) and receive (RX) signal models for the proposed

adaptive mmWave JCR system, as illustrated in Fig. 1. We consider the case where a full-duplex

source transmits the JCR waveform at a carrier wavelength λ to a destination receiver at a

distance ρc moving with a relative velocity vc, while simultaneously receiving echoes from the

surrounding moving targets. First, we propose an adaptive single-carrier mmWave waveform

structure that serves as the TX signal at the source for both communication and radar systems

simultaneously. Then, we develop RX signal models for the communication receiver at the

destination and the radar receiver at the source for the frequency-selective channels.
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TX

RX

Source

RX

TX

Destination

Targets

vcvs

v0,0

v0,1

v2,0

v1,0

v1,1

Communication Range (𝜌c)

Fig. 1. The source sends a mmWave waveform to the destination receiver and uses the echoes from multiple moving targets

(including the destination) to estimate their ranges {ρ`}L−1
`=0 and velocities {v`,k}L−1,K−1

`=0,k=0 .

A. Transmit signal model

Data Data P Data Data…
Time

0 q1TD qM-2TD qM-1TD T

Frame Preamble IFS

Fig. 2. A CPI of T seconds duration with M JCR frames. Each frame contains a fixed-length preamble of P symbols, a varying

length data segment, and an inter-frame space (IFS) of constant duration. The length of each frame is an integer multiple, qm,

of the Nyquist sampling interval in the Doppler domain, TD.

We consider a generic TX waveform structure with µ fraction of communication symbols and

(1−µ) fraction of preamble symbols in a CPI of T seconds with M frames. Each frame consists

of a fixed preamble duration, PTs, and a variable data length, which leads to a varying frame

length as shown in Fig. 2. The IEEE 802.11ad standard can realize this multi-frame approach

using the block/no acknowledgment policy during the communication between a dedicated pair

of nodes in the data transmission interval [24, Ch. 9]. To unambiguously estimate a maximum

relative target velocity vmax in a CPI, the mth frame is considered to be located at an integer

multiple, qm, of the Doppler Nyquist sampling interval, TD ≤ λ/(4vmax).

We denote the unit energy TX pulse-shaping filter as gTX(t), the signaling bandwidth as W ,

and the symbol period as Ts ≈ 1/W . The transmitted symbol sequence corresponding to the

mth frame with Nm symbols is denoted by sm[n], which satisfies the average power constraint

E [|sm[n]|2] = Es. Then, the generic complex-baseband continuous-time representation of the
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single-carrier TX waveform in a CPI is given as

x(t) =
M−1∑
m=0

Nm−1∑
n=0

sm[n]gTX(t− nTs − qmTD). (1)

The generic TX waveform parameters, such as the location and size of the mth frame, can be

further optimized to achieve desirable JCR performance as described in Section V.

In this paper, we consider a single data stream model that supports analog beamforming with

frequency flat TX/RX beam steering vectors [14]. We assume that the source and destination align

their beams toward each other with line-of-sight (LoS) frequency-selective communication and

radar channel. The insights and analysis of this work can also be extended to mmWave multiple-

input-multiple-output (MIMO) radar research using low-resolution ADCs [25] by focusing on

the signal model for a given angular bin. We will now formulate the JCR received signal model

after the TX/RX beamforming for multiple frames in a CPI.

B. Receive signal models

We consider a dwell time consisting of NCPI coherent processing intervals. During the dwell

time, we assume that the acceleration and the relative velocity of a moving target is small

enough to assume constant velocity and that the target is quasi-stationarity (constant location

parameters). We assume a frequency-selective Rayleigh fading model for both communication

and radar channels during the dwell time for simplicity. This work can also be extended for a

general Ricean fading mmWave channel model with block sparsity by deriving corresponding

CRB bounds for different Ricean fading factors that lies between zero (Rayleigh fading) and

infinity (no fading). In each of the CPIs with M frames, we consider a block fading model that

assumes a constant channel gain for each delay tap.

1) Communication received signal model: For evaluating the trade-off between communi-

cation and radar performance, we model the communication signal received at a distance ρc.

Assuming a highly directional mmWave LoS communication link is established between the

source and destination, the large-scale path-loss Gc is given as [26]

Gc =
GTXGRXλ

2

(4π)2ρPL
c

, (2)

where PL is the path-loss exponent, GTX is the TX array gain, and GRX is the RX array gain.

After TX/RX beamforming, symbol synchronization, and frequency synchronization, the re-

ceived communication signal is a sum of the contributions from Lc delayed and attenuated copies
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of the transmitted signals as well as the additive white Gaussian noise (AWGN) with zero mean

and variance σ2
n. The small-scale complex gain of the `th channel delay path, αc[`], is assumed

to be independently and identically distributed (IID) NC(0, σ2
c [`]), where σ2

c [`] represents the

average tap power normalized such that
∑Lc−1

`=0 σ2
c [`] = 1. Therefore, the communication RX

signal yc,m[n] corresponding to the nth symbol in the mth frame with noise wc,m[n] is

yc,m[n] =
√
Gc

Lc−1∑
`=0

αc[`]sm[n− `] + wc,m[n]. (3)

The communication SNR is defined as ζc , EsGc/σ
2
n.

2) Radar received signal model: We represent the doubly selective (time- and frequency-

selective) mmWave radar channel obtained after TX/RX beamforming using the virtual repre-

sentation obtained by uniformly sampling in the range dimension [14]. We assume that there

are L range bins. The `th range bin is assumed to consist of a few, K[`], virtual scattering

centers with different velocities. Each of the (`, k)th virtual scattering center is characterized by

its distance ρ[`], delay τ [`], velocity vk[`], Doppler shift νk[`] = 2vk[`]/λ, and radar cross-section

σRCS,k[`]. The channel gain, βk[`], corresponding to the (`, k)th virtual target scattering center is

(as used extensively in previous work, e.g., [27])

βk[`] =
GTXGRXλ

2σRCS,k[`]

64π3ρ4[`]
(4)

and is assumed IID NC(0, Gk[`]).

After matched filtering (MF) with the RX pulse shaping filter gRX(t) and symbol rate sampling,

the received radar signal is a sum of the contributions from the attenuated, delayed, Doppler-

shifted, and sampled MF echoes as well as the AWGN with zero mean and variance σ2
n. Therefore,

the radar received signal model corresponding to the mth frame with the net TX-RX pulse

shaping filter g(t) = gTX(t) ∗ gRX(t), delayed and sampled MF echo from the `th range bin

εm[n, `] =
∑Nm−1

i=0 sm[i]g((n− i)Ts − qmTD − τ [`]) and noise wr,m[n] is given as

ym[n] =
L−1∑
`=0

εm[n, `]

K[`]−1∑
k=0

√
βk[`]e

−j2πν`,k(nTs+qmTD)

+ wr,m[n].

(5)

The received echo ym[n] is comprised of reflections corresponding to the TX symbol sm[n] as

well as an intersymbol interference from the other TX symbols that depends on the choice of

the TX/RX pulse shaping filters and the doubly-selective radar channel parameters.
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We use the training sequences for radar parameter estimation due to to their good correlation

properties. The training part might incur some interference from the data part because of the larger

delay spread observed in the two-way radar channel as compared to the guard interval employed

between the preamble and the data part in a typical communication system. Motivated by the

recent development of non-orthogonal multiple access techniques with successive interference

cancellation [28], we assume perfect cancellation of the data part on the received training

signal. Developing and evaluating algorithms to cancel the communication data interfence while

receiving the radar segment reflection is a subject of future work.

We assume the channel to be time invariant within the preamble duration of a single frame

due to slow enough velocity and small enough preamble duration. Therefore, the received signal

model corresponding to the training part with εt[n, `] as the preamble/training part of ε[n, `] that

remains same for each frame is

yt
m[n] =

L−1∑
`=0

εt[n, `]

K[`]−1∑
k=0

√
βk[`]e

−j2πνk[`]qmTD + wr,m[n]. (6)

Note that the virtual channel model with
∑L−1

`=0 K[`] scattering centers is used in (6).

III. PROPOSED RADAR PROCESSING

In this section, we propose a radar processing technique for estimating target velocities using

the proposed JCR frames of the same or varying lengths. The radar processing technique exploits

the preamble part of the JCR frame that consists of training sequences with good auto-correlation

properties, such as Golay complementary sequences used in the IEEE 802.11ad-based automotive

radar applications [13], [14]. First, we estimate the channel using a typical communication-

based preamble processing algorithm that exploits the correlation properties of the training

sequences [14]. Then, we calculate the target velocities from the estimated channel using super-

resolution velocity estimation algorithms.

Denoting bk[`] , γ
√
Esβk[`] as signal amplitude in the channel, γ as the integration gain due to

the correlation-based channel estimation, wm[`] as the noise in the channel, and uk[`] , νk[`]TD

as the discrete Doppler frequency, the channel corresponding to the detected target in the `th

range bin that is derived using the mth frame received in (6) is given as

hm[`] =

K[`]−1∑
k=0

bk[`]e
−j2πuk[`]qm + wm[`], (7)
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where wm[`] is distributed as NC(0, σ2
n). The channel vector corresponding to the `th range bin

for a CPI of M frames is h[`] , [h0[`], h1[`], · · · , hM−1[`]]T.

The focus of this paper is on target velocity estimation. Therefore, we describe algorithms for

estimating the velocity of a single target in a specific range bin, say `0, which can be similarly

performed for other range bins. To simplify the expressions, we henceforth omit the notation `

denoting the range bin (e.g., bk[`] becomes just bk).

Denoting the channel signal amplitude vector b , [b0, b1, · · · , bK−1]T, the channel Doppler

vector corresponding to the kth velocity, d(vk) , [1, ej2πukq1 , · · · , ej2πukqM−1 ]T, the channel

Doppler matrix D , [d(v0),d(v1), · · · ,d(vK−1)], and the channel noise vector w , [w0, w1, · · · ,

wK−1]T, the channel vector corresponding to the range bin `0 with K > 0 detected targets is

given by

h = Db + w. (8)

This channel vector is used for target velocity estimation.

Due to space limitations and for simplicity of our basic study here, we focus on subspace

methods, in particular on the class of multiple signal classification (MUSIC) techniques, for

velocity estimation algorithms among many possible approaches [29]–[31]. The velocity resolu-

tion obtained by the subspace methods is not constrained by the duration of the CPI as in the

fast Fourier transform (FFT)-based technique used in [14]. Therefore, a subspace method can

provide higher resolution in the mobile environment with limited CPI. Subspace-based velocity

estimation using multiple preambles in a CPI can be performed by exploiting sample covariance

matrix of the channel in (8) [29]–[31]. The covariance matrix of the channel with pk = E [bkb
∗
k]

as the power of the kth target and P , diag(p0, p1, · · · , pK−1) as the target covariance/power

matrix is given by

R = DPD∗ + σ2
nI. (9)

We define the SNR of the received radar signal at the source vehicle corresponding to the kth

target as ζr[k] = pk/σ
2
n.

We evaluate the CRB performance metric for the velocity estimation performance of the

subspace method using the channel covariance matrix in (9), as described in Section IV. In

Section VI, we further illustrate the MUSIC-based velocity estimation algorithms for specific

waveform design solutions that exploits the finite snapshot version of (9).
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IV. PERFORMANCE METRICS

In this section, we first describe the spectral efficiency performance metric for communication

systems and the CRB performance metric for radar systems. Then, we describe a novel metric

for assessing the system trade-off between radar and communication for a joint waveform design.

A. Communication performance metric

The channel capacity for the received communication signal in (3) with eigenvalues of the

channel matrix as {λc[n]}Nn=1, fraction of data symbols µ = 1, data power coefficients {ξ[n]}Nn=1

satisfying 1
N

∑N
n=1 ξ[n] = 1, data symbol s[n] ∼ NC(0, ξ[n]Es), and noise wc[n] ∼ NC(0, σ2

w) is

obtained by allocating optimum power based on the vector coding among a block of N → ∞

symbols of the single-carrier waveform [32, Ch. 4]. The maximum communication spectral

efficiency achieved using vector coding transmission for N →∞ is expressed as

r =
1

N

N∑
n=1

log2 (1 + ζcλc[n]ξ[n]) bits/s/Hz (10)

and the channel capacity in bits per second (bps) is given as C = Wr. Note that the achiev-

able spectral efficiency of a communication system depends on the implemented precoder and

equalizer [33], [34], and are all upper bounded by (10) for N →∞.

When µ ≤ 1 fraction of communication symbols are transmitted in a CPI with the channel

capacity C, we define the effective communication data rate as Ceff = µC, as in [32, Ch. 7].

Additionally, we can define the effective communication spectral efficiency for µ ≤ 1 as

reff = µr =
µ

N

N∑
n=1

log2 (1 + ζcλc[n]ξ[n]) bits/s/Hz, (11)

which satisfies Ceff = Wreff bps when N →∞.

B. Radar performance metric

The CRB is a lower bound on the variance of an unbiased estimator, and is widely employed as

a performance criterion for direction-of-arrival and velocity estimations [35]–[38]. The aperture

is another commonly employed metric for evaluating the performance of the sparse sensor

array/sampling configurations for a given number of antenna elements/samples [17], [19], [39].

In contrast to the aperture metric or the equivalent VP count for virtual waveform design, the

multi-target CRB takes into account both the mainlobe and sidelobes of the ambiguity function.
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It also captures the saturation effects observed in virtual waveforms at high SNR. In addition,

it reflects the conditions for the nonexistence of unbiased estimators with finite variance, while

other above mentioned commonly used metrics do not have such advantages. Additionally, the

closed-form expression for the radar CRB metric is known in the existing literature [31], [37],

[40], which offers analytical insights into the design of JCR waveforms. For white Gaussian

noise, the CRB is also a lower bound on the MMSE for radar parameter estimation and is used

for asymptotic analysis.

To express the CRB corresponding to (9) with η snapshots, we denote the derivative of the

channel Doppler matrix D with respect to the K velocity parameters {vk}Kk=1 as Ḋ, the co-

waveform Doppler matrix Dq , Dc �D, the derivative of the co-waveform Doppler matrix as

Ḋq , Ḋ∗�D + D∗� Ḋ, identity vector i , vec(I). Then, the CRB matrix for the K estimated

velocities with E , (RT ⊗R)−1/2ḊqP and F , (RT ⊗R)−1/2[Dq i] is [31]

CRB =
1

η

(
E∗Π⊥FE

)−1
. (12)

Note that when the Fisher information matrix is necessarily singular, the CRB does not exist

implying that no unbiased estimator with finite variance exists [41]. Additionally, the use of

multiple snapshots can be achieved by using multiple CPIs within a dwell time. The number of

available snapshots for estimating target velocities within a given range bin depends on the dwell

time, where the quasi-stationarity (constant location and velocity parameters) assumption holds.

It also depends on the latency desired for radar parameter estimation. The maximum number of

available snapshots, however, can be increased by incorporating a range drift correction algorithm

using tracking or technique similar to the range cell migration correction algorithm used in

synthetic aperture radar systems [42, Ch. 6].

C. Joint communication-radar performance metric

In this section, we develop a novel JCR metric to quantify the trade-off between the radar

and the communication performance. In [43], a range estimation rate metric for radar was

proposed and is analogous to the data rate used in communication systems. The radar estimation,

however, is not drawn from a countable distribution similar to communication data symbols.

Therefore, the estimation rate metric is not an accurate representation of radar performance. The

derivation of estimation rate for radar round-trip delay is also not easily extendable to other

radar parameters because several underlying simplifications made in [43], [44] may become
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invalid for the estimation of these other parameters [45]. Additionally, the number of radar

performance metrics (e.g., range/velocity/direction of multiple targets, number of detectable

targets, probability of detection and false alarm, range/velocity/angular resolution) that depend on

µ is much larger than the few performance metrics used in communication. Therefore, instead of

deriving equivalent estimation or information rates for each of these radar parameters in different

scenarios, as in [45], we propose an effective communication DMMSE metric similar to a radar

CRB performance metric.

To formulate an effective scalar communication metric, which parallels the concept of the

radar CRB for JCR waveform design optimization, we propose an MMSE-based communication

metric analogous to the distortion metric in the rate-distortion theory [46, Ch. 10]. The MMSE

of a communication system with net spectral efficiency r, µ = 1, and nth spectral efficiency

rn = log2(1 + ζcλc[n]ξ[n]) in (11) is given as [47]

MMSEc , E [(s− ŝ)((s− ŝ))∗]

= diag
(
2−r1 , · · · , 2−rN

)
,

(13)

where s = [s[1], s[2], . · · · s[N ]]T is the true TX symbol vector and ŝ is the MMSE estimated

vector of s.

Using (10) and (13), the relationship between MMSEc and r becomes

1

N
Tr [log2 MMSEc] = −r. (14)

Therefore, the effective communication DMMSE that satisfies

1

N
Tr [log2 DMMSE] = −reff = −µ · r (15)

is given as

DMMSE = MMSEµ
c . (16)

The effective DMMSE derived for a single-target scenario in [1] also follows relations similar

to (15) and (16). Note that determinant and largest eigenvalues could be used instead of trace in

(15). Indeed, the determinant is a volume, the largest eigenvalue is the length along the longest

axis, and the trace is a sum of all the eigenvalues. Therefore, the trace is a reasonable selection

for a MMSE-based JCR performance metric. The performance trade-off between communication

and radar can then be quantified in terms of the following scalar quantities: 1
N

Tr [log DMMSE]

and 1
K

Tr [log CRB]. Since the communication DMMSE and the radar CRB values are usually
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substantially different, the log-scale is used to achieve proportional fairness (PF) similar to the

problem of resource allocation in multi-user communication [32, Ch. 7].

V. ADAPTIVE WAVEFORM DESIGN PROBLEM FORMULATION

In this section, we formulate an adaptive JCR waveform design to optimize the number

of preambles M and the preamble locations {qm}M−1
m=1 . The JCR performance optimization

problem is a multi-objective (two-objective) problem of simultaneously optimizing both the radar

performance, in terms of, for example, minimizing the velocity CRB, and the communication

performance, in terms of minimizing the effective communication DMMSE. We can see from

(15) that the communication MMSE metric denoted as 1
N

Tr [log DMMSE] is linear with respect

to optimization variables M and {qm}M−1
m=1 . The radar MMSE metric denoted as 1

K
Tr [log CRB]

in (12), however, can be non-convex with respect to the optimization variables, as illustrated later

in Section VII. Therefore, the region of achievable JCR objective values with the radar CRB

and communication DMMSE pairs corresponding to the feasible values of preamble count and

locations can be non-convex. Then, the optimal JCR performance is achieved by using the Pareto

set of the minimum convex set (termed the convex hull) of the feasible non-convex JCR achiev-

able objective values region, thereby enhancing at least radar CRB metric without degrading

the communication DMMSE metric, similar to multi-user communication rate optimization [46,

Ch. 15]. Additionally, the convex solution is achievable by using time-sharing or probabilistic

occurrence techniques on the extreme points of the convex hull [48].

The scalarization approach is known to achieve a Pareto optimal point for multiple convex

objectives [49, Ch. 4]. Therefore, the JCR performance optimization can be formulated as the

weighted average of a convex hull of communication and radar MMSE-based performance met-

rics. Denoting the scalar communication DMMSE metric as ϕc(DMMSE) , 1
N

Tr [log DMMSE]

and the scalar radar CRB metric as ϕr(CRB) , Conv
(

1
K

Tr [log CRB]
)
, which incorporates

the convex hull operation with respect to the optimization variables, the JCR performance

optimization problem can be formulated as

minimize
M,{qm}M−1

m=1

ωrϕr(CRB) + ωcϕc(DMMSE)

subject to {T,K, ρ} = constants,

0 < q1 < · · · < qM−1 < T/TD, (17)
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where ωr ≥ 0 and ωc ≥ 0 are the normalizing and weighting factors assigning the priorities for

radar and communication tasks, respectively. Note that the weights can be adjusted adaptively

with respect to the requirements imposed by different scenarios, such as varying radar SNR.

Alternatively, problem (17) can be modified as a minimization of one of the objectives with

the second one written as a constraint that would guarantee an acceptable performance for one

of the tasks. The radar CRB constrained formulation with a minimum required CRB Υr can be

expressed as

minimize
M,{qm}M−1

m=1

ϕc(DMMSE)

subject to ϕr(CRB) ≤ Υr,

{T,K, ρ} = constants,

0 < q1 < · · · < qM−1 < T/TD. (18)

The optimization in (18) simplifies to finding the minimum number of frames M that meets

the required radar CRB value, whenever a specific sparse pulse configuration, such as coprime

pulses, is assumed.

The communication DMMSE-constrained formulation with minimum required DMMSE Υc

is given by

minimize
M,{qm}M−1

m=1

ϕr(CRB)

subject to ϕc(DMMSE) ≤ Υc,

{T,K, ρ} = constants,

0 < q1 < · · · < qM−1 < T/TD. (19)

The optimization in (19) for a constant predefined number of frames M for a large enough CPI

T simplifies to the optimization of frame locations.

VI. ADAPTIVE WAVEFORM DESIGN SOLUTIONS

Finding optimal virtual waveform designs as the solutions of the JCR optimization problems

proposed in Section V is computationally difficult (generally has combinatorial complexity). To

ensure polynomial complexity for solving the JCR optimization problems and for mathematical

tractability, we use specific configurations of preamble locations that have good ambiguity

functions. It helps to dramatically reduce the optimization complexity and problem size to only a
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Fig. 3. Different virtual waveforms: (a) Uniform one, where a CPI consists of MU equi-spaced frames of duration TD. (b)

Coprime one, where a CPI consists of non-uniformly placed MV = M1 +M2 frames.

few variables depending on the specific configurations used. In this section, we present different

adaptive single-carrier waveform designs based on the JCR optimization problem formulations

along with their associated algorithms. These solutions are mainly classified as uniform or

non-uniform (virtual) waveform designs. In the uniform waveform (UW) design, the preambles

are placed at a Doppler Nyquist rate 1/TD, whereas in the non-uniform waveform design, the

preambles are placed at a Doppler sub-Nyquist rate 1/(qmTD) with integer qm > 1.

A. Uniform waveform design

In this approach, multiple frames, MU, are placed at a constant Doppler Nyquist sampling

interval, TD, in a CPI of T ≥MUTD seconds [14], as shown in Fig. 3(a). The mth frame in a CPI

is located at qm = m and the set of all preamble locations in a CPI is MU = {1, 2, · · · ,MU}.

Therefore, the weighted average formulation in (17) can be modified after incorporating the UW

structure into the problem formulation as:

minimize
MU

ωrϕr(CRB) + ωcϕc(DMMSE)

subject to {T,K, ρ} = constants,

qm = m ≤ T/TD ∀m = 1, 2, ...,MU. (20)

The other constrained optimization formulations in (18) and in (19) can be similarly modified

by incorporating the uniform waveform structure into the formulations.
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For the uniform waveform design, the CRB expression in (12) can be further simplified as [50]

CRB =
σ2

n

2η

{
Re(Ḋ∗Π⊥DḊ)� (PD∗RDP)T

}−1

, (21)

where CRB exists when the target count K is smaller than the number of preambles MU. As

SNR goes to infinity, CRB in (21) reduces to zero [50]. Additionally, the radar CRB metric

ϕr(CRB) is convex with respect to MU for uniform waveform, as illustrated later in Section VII.

We use the standard MUSIC algorithms, which is asymptotically efficient, for estimating velocity

using uniform waveforms when K < MU [51].

The feasibility and behavior of optimal solutions in the waveform design problem formulations

in (17), (18), and (19) depends on the velocity CRB in (12) as well as the communication

DMMSE in (16). Since the CRB in (12) monotonically reduces with the increasing SNR, the

optimal solutions for uniform waveform designs in (17), (18), and (19) will continuously improve

with the decrease in the target distance ρ. Additionally, with decreasing ρ, the optimal number

of preambles, M∗
U, in (18) will decrease, M∗

U in (19) will be constant, and the change in M∗
U

will be adapted based on the rate of decrease in the radar CRB with ρ for weighted average

optimization-based design in (17). With an increase in K in JCR problem formulations, the

CRB in (12) degrades and its existence depends on MU. Therefore, with growing K, the optimal

solutions for uniform waveform designs in (17) as well as in (18) will rapidly degrade with a

steep increase in M∗
U, while the feasibility of optimal waveform design in (17), (18), and (19)

will be severely limited. Additionally, the optimal solutions achieved by adaptive JCR waveform

designs for all three problems are limited. This is because the use of multiple frames placed

at the Nyquist rate in a CPI will lead to a large physical increase in the preamble duration,

thereby significantly decreasing the communication spectral efficiency. These insights are further

explained in Section VII.

B. Non-uniform waveform design

For non-uniform waveform designs, MV frames are non-uniformly placed in a CPI of T ≥

MVTD, as shown in Fig. 3(b). Therefore, the preambles are placed in a sub-Nyquist fashion

with varying NmTs ≥ TD spacing between them. Here, the mth frame is located at qm ≥ m

and the set of all preamble locations in a CPI MV = {qm, 1 ≤ m ≤ MV} is a sparse subset

of the contiguous set M = {1, 2, · · · , T/TD} that guarantees the desirable velocity estimation
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performance. The location of preambles in a CPI can be chosen randomly or in a determined

fashion.

The VP locations for the non-uniform waveform is obtained using the following difference

co-waveform of MV

CV = {qm − qn, 0 ≤ m,n ≤ (MV − 1)}. (22)

Vectorizing R yields the co-waveform signal model expressed as

r = vec(R) = Dqp + σ2
ni, (23)

where Dq , Dc�D and p , [p1, p2, · · · , pK ]. The matrix Dq also represents the steering matrix

of CV [39].

For tractable analysis, we use deterministic non-uniform waveforms that can be represented in

closed-form and contain no holes in their corresponding difference co-waveforms. MUSIC-like

algorithms can then be applied on the full contiguous stretch of |CV| elements in the hole-free

difference co-waveforms. The approach developed in this paper can also be extended to other

sparse waveforms.

The CRB expression in (12) is valid under the condition that 2K ≤ |CV| for hole-free difference

co-waveforms [40]. The cardinality of the difference co-waveform CV depends on the placements

of non-uniform preambles MV and can be used to identify O(M2
V) sources. For K << MU

and MU = MV = M , the CRB for non-uniform waveforms also decreases much faster than for

uniform waveforms as M increases [31]. At K > MV, however, the CRB for the non-uniform

waveform design may not reduce to zero when SNR goes to infinity. Additionally, the CRB

metric can be non-convex with respect to MV for non-uniform waveform, as illustrated later in

Section VII.

Since the non-uniform waveform design usually needs a lower MV to achieve a given radar

CRB and a much higher MV to achieve a valid CRB for a given K than a uniform waveform

design, a non-uniform waveform design allows a larger set of feasible solutions for the JCR

waveform optimization problems in (17), (18), and (19). Additionally, the lower the cardinality

of the sparse setMV, the smaller the overhead on the effective communication spectral efficiency.

Therefore, non-uniform waveform design allows a reduced trade-off between the radar CRB and

the communication DMMSE for low target density, thereby resulting in an enhanced optimal

JCR waveform design. The saturation effect observed in non-uniform waveform design at high
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SNR, however, reduces the advantage of non-uniform JCR waveform design over uniform JCR

waveform design at small radar distances.

Among several redundancy waveforms with no holes [52], Wichmann and nested waveforms

are relevant. The Wichmann virtual waveform (WVW) is known to yield the largest aperture

co-waveform for all redundancy waveforms with more than 8 elements [17]. The inter-preamble

spacings of the WVW is [53]

dMW={1(a1), a1 + 1, (2a1 + 1)(a2), (4a1 + 3)(a2),

(2a1 + 2)(a1+1), 1(a1)},
(24)

where a1, a2 ∈ N and the notation a
(a2)
1 represents a2 repetitions of a1. The VP count |CW| of

the WVW is

|CW| = 4a1(a1 + a2 + 2) + 3(a2 + 1). (25)

Therefore, the weighted average formulation in (17) can be modified after incorporating the

WVW structure into the problem formulation as:

minimize
a1,MW

ωrϕr(CRB) + ωcϕc(DMMSE)

subject to {T,K, ρ} = constants,

4a1 + a2 + 3 = MW ≤ T/TD, (26)

{qm − qm−1}Mm=1 = dMW,

a1, a2 ∈ N, (27)

where the radar CRB for the WVW exists when 2K ≤ |CW|. The other constrained optimization

formulations in (18) and in (19) can be similarly modified by incorporating the WVW structure

into the formulations.

In most of the prior work in sparse array optimization, |Cv| is maximized for a given |MV|.

Using this traditional optimization criteria, optimum a∗1 is the closest non-negative integer solution

to (|MV| − 4)/6 and optimum a∗2 = |MV| − 4a∗1 − 3 [52]. The fraction of communication data

symbols 1− µ∗W for the WVW in a CPI is

1− µ∗W = 1− (4a∗1 + a∗2 + 3)PTs +M∗
WTIFS

T
, (28)

where M∗
W is the optimal minimum |MV| for the WVW and TIFS is the interframe spacing. In

Section VII, we will compare a∗1 and a∗2 values obtained using the VP count-based optimization

and the CRB-based optimization.
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The Nested virtual waveform (NVW) is widely used in MIMO radar for direction-of-arrival

estimation [39]. It is obtained by nesting two uniform waveforms with different inter-element

spacing. The inter-preamble spacing in the two-level NVW is

dMN = {1(M1), (M1 + 1)(M2)}, (29)

where M1 is the number of preambles in the first uniform waveform and M2 is the number of

preambles in the second uniform waveform. The VP count of the NVW is

|CN| = M2(M1 + 1)− 1. (30)

Therefore, the weighted average formulation in (17) can be modified after incorporating the

NVW structure into the problem formulation is given as:

minimize
M1,MN

ωrϕr(CRB) + ωcϕc(DMMSE)

subject to {T,K, ρ} = constants,

M1 +M2 = MN ≤ T/TD, (31)

{qm − qm−1}MN
m=1 = {1(M1), (M1 + 1)(M2)},

0 < M1 ≤M2, (32)

where the radar CRB for the NVW exists when 2K ≤ |CN|. Similarly the other two constrained

formulations in (18) and in (19) can be modified by incorporating the NVW structure into the

formulations.

Based on VP count optimization, the optimal values for even |MN| is M∗
1 = M∗

2 = |MN|/2

and for odd |MN|/2 is M1 = M2 + 1 = (|MN| − 1)/2. The fraction of communication data

symbols, 1− µ∗N, for the NVW in a CPI is

1− µ∗N = 1− (M∗
1 +M∗

2 )PTs +M∗
NTIFS

T
, (33)

where M∗
N is the optimal minimum |MV| for the NVW. In Section VII, we will compare M∗

1 and

M∗
2 values obtained using the VP count-based optimization and the MMSE-based optimization.

Considering only the class of MUSIC-type algorithms for velocity estimation using non-

uniform waveform design, we adopt the following velocity estimation methods: direct augmen-

tation based MUSIC (DA-MUSIC) [54], spatial smoothing based MUSIC (SS-MUSIC) [39],

and direct-MUSIC [55]. Since DA-MUSIC and SS-MUSIC share the same asymptotic first- and

second- order error statistics [31] and DA-MUSIC has reduced computational complexity, this
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paper only focuses on DA-MUSIC. The DA-MUSIC technique is applied on the virtual preambles

in the co-waveform domain, whereas direct-MUSIC is applied directly on the physical non-

uniformly spaced preambles. DA-MUSIC can be applied for K ≤ MV and K > MV, whereas

direct-MUSIC is applicable only for K ≤ MV under certain conditions (namely that no two

sources can be separated by multiples of 2π/Q where Q is an integer which depends on the

non-uniform preambles placement). Direct-MUSIC, however, is sometimes more accurate than

DA-MUSIC for K ≤MV, as shown in Section VII.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of non-uniform virtual waveform design as

compared to the uniform waveform design for different target and SNR scenarios. For illustration

purposes, we consider simulation parameters based on the IEEE 802.11ad standard [24] in

application to automotive scenarios [4]. In particular, we consider a carrier frequency of 60

GHz, a sampling rate of 1.76 GHz, K target velocities that are equally spaced between -45 m/s

and 50 m/s, a radar cross-section of 10 dBsm, a communication receiver distance of 50 m and

a radar target distance up to 100 m. We use a coherent processing interval of 1 ms with M

varying between 1 and 40.

A. Performance trade-off

First, the system design trade-off between radar and communication MMSE performance

metrics for different virtual waveform designs is studied for various target and SNR parameters.

Then, the convex approximation of the design trade-off curve for improved JCR performance is

described. Lastly, MMSE achievable by non-uniform designs are explored. In particular, sparse

(K/M << 1) and dense (K/M ≈ 1 or K/M >> 1) target scenarios as well as low and high

SNR use cases are investigated.

Figs. 4(a) and 4(b) depict the trade-off between the radar CRB and the communication

DMMSE metrics with respect to the number of frames, M , for uniform, nested, and Wichmann

waveforms. In particular, radar target distances of 5 m, 20 m, and 100 m are considered for target

count K = 1 in Fig. 4(a) and for K = 30 in Fig. 4(b). For M frames in a CPI, the optimal VP

count-based nested waveform with parameters M∗
1 and M∗

2 , as well as Wichmann waveform with

parameters a∗1 and a∗2 are considered for simplicity in Figs. 4(a) and 4(b). Fig. 4(c), however,

shows the 2-D JCR objective region achievable by nested virtual waveform for varying M as
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Fig. 4. The radar CRB and the communication DMMSE pairs in the JCR trade-off region with respect to the optimization

variable M along with their respective convex hulls at different target counts and distances. (a) Trade-off curves are approximately

convex for small target count K for both uniform and non-uniform waveforms. (b) At large K, however, the non-convexity

increases for non-uniform waveforms. (c) MMSE-based achievable 2-D JCR objective values region and its convex hull for the

nested virtual waveform with varying M and different configuration parameters M1.
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well as different configuration parameters of 1 < M1 ≤ bM/2c with M2 = M −M1 at K = 1

and K = 30 for radar target distance of 5 m. The number of possible combinations of different

configuration parameters {M1,M2} for a given M scales almost linearly with M . Later, in

Fig. 11, the CRB-based optimization is compared with the optimization based on the VP count

of virtual waveforms.

Figs. 4(a) and 4(b) indicate that the radar CRB for a given communication DMMSE is the

lowest in case of Wichmann virtual waveform, followed by nested virtual waveform and lastly

uniform waveform. For a single target scenario in Fig. 4(a), we can see that the advantage of

virtual waveforms over uniform one is more significant as the communication DMMSE (higher

M ) worsens. In a multi-target scenario in Fig. 4(b), the radar CRB for uniform waveform exists

only for high communication DMMSE with M > K, whereas the radar CRBs for virtual

waveforms exist even for low communication DMMSE with M < K. At low communication

DMMSE, we also observe that the radar CRBs achieved by virtual waveforms saturate at high

SNR and large K/M ratio. In Fig. 4(c), we can see that the variation of the radar CRB with

the number of targets increases at low communication DMMSE (or, small M ).

Figs. 4(a) and 4(b) explore the convexity aspect of the JCR trade-off curve with respect to the

number of frames M for different waveforms, whereas Fig. 4(c) illustrates the non-convexity

aspect of the achievable 2-D JCR objective values region for nested waveform with varying M

and configuration parameter 1 < M1 ≤ bM/2c. In a sparse target scenario with K = 1, the

trade-off curves appear convex. In the case of a dense target scenario with K = 30, however,

the trade-off curves deviate farther from convexity as the radar target distance decreases. The

trade-off curve for a uniform waveform is more visibly convex than that for the non-uniform

waveforms. Although the communication DMMSE is linear with respect to M (as can be seen

from (15)), the achievable JCR objective values region/trade-off curve are non-convex due to

the non-convexity of radar CRB with respect to M . The non-convexity of radar CRB over M

is either because of the occurrence of non-decreasing CRB points with increasing M or due to

the saturation effect observed for M < K at small target distances.

Fig. 4(a)-(c) also illustrate the convex hull of the achievable JCR objective values region,

which is the smallest convex set containing the achievable JCR objective values region and can

be obtained using computational geometry algorithms [56]. In Fig. 4, we use ‘convhull’ function

of MATLAB to obtain the convex hull. Then, we find the optimal solutions for CRB-based

optimization by choosing the lower envelope of the convex hull. The use of the lower envelope
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Fig. 5. Comparison between MSE of MUSIC-based algorithms with the CRB for the two-target scenario at different target

distances. The MUSIC-based algorithms with a small number of snapshots achieve the CRB at high SNR, while they need a

higher number of snapshots at low SNR.

of the convex hull enabled us to discard the not so beneficial trade-off points (M ), such as

the non-decreasing CRB points or the points in the saturation region. Additionally, the convex

hull solution is achievable by using time-sharing or probabilistic occurrence techniques on the

extreme points of the convex hull, similar to multi-user communication rate optimization [48].

Therefore, the convex hull approach will lead to enhanced optimal solutions for JCR waveform

designs by achieving lower radar CRB for a given communication DMMSE.

We evaluate the estimation performance achieved by MUSIC-based algorithms using the mean

square error (MSE) metric defined as

MSEv , E [(v − v̂)(v − v̂)∗] , (34)

where v , [v0, v1, · · · , vK−1] is the true velocity vector and v̂ is the velocity vector estimated

using the MUSIC-based algorithms. Fig. 5 compares the scalar MSE metric, ϕr(MSE) ,
1
K

Tr [log MSEv], with the corresponding scalar radar CRB metric ϕr(CRB) , 1
K

Tr [log CRB] for

all three waveforms tested in a two-target scenario with M = 20 and varying number of snapshots

and target distances. It can be seen from Fig. 5(a) that direct-MUSIC, in general, achieves CRB

more efficiently than DA-MUSIC at high SNR and is very close to the CRB values even with

a small number of snapshots. For the low SNR scenario in Fig. 5(b), however, DA-MUSIC

performs more efficiently than direct-MUSIC and it takes fewer snapshots to approach the CRB.

MUSIC-based algorithms perform closer to the CRB for low SNR in the case of the uniform
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waveform as compared to the virtual waveforms.

The MSE curves of MUSIC-based algorithms suggest that the applicability of the CRB-

based optimization for joint waveform design depends on the number of available snapshots,

which are limited as described in Section IV-B. The MUSIC-based algorithms are used here for

illustrating the average approachability of the CRB, but of course in the case of a small number

of snapshots it can be enhanced by using other algorithms, such as greedy single-snapshot

grid-based algorithms [57] and nuclear norm minimization [58], or by exploiting waveforms

with holes in their difference co-waveforms, such as Golomb and coprime waveforms. This is,

however, out-of-scope of this paper and is left for future work.

B. Optimal waveform designs

In this subsection, we investigate the optimal solutions for three MMSE-based waveform

design formulations proposed in Section V. We also compare our MMSE-based waveform

optimization formulation with the more traditional VP count-based formulation.

1) Weighted average optimization-based design: In this example, we explore the optimal

communication DMMSE and radar CRB via weighted average problem formulation (17). First,

we study the effect of weighting on the optimal solutions, followed by the effect of target count

and SNR on the optimal solutions for all three tested waveforms.

Figs. 6(a) and 6(b) show the optimal number of frames M for uniform and nested wave-

forms with different normalized communication weightings 0.5 ≤ ωc ≤ 1 at target counts

K = {1, 10, 30} for target distance ρ = 5 m, as well as at target distances ρ = {5, 100} meters

for K = 10. Additionally, the radar CRB is first normalized by a factor of 0.5 to achieve

value comparable to the communication DMMSE, and then further scaled with normalized radar

weighting 0.5 ≤ 2ωr ≤ 1 to obtain the optimal solutions for weighted average optimization. The

optimal M for different waveforms decreases from highest possible M = 40 used in a CPI for

ωc = 0.5 to the lowest feasible M = 1 for ωc = 1. In simulations for Fig. 6, we use an upper

limit on M because using a very high M would increase the computational complexity and

might not be supported by the communication protocol. Additionally the upper limit on M is

chosen to sufficiently meet the requirement of the application scenario – automotive, in our case,

with velocity accuracy requirement of -10 dB [59]. At ωc = 1, the optimal JCR waveform will

be a pure communication waveform with a DMMSE of -3.2 dB. The optimal JCR performance
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Fig. 6. Optimal number of frames M and weighted average for uniform and nested waveforms with different normalized

communication weightings. (a) The optimal M decreases with varying step-size as the communication weighting increases. (b)

The advantage of the nested waveform over the uniform one decreases as the communication weighting approaches 1.

at ωc = 0, however, will be a pure radar performance with CRB of -86 dB at a radar target

distance of 5 m and of -34 dB at a radar target distance of 100 m.

In Fig. 6(a), the optimal M varies significantly with K because of the CRB existence and

the saturation effect observed at high SNR and high K/M ratio. The rate of decrease in the

optimal M with respect to the communication weighting for a sparse target scenario is larger for

non-uniform waveforms as compared to uniform waveform because a higher rate of decrease in

the radar CRB is achieved by non-uniform waveforms with an increase in the communication

DMMSE. The step size of the decrease in the optimal M with increasing communication

weighting for a dense target scenario at high radar SNR is generally small for uniform waveform
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as compared to non-uniform waveforms due to the approximate convexity of the weighted average

JCR performance metric for the uniform waveform. The step-size also depends on the presence of

non-decreasing radar CRB points with increasing communication DMMSE in the corresponding

trade-off curve.

Fig. 6(b) shows the optimal weighted average of the communication DMMSE and the radar

CRB for different normalized communication weightings 0.5 ≤ ωc ≤ 1 at K = 1, 10, and 30

for ρ = 5 m, as well as at ρ = 5 m and 100 m for K = 10. The advantage of the nested

waveform over uniform for a given K and ρ decreases as communication weight ωc approaches

1. The performance of all waveforms tested converge exactly for ωc → 1 at K = 1, because the

lowest possible M is used in this case. At ωc → 1, the gap between the optimal performance

of uniform and non-uniform waveforms increases with K due to higher M needed for the CRB

to exist, while it remains constant with ρ at K = 10. At ωc = 1, the JCR waveform converges

to a pure communication waveform. For most of the scenarios, nested waveform performs the

best and uniform one performs the worst. The insights derived for nested waveform similarly

can be extended for Wichmann waveform, and Wichmann waveform generally performs better

than nested as can be seen in Figs. 7(a)-(d).

Figs. 7(a) and 7(b) show the variation of optimal M and corresponding weighted average JCR

MMSE-based metrics with K for communication weighting of 0.96. The optimal M increases

with target count in most of the cases, except for the nested waveform at high SNR and large K

that suffers from saturation effect. The choice of optimal M in the case of Wichmann waveform as

compared to uniform one increases with target count, and the optimal M for all three waveforms

tested converges to the same value at low target count. The optimal weighted average for uniform

waveform is the worst (largest) in all the cases. The optimal weighted average degrades with

increasing target count, and the advantage of non-uniform waveform over uniform one increases

with K, whereas it reduces with radar SNR at high K due to the saturation effect.

Figs. 7(c) and 7(d) depict the variation of optimal M and corresponding weighted average

JCR MMSE-based metrics with ρ for communication weighting of 0.96. Fig. 7(c) shows that the

optimal M increases with distance at low target count and decreases with distance at high target

count. This effect is due to the radar CRB degradation that happens because of pathloss increasing

at large distances for low target count and saturation effect increasing at small distances for high

target count. Fig. 7(d) demonstrates that the optimal weighted average for uniform waveform is

the worst in all the cases. The optimal weighted average for all three waveforms tested generally
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Fig. 7. Optimal M and corresponding weighted average JCR MMSE with communication weighting of 0.96. The legend in (a)

and (b) is the same, as well as in (c) and (d) is the same. The advantage of non-uniform waveform over uniform one increases

with the target count, whereas it reduces with radar SNR at high target count due to the saturation effect.

improves with decreasing distance. For K = 30, however, the saturation effect can be seen for

nested and Wichmann waveforms. The rate of improvement in optimal weighted average with

increasing radar SNR reduces with growing K for non-uniform waveforms, whereas it remains

constant for uniform waveform.

2) Radar CRB constrained optimization-based design: In this example, we investigate optimal

communication DMMSE (and corresponding optimal M ) for a given minimum radar CRB

constrained problem formulation (18) in different target density and SNR scenarios. Fig. 8 shows

the optimal DMMSE solution for a minimum radar CRB of -18 dB. Wichmann waveform

performs the best, followed by nested waveform. The advantage of virtual waveforms over
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Fig. 8. Optimal communication DMMSE (and corresponding optimal M ) for a given minimum radar CRB constraint Υr =

1.5 cm2/s2. The advantage of virtual waveforms over uniform one increases with target count at small target distance and also

with distance at low target count.

uniform one increases with target count at high SNR and also with distance at low target density.

Performances of all three waveforms tested (Wichmann, nested, and uniform) converge at low

target count and small target distance. The optimal communication DMMSE increases with

growing target count and decreasing radar SNR. Optimal communication DMMSE, however, is

less effected by target count at small distances, as compared to the large distances. Additionally,

the rate of increase of optimal communication DMMSE with increasing target distance is faster

at lower K. These effects can be explained using the saturation effect at high K/M ratio and

high SNR. The effect of the preamble count can also be seen on the feasibility of uniform

solutions. The insights for optimal M are similar due to its linear relation with communication
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Variation with K and DMMSE for ρ = 20 m.

Fig. 9. The mesh plot of the optimal radar CRB for various minimum communication DMMSE constraints at different K

scenarios for a radar target distance of 20 m. The gap between the performances of all the three tested waveforms improve with

increasing target count and communication DMMSE.

DMMSE.

3) Communication DMMSE constrained optimization-based design: In this example, we ex-

amine the optimal radar CRB achieved by all three waveforms tested for a given minimum

communication DMMSE constrained problem formulation (19). First, we study the effect of

different DMMSE constraints and target count on the optimal radar CRB at a given target

distance. Then, we explore the effect of varying target count and distance on the optimal radar

CRB for a given DMMSE constraint.

Fig. 9 depicts the lower envelope of the optimal radar CRB convex hull with respect to the

target count K and communication DMMSE constraint Υc at a radar target distance ρ = 20 m,

where the convex hull of the JCR trade-off region is obtained similar to Fig. 4. The existence

of the optimal radar CRB solution depends on the target count. For 2K ≤ |CV|, where |CV| is

the VP count of the given waveform design, the optimal M that minimizes the radar CRB for a

given communication DMMSE may exist and it corresponds to the maximum M that satisfies

the communication DMMSE bound Υc on the convex hull of the JCR trade-off curve for a given

CPI. Therefore, the existence of optimal radar CRB solution for a given communication DMMSE

and K is the least restricted for the Wichmann waveform, whereas it is the most restricted for the

uniform one. Additionally, the optimal CRB obtained for the Wichmann waveform is better than

the nested one, followed by the uniform one. The gaps between the optimal radar CRB values

found for all the three tested waveforms improve with increasing target count and communication
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Fig. 10. Optimal radar CRB for a communication DMMSE of -31.3 dB and -27.6 dB. The advantage of virtual waveforms

over the uniform one is more than 10 dB at high communication DMMSE.

DMMSE. Additionally, the optimal radar CRBs for all three waveforms tested converge at low

communication DMMSE.

Fig. 10 shows the optimal radar CRB for all three waveforms tested with communication

DMMSE bounds Υc = −31.3 dB and Υc = −27.6 dB at target counts K = 1 and K = 30 and

radar target distances ρ = 5 m and 100 m. The solutions to the DMMSE-constrained formulation

in (19) simplifies to finding the maximum number of frames M that meets the required DMMSE

constraint using (15), and then to finding the optimal radar CRB corresponding to the obtained

optimal M on the convex hull of the JCR trade-off curve. For DMMSE of -31.3 dB, the optimal

M is 6, while for DMMSE of −27.6 dB, the optimal M is 40 for all those scenarios where the

radar CRB solution exists.
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For all three waveforms tested, Fig. 10(a) depicts that the optimal radar CRB degrades with

increasing target count and Fig. 10(b) shows the optimal radar CRB grows with increasing radar

distance. In most cases, the Wichmann waveform performs the best and uniform one performs

the worst. At high communication DMMSE with the optimal M = 40, the Wichmann waveform

achieved more than 10 dB improvement in the velocity estimation CRB as compared to the

uniform one. Fig. 10(a) shows that the performances of all three waveforms tested converge at

low communication DMMSE and high SNR (ρ = 5 m) with high target density K/M (K = 5 and

M = 6), if the CRB exist for all three tested waveforms. Fig. 10(b) shows the saturation effect

at high SNR (small ρ) with high K/M (K = 10 and M = 6) ratio for nested and Wichmann

waveforms, while the uniform waveform is not feasible due to K ≥M . The radar CRB achieved

for virtual waveforms at low communication DMMSE with the optimal M = 6 is effected by

the change in target count K for small target distances, whereas the optimal radar CRB is only

slightly effected at long distances. At high communication DMMSE, however, this saturation

effect is not observed.

4) Comparison with VP count optimization-based design: Fig. 11(a) and Fig. 11(b) explore the

optimal configuration parameter M1 and radar CRB that maximizes the VP count (or, equivalently

degrees of freedom (DoF)) using nested waveform for a given M . The figures also compare

the virtual preamble count-based optimization with its respective CRB-based communication

DMMSE constrained optimization-based design, which was formulated in (18) and illustrated

in the previous subsection, for different K and radar SNR. For odd M , the unique optimal M1

solution using the VP count-based optimization is (M − 1)/2 and for even M there are two

solutions M/2 and M − 1/2. Fig. 11 uses the smallest optimal M1 as VP count optimization-

based one and we see that this optimal M1 increases step-wise linearly with M .

For K = 1, the optimal M1 for both the optimizations match at small M and start deviating

a little for higher M . Fig. 11(a) demonstrates that for K = 1, the radar CRB for both problem

formulations are very close to each other at high SNR. The solutions, however, start to deviate

for high target count and high radar SNR. Similar insights can be drawn for Wichmann waveform

with configuration parameters a1 and q, but this study is excluded from the paper due to space

constraint. Fig. 11 suggests that the VP count optimization-based design can be used as a coarse

estimate for the CRB-based communication DMMSE constrained solution.
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Fig. 11. Comparison between the VP count-based optimization and the CRB-based optimization for nested waveform. The gap

between the optimal solutions of both the optimizations grows with increasing target count and decreasing target distance.

VIII. CONCLUSION AND DISCUSSION

In this paper, we proposed an adaptive virtual waveform design for a millimeter-wave vehicular

joint communication-radar system that enjoys the benefit of a fully-digital baseband processing

in the time-domain and a high available bandwidth. Our proposed waveform exploits only a

few non-uniform preambles in a CPI and sparse sensing techniques to achieve high velocity

estimation accuracy without reducing communication data rate much. We developed a novel

communication DMMSE metric to accurately quantify the trade-off with radar CRB for a JCR

waveform design.

The performance trade-off curve between the radar CRB and communication DMMSE con-

tained some non-convex points due to the occurrence of non-decreasing CRB points with increas-
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ing communication DMMSE or due to the radar CRB saturation at high SNR. To improve the

optimal JCR performance, we discarded these undesirable non-convex points by using a convex

hull approximation of the trade-off curve. Then, we formulated three different MMSE-based

problems to optimize the trade-off between communication and radar: a minimum communication

DMMSE constrained formulation, a minimum radar CRB constrained formulation, as well as a

weighted MMSE average formulation. To reduce the computation complexity for finding optimal

waveform solutions, we used specific waveform configurations – the uniform waveform, the

nested virtual waveform, and the Wichmann virtual waveform. Numerical results demonstrated

that, in most cases, non-uniform waveforms perform much better than uniform waveforms,

especially at low SNR and high target density for automotive applications. Additionally, we

observed that the traditional virtual preamble count-based solution can be used as a coarse

estimate of the optimal solution for our MMSE-based optimization problems.

The results in this paper can be taken into account to design an adaptive virtual waveform

that achieves simultaneous high communication data rate and super-resolution radar estimation

for next-generation mmWave devices. For future work, the proposed framework can be extended

to other virtual waveforms, such as the Golomb waveform and the coprime waveform. The

achievability of their CRBs can be investigated using more advanced estimation algorithms,

such as nuclear norm minimization. This may lead to better performance at a low number of

snapshots. This work can also be extended for a more general Ricean fading mmWave channel

model with a small number of scattering clusters. It would be interesting to see how the Ricean

fading factor and the additional block sparse structure will impact the advantage of the virtual

waveforms that exploit compressive sensing techniques on the channel covariance matrix.
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