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1 Introduction

1.1 Background & Motivation

Autonomous vehicle (AV) technologies have the potential to revolutionize the

transportation world and have quickly and recently become the focus of much more

than just the automotive manufacturing industry. Many tech and automotive giants

have created and acquired their own autonomous arms and join a plethora of start-

ups in the race to bring AVs to the public market. What was largely kickstarted in

2004 by DARPA’s private AV road competition called the Grand Challenge has since

progressed to 10 of the top 11 car manufacturers announcing their plans (in June

of 2017) to have AVs to market by the year 2021. AVs will inevitably hit markets

soon, and understanding the possible impacts of these technologies is valuable in the

planning and design of our future infrastructure.

AV technologies will provide a number of potential safety and traffic efficiency

benefits. In terms of safety, AVs on our networks have the potential to reduce vehicle

crashes due to their faster reaction times and higher sensing precision with computer

vision. AVs are also not susceptible to human-induced errors such as those associated

with drunk driving, a significant contributor to fatal car crash counts. In terms

of traffic efficiency, cooperative adaptive cruise control, reduced reaction times, and

vehicle-to-vehicle communications could increase road capacity [3, 4, 5] and stability

[6, 7] by shortening following headways, and allow for platooning and other efficient

coordination between vehicles. Despite the capacity increases, AVs could counteract

these improvements by inducing additional demand with empty repositioning trips

and increased availability to the general population. Additionally, the Braess [8] and

Daganzo [9] paradoxes show that increases in capacity could lead to increased travel

times due to rerouting.
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Nonetheless, wireless vehicle-to-infrastructure (V2I) communication in con-

nected autonomous vehicles (CAVs) can further improve traffic operations with new

traffic controls. Reservation-based intersection control [10, 11] uses V2I communica-

tions and the reduced safety margins of CAVs to increase intersection capacity and

throughput, and is one key focus of this thesis. These intersections can also be imple-

mented with human drivers [12], however that is beyond the scope of this thesis and

all reservation-based intersections from this point onward will be restricted to only

AV demand. In reservation intersections, an intersection manager takes requests from

vehicles entering the intersection to reserve space-time trajectories through the inter-

section and either grants or rejects them in accordance with some priority function.

It has been shown in some scenarios that reservation-based control using a first-come-

first-serve (FCFS) policy reduced intersection delay and improved system travel times

beyond optimized signals for a single intersection in microsimulation [13, 14]. Thus,

this new intersection control has the potential to eventually replace traditional traf-

fic signals and alleviate congestion on networks as much of the problems occur at

intersections themselves.

Large numbers of AVs and CAVs will be on our roads within the next few

decades and the potential benefits of smart intersections such as the reservation-

based control suggest the possible replacement of traditional signals. Typical 25 to

30 year long-term planning models are used by transportation authorities to develop

infrastructure and improve network congestion. Thus, it is quite important that new

models consider the effects of AV behavior and alternative smart intersection control

as these technologies have large potential impacts on future traffic congestion.

Little work has been done to analyze the effects of AVs and reservation in-

tersections on traffic congestion, and most existing work is done using microscopic

simulation. Several studies have compared signals to reservation-based control, us-

ing microsimulation to model networks of just one or a few intersections [11, 13].

However, microsimulation is not tractable for large-scale networks, and may not cap-
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ture dynamic selfish route choice. To actually gauge these impacts on a system-wide

level, the work in this thesis uses a customized mesoscopic dynamic traffic assignment

(DTA) model, simulating AVs on large-scale networks.

The first motivation of this thesis is to analyze the traffic congestion effects

of varying AV penetration rates on real, currently signalized networks. The second

motivation of this thesis is to evaluate the congestion effects of the same networks

under fully reservation-based control compared to fully signalized control with fully

autonomous demand. The results of the second motivation uncover some paradoxical

effects of reservation control and motivate the final portion of this work: we seek to

characterize intersections which perform better as reservations over signals and find

the highest performing mixed-configuration of signals and reservations in a single

network.

1.2 Problem Statement

In this thesis, we seek to answer the following questions:

1. How does AV behavior, at varying levels of AV penetration, affect net-

work congestion? AVs will have reduced reaction times compared to human

vehicles (HVs) leading to shortened following headways and therefore, increased

link capacities [3, 4]. This is important to consider for planning models because

in the near future, AVs will begin to enter the public market but will enter

our roadways at a gradual rate. Simulating a mixed traffic condition of AVs

and HVs at different proportions under current network conditions (completely

signalized) gives us a sight into our nearer future and allows transportation

authorities to estimate conditions as time continues and the AV penetration

rises. The 100% AVs case also gives us a baseline to compare with a network

of all reservation-based controls, due to the fact that only AVs are able to use

reservation intersections in this thesis.
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2. How do FCFS reservation-based intersections affect network conges-

tion? FCFS reservation intersections have been shown to outperform optimized

signals [11, 13, 14] in microsimulation, however with networks consisting of only

one or a few intersections. In this thesis, we test FCFS reservations compared

to traditional signals under dynamic user equilibrium (DUE) conditions using

DTA on large-scale networks and discover a select few scenarios in which a

network of signals outperforms the same network of reservations. For clarifi-

cation, to address this question, we test networks of uniform control. In other

words, a uniformly signalized network has traditional signal control for every

intersection.

3. Which intersections are better suited for reservation-based control

over signalized control? Paradoxical scenarios in which signals outperformed

reservations suggest that not necessarily all intersections benefit from reserva-

tion control as expected. Finding “pro-reservation” intersection characteristics

is useful for planners as they can select which intersections in a network should

adopt reservation control based on the greatest improvements to network con-

gestion.

4. How do we find the best mixed-configurations of reservations and sig-

nals in a large-scale network? By finding optimal configurations of reserva-

tions and signals in a network, we are able to find networks with less than 100%

reservation control that have less congestion than the all-reservation network.

We then also attempt to find optimal mixed-configurations with reservation

proportion constraints in which a limited number of intersections are allowed to

be reservation-based. These results help to formulate generalizations of favor-

able reservation-control placement throughout a network and allow planners to

simulate budget constraints. For example, if a municipality only has the budget

to initially convert 10 signalized intersections to reservation control, which 10

4



do they choose to minimize congestion?

In order to answer these questions and maintain homogeneity between exper-

iments, we must make some assumptions. The following assumptions apply to all

experiments and simulations presented in this thesis, however are not the only as-

sumptions for each set of experiments. More detailed assumptions for each part of

this thesis will be defined before each new experiment. We assume that:

• All reservation-based control uses a FCFS policy. Although FCFS might

not be the most efficient traffic control policy, it has been the focus of most

reservation-based control literature [11, 13, 14] and could be extended to a wide

range of other policies due to its generality. FCFS is an inherently fair policy and

will likely remain a good candidate to be widely implemented in reservation-

based control. Due to the large range of alternative policies extended from

FCFS, it is nearly impossible to generalize the network effects of reservations

using an arbitrary policy. We therefore assume a FCFS policy in this paper,

detailed in Chapter 2. Note that the term reservation(s) is used throughout

the rest of the thesis and refers to FCFS reservation-based intersection control.

• Only CAVs can use reservation intersections. Although it is possible

to implement this control with HVs, it does not perform well under the FCFS

assumption [15] and is beyond the scope of this thesis. All simulations involving

any reservation intersections are composed of 100% CAV demand.

• All simulation is done in DTA, solving for DUE. DUE is a common

assumption made for DTA models. the importance of using DTA over a mi-

croscopic model is that it is tractable for large-scale networks and it involves

alternate route choice which is more realistic for larger networks. A custom DTA

model, defined in Chapter 2, is used in this thesis for all simulation experiments.
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1.3 Contributions

This thesis analyzes the effects of uniform reservation controls and increased

capacity from AV technologies on freeway and arterial networks using DTA. We stud-

ied a variety of subnetworks from the 100 most congested roads in Texas, and drew

conclusions that can be generalized to other locations. Reduced reaction times, re-

sulting in reduced following headways and increased capacity, improving travel times

for all scenarios. For most scenarios, reservations improved over traffic signals for ar-

terial networks (and the freeway network that used signals to control access), but were

not effective at replacing merges/diverges. We also discover some paradoxical effects

of reservation control, suggesting that some combination of reservation intersections

and signalized intersections in the same network would be better than a uniform one.

Levin, Boyles, & Patel then present three theoretical examples of these pardoxes [16].

We then present and assess the effectiveness of several heuristic methods used

to find favorable mixed-configurations of reservations and signals in a network. We

then show that the paradoxical effects of FCFS reservations exist in a large down-

town network by identifying hybrid-configurations which reduce congestion beyond

uniform reservation control in DTA. Finally, we develop general reservation intersec-

tion deployment strategies based on quantitative and qualitative observations.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 discusses lit-

erature relevant to the limited testing of AVs and reservation-based control in sim-

ulation and a summarization of the key models implemented in the custom DTA

simulator used throughout this thesis. Chapter 3 presents the effects of AV behavior

and reservation-based intersection control on freeway, arterial and downtown net-

works. This chapter also presents paradoxical effects of reservation control found

from the before mentioned experiments and summarizes Levin, Boyles, & Patel’s
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demonstration of these effects using three theoretical examples. Chapter 4 details

several heuristic methods used to find optimal placement of reservations in an urban

network, and their results. These heuristics are also used to characterize intersec-

tions which would generally perform better as a reservation over a signal. Next, this

chapter presents general reservation deployment guidelines. We conclude in Chapter

5 by summarizing the contributions from this thesis and discussing possible future

extensions of the research.
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2 Literature Review

The AV field is growing rapidly with the respective literature following suit.

To be specific, studying the traffic impacts of AV technologies is a new and active

line of work, deserving more attention. While this work is one of the first to analyze

AV behavioral and reservation control traffic congestion impacts on large-scale net-

works using DTA, some previous work exists studying much smaller test networks in

microsimulation. Additionally, no literature currently exists in regard to the optimal

placement of reservations and signals in a network.

Nonetheless, there is a set of literature presenting the flow and intersection

models used in this paper that allow for the simulation of AVs and reservation-based

intersection control in DTA. These works are the ancestry of this thesis and build

the customized DTA model used for all simulation experiments presented in this

thesis. For this reason, this chapter summarizes these models in more detail and

discusses previous literature regarding the traffic impacts and simulation of AVs and

reservations.

2.1 Flow Model

With the help of computer vision, autonomous vehicles could have reaction

times lower than those of humans and result in reduced following headways. Adap-

tive cruise control is currently being integrated into more and more vehicles and

cooperative adaptive cruise control could also be integrated in our near future. Mi-

crosimulation studies of these technologies have shown increases in capacity [3, 4, 5]

and stability [6, 7] on small networks. Most of these microscopic studies, however,

do not account for dynamic route choice or simulate larger city networks due to the

computational limits of microsimulation.

In this section, we summarize the multiclass cell transmission model (CTM)
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and fundamental diagram developed by Levin & Boyles [1]. This model allows for

the propagation of AV and HV flow together in DTA and is extensible to include

different levels of automation. The model builds off the original CTM [17, 18] and

estimates sending and receiving capacities and backwards wave speed as a function

of vehicle class characteristics and their reaction times. For a more complete and

detailed discussion on the multiclass CTM and the effects of AV reaction times on

the fundamental diagram, see Levin & Boyles [1].

2.1.1 Multiclass Cell Transmission Model

Before presenting the multiclass CTM we present a few assumptions:

• All vehicles of all classes have the same free flow speed

• In cell discretization, we assume a uniform class-specific density distribution per

cell, per time step.

• Vehicles of the same class have the same reaction times

• The fundamental diagram is trapezoidal, bounded by the free flow speed and

cell-time specific capacity and backwards wave speed.

• All transition flows still satisfy conservation of flow

The multiclass CTM discretizes a link into cells just as the original model

[17, 18], however it allots a class-specific density to each cell and involves a class-

specific flow function which is dependent upon the speed possible with the class

proportions. This speed is still limited by free flow speed, capacity and backwards

wave propagation, however each of these components (except for the free flow speed)

is dependent upon the class proportions.

When shifting flows, the multiclass CTM restricts the flow of a class by three

factors: class-specific cell occupancy, proportional share of the capacity, and propor-

tional share of congested flow. As for determining backwards wave speed and link

capacity, the multiclass CTM uses the car following model from Levin & Boyles [1].
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The mentioned car following model predicts the safe following distance of a vehicle

as a function of its reaction time based on kinematics. Naturally as reaction times

decrease such as in AVs, the backward wave speed increases due to closer following

headways. Similarly, link capacity increases with decreased reaction times and in-

creased proportions of vehicle classes with faster reaction times. Figure 2.1 presents

a graph showing the relationship between a triangular fundamental diagram’s shape

and the proportion of AVs. It is seen that as the proportion of AVs increases, the

link capacity increases with a nearly a doubled capacity from 0% to 100% AVs.

Although this CTM may allow for non-FIFO behavior within cells due to

uniformly distributed density, this is possible in even single class CTMs. This model

allows for the tractable flow propagation of different classes of vehicles, namely classes

of different reaction times. The model gives each cell class-specific densities and

characteristics which allow for the use of such a model in the DTA model used in this

work. It is important to note that in the context of this thesis, we only consider two

classes: AVs and HVs.

Figure 2.1: Fundamental diagram scaling with proportion of AVs with 0.5s
reaction time and 60mph free flow speed [1]
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2.2 Reservation-Based Intersection Model

In addition to reduced reaction times, CAVs possess wireless connectivity fea-

tures which allow for new intersection controls. This section first reviews the tile-

based reservation control mechanism proposed by Dresner & Stone [10, 11] under

a first-come-first-serve (FCFS) policy and reviews literature testing this mechanism

in simulation. Then, we detail Levin & Boyles’ simplified conflict region intersection

model [2] used in this study’s simulations to tractably model reservation-based control

in large DTA networks.

2.2.1 FCFS Tile-Based Reservations

Dresner & Stone’s [10, 11] proposed tile-based reservation (TBR) mechanism

relies on the V2I communication between CAVs and an intersection manager agent.

Essentially, an intersection manager (IM) divides the intersection into a grid of space-

time tiles. As CAVs enter the detection radius (CAVs must know their intersection

arrival time), they make requests with the IM for a reservation to move through the

intersection. The IM then simulates the vehicle’s desired path through the tile grid. If

there is no conflict with another vehicle’s reserved path, the reservation is approved.

Else, the reservation is rejected and the vehicle makes another request.

A control policy determines priority during conflicting requests. In this paper,

we use a first-come-first-serve (FCFS) policy for reservation control, as do most other

previous studies [10, 11, 13, 14]. FCFS is a fairness-based priority which grants reser-

vations according to intersection arrival times. If a vehicle’s request for a reservation

is rejected due to conflict, the vehicle is delayed and the IM suggests a later time for

safe traversal. Although FCFS is fairness-based and will most likely be used initially,

it is not the most efficient policy. Alternative policies have been studied including pri-

oritizing emergency vehicles [19], holding auctions at each intersection where vehicles

bid to move through the intersection first [20, 21, 22], and several others [23, 24, 25].
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Results by Fajardo et al. [13] and Li et al. [14] both indicated that FCFS

reservations could reduce delays beyond optimized traffic signals. Because the IM

needs to simulate many requests through the space-time grid of the intersection,

these studies along with most others are done in microsimulation due to the problem’s

computational complexity. Most of the tested networks are small and consist of just

a single or a few intersections. Levin & Boyles [2] addressed the computational

complexity issues by creating the conflict region model which aggregates the tiles

into larger conflict regions, presented in the next section.

2.2.2 Conflict Region Model

To make large-scale DTA simulations tractable when modeling tile-based reser-

vation control, we use Levin & Boyles’ conflict region (CR) model [2]. The conflict

region model aggregates tiles into larger conflict regions, each limited by a capacity

instead of conducting simultaneous occupancy checks. Figure 2.2 shows an example

of an intersection’s conflict regions.

Figure 2.2: Conflict region representation of a four-way intersection, showing two
conflicting turning movements [2]

At each time step, the list of vehicles S that are waiting to enter the intersection

is considered by the CR algorithm. S is a set of vehicles at the front of their lanes,

12



unhindered by vehicles in front of them, and able to move. The algorithm then sorts

S according to some priority function f(·). In the context of this thesis for the FCFS

priority, f(·) is each vehicles reservation request time. Next, the algorithm iterates

through S until it finds a vehicle v which can move through the intersection, with the

constraints being conflict region capacity and the receiving flow in the downstream

link. v is then granted its reservation request, it moves through the intersection, and

the vehicle directly behind it is added to S in sorted order. The algorithm continues

to look through S until no vehicles are able to move.

The CR model was shown to be tractable in DTA for large-scale city networks

while maintaining the simultaneous-use characteristics of realistic reservation-based

control. The model builds on general DTA intersection models and satisfies first-

in, first-out and invariance principle characteristics. Levin & Boyles [2] showed by

experimentation and comparison with Fajardo et al.’s microsimulation results [13]

that the CR model produces similar average delays.
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3 Effects of AVs and Reservation-Based

Controls on Urban Networks
1

3.1 Introduction

This section presents analyses on arterial, freeway, and downtown networks

using the multiclass CTM to propagate flow in DTA. The key features of these results

are the multiclass comparison of human and autonomous vehicles, and the analysis

of how reservations compare to signals. The fundamental diagram changes with

space and time in response to the proportion of AVs in each cell. When combined

with discrete vehicles, the fundamental diagram varies significantly between cells and

time steps despite an overall fixed proportion of AVs. Reservation-based intersection

control also exhibited unusual characteristics. Contrary to the results of Fajardo

et al. [13] and Li et al. [14], reservations performed worse than signals in many

scenarios due to suboptimal vehicle priority. In addition, Daganzo [9] showed that

the increasing capacity due to AVs does not necessarily result in improved network

performance.

The arterial and freeway networks do not have multiple available routes, so all

improvements are due to AV technologies. However, the downtown networks include

many alternate routes, which admits paradoxes in which capacity improvements in-

crease congestion due to selfish route choice [8, 9]. The reaction times of AVs was

set to 0.5 seconds, which significantly increases capacity (Figure 2.1). Smaller reac-

tion times might be more realistic of automation, but could result in backwards wave

speed exceeding free flow speed, causing technical issues with the cell transmission

model. For all experiments, we recorded the total system travel time (TSTT) as well

1The content from this chapter is pulled from a publication of which I was the first and primary
author on [26], and of which I contributed all experimentation, results, and analysis.
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as the average travel time per vehicle.

3.2 Arterial Networks

We first present results on two arterial networks, shown in Figure 3.1. The first

arterial network, Lamar & 38th Street, contains the intersection between the Lamar &

38th Street arterials, as well as 5 other local road intersections. This network contains

31 links, 17 nodes and 5 signals with a total demand of 16,284 vehicles over a 4 hour

time period. We also studied Congress Avenue in Austin, with a total of 25 signals

in the network, 216 links and 122 nodes with a total demand of 64,667 vehicles in a 4

hour period. These arterial networks used fixed-time signals for controlling flow along

the entire corridor. These networks were chosen for this experiment because they are

among the 100 most congested networks in Texas, which is useful for studying how

AVs affect congestion. By changing the demand on these networks, our analyses can

be generalized to less congested networks.

Figure 3.1: Arterial networks
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Arterial network travel time results are shown in Table 3.1. The general trend

for the arterial networks is that the use of the reservation protocol reduced travel

times. Although reservations helped most arterial networks such as Congress Avenue

and, at high demands the reservations increased travel times for Lamar & 38th St.

The lower 0.5 second reaction time for AVs compared to the 1 second reaction time for

HVs decreased travel times for every network tested. As the proportion of AVs in the

network was increased, the travel times would decrease. Reduced reaction times were

more beneficial in some scenarios than in others, but all saw a benefit. The reaction

time difference was analyzed by running simulations of each demand proportion at

0% and 100% AVs.

In the Lamar & 38th Street network, the reservation protocol significantly de-

creased travel times for a 50% demand simulation as compared to traffic signals at

50% demand; however, once the demand was increased to 75%, reservations began in-

crease travel times relative to signals. This is most likely due to the close proximity of

the local road intersections. On local road-arterial intersections, the fairness attribute

of FCFS reservations, could give greater capacity to the local road than would traffic

signals. Because these intersections are so close together, reservations likely induced

queue spillback on the arterial. The longer travel times might also be influenced to

reservations removing signal progression on 38th Street. In high congestion, FCFS

reservations tended to be less optimized than signals for the local road-arterial inter-

sections. On the other hand, in low demand, intersection saturation was sufficiently

low for reservations to reduce delays.

The Lamar & 38th Street network responded well to an increase in the propor-

tion of AVs with dramatic decreases in travel times, due to the AV reaction times. At

85% demand and at 25% AVs, the total travel time was reduced by 50%, and when all

vehicles were AVs, the total travel time was reduced by 87%. As demand increased,

the improvements from reduced reaction times also increased. At 50% demand, re-

duced reaction times decreased travel time by 44%, whereas at 100% demand, reduced
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reaction times decreased travel time by 93%. The effect of greater capacity improved

as demand increased because as demand increased, the network became more limited

by intersection capacity. At low congestion (50% demand), signal delays dominated

travel times because reservations made significant improvements. At higher conges-

tion, intersection capacity was the major limitation, and therefore reduced reaction

times were of greater benefit.

Congress Avenue responded well to the introduction of reservations, showing

decreases in travel times at all demand scenarios. These improvements are due to the

large amount of streets intersecting Congress Avenue, each with a signal not timed

for progression. The switch to reservations therefore reduced the intersection delay.

However, the switch to reservations could result in greater demand on this arterial.

We include the effects of route choice in the downtown Austin network (Section 3.4).

AVs also improved travel times and congestion due to reduced reaction times.

At 85% demand, even a 25% proportion of AVs on roads decreased travel times by

almost 60%. This increased to almost 70% when all vehicles were AVs. As with Lamar

& 38th Street, as demand increased, the improvements from AV reaction times also

increased. For example, at 50% demand, 100% AVs decreased travel time by about

10%, but at 100% demand, using all AVs reduced the travel time by nearly 82%. The

reduced reaction times did not improve as much as the reservation protocol, except

for the 100% demand scenario. This indicates that at lower demands, travel time was

primarily increased by signal delay but was still improved by AV reaction times.

Overall, these results consistently show significant improvements from reduced

reaction times of AVs at all demand scenarios. As shown in Figure 2.1, reducing the

reaction time to 0.5 seconds nearly doubles road and intersection capacity. However,

the effects of reservations were mixed. At low congestion, traffic signal delays had a

greater effect on travel time, and in these scenarios reservations improved. Reserva-

tions also improved when signals were not timed for progression (although this may

be detrimental to the overall system). However, as seen on Lamar & 38th Street,
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at high demand reservations performed worse than signals, particularly around local

road-arterial intersections.

Table 3.1: Arterial network results

Lamar & 38th
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 50% 0 421.6 3.11
Signals 50% 1 237.2 1.75
Reservations 50% 1 157.8 1.16
Signals 75% 0 2566.7 12.61
Signals 75% 1 372.7 1.83
Reservations 75% 1 2212.5 10.87
Signals 85% 0 3890.2 16.86
Signals 85% 0.25 2097.2 9.09
Signals 85% 0.5 504.8 2.19
Signals 85% 0.75 477.8 2.07
Signals 85% 1 476.8 2.07
Reservations 85% 1 4472.8 19.39
Signals 100% 0 7043.1 25.95
Signals 100% 1 526.6 1.94
Reservations 100% 1 8678.7 31.98

Congress Ave.
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 50% 0 1366.1 2.54
Signals 50% 1 1220 2.26
Reservations 50% 1 821.5 1.52
Signals 75% 0 4306.1 5.33
Signals 75% 1 1957.1 2.42
Reservations 75% 1 1545.1 1.91
Signals 85% 0 8976.8 9.8
Signals 85% 0.25 3661.4 4
Signals 85% 0.5 3303.3 3.61
Signals 85% 0.75 2936.2 3.21
Signals 85% 1 2956 3.23
Reservations 85% 1 2934 3.2
Signals 100% 0 21484.4 19.93
Signals 100% 1 4038.2 3.75
Reservations 100% 1 8673.6 8.05

3.3 Freeway Networks

Next, we studied three freeway networks, shown in Figure 3.2. The first free-

way network is the I-35 corridor in the Austin region which includes 220 links and

220 nodes with a total demand of 128,051 vehicles within a 4 hour span. (Due to the
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length, the on- and off-ramps are difficult to see in the image.) All intersections are

off-ramps or on-ramps. The I-35 network is by far the most congested of the freeway

networks and one of the most congested freeways in all of Texas, especially in the

Austin region. We also studied the US-290 network in the Austin region with 97 links,

62 nodes, 5 signals and a total demand of 11,098 vehicles within 4 hours. Finally, we

studied the Mopac Expressway in the Austin region with 45 links, 36 nodes, and 4

signals with a total demand of 27,787 vehicles within 4 hours. This network includes

a mix of merging and diverging ramps and signals which allows some interesting anal-

yses. This network was chosen due to the large number of signals around the freeway.

All freeway networks are also among the 100 most congested roads in Texas.

Figure 3.2: Freeway networks

Freeway network results are presented in Tables 3.2, 3.3, and 3.4 for the I-

35, Mopac, and US 290 networks, respectively. Although there were some observed

improvements in travel times for US-290 using reservations, the improvements were

modest. For I-35 and Mopac, reservations made travel times worse for all demand

scenarios. Most of the access on US-290 is controlled by signals, which explains the

improvements observed when reservations were used there. Reservations seem to have
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worked more effectively with arterial networks, probably because on- and off-ramps

do not have signal delays. Therefore the potential for improvement from reservations

is smaller.

Overall, greater capacity from AV reduced reaction times improved travel

times in all freeway networks tested, with better improvements at higher demands.

Reduced reaction times improved travel times by almost 72% at 100% demand on

I-35. On US-290 and I-35, as with the arterial networks, the improvement from AV

reaction times increased as demand increased. This is because freeways are primarily

capacity restricted. On Mopac, reaction times had a smaller impact, but the network

overall appeared to be less congested.

We also analyzed several groups of links and nodes in depth. Links and nodes

were chosen to study how reservations affected travel times at critical intersections,

such as high demand on- or off-ramps. For these specific links, we compared average

link travel times between 120 and 135 minutes into the simulation, at the peak of the

demand. We compared human vehicles, AVs with signals, and AVs with reservations

at 85% demand, which resulted in moderate congestion. In the I-35 network, very

few changes in travel times for the critical groups of links were observed from the

different intersection controls.

The differences seemed to be greater in the US-290 corridor with more over-

all improvements in critical groupings of links near intersections. Interestingly, the

largest improvements in travel times going from traffic signals to reservations occurred

at queues for right turns onto the freeway. A possible explanation for this result is

that making a right turn conflicts with less traffic than going straight or making a left

turn. Although signals often combine right-turn and straight movements, reservations

could combine turning movements in more flexible ways. Although larger improve-

ments in travel times occurred at the observed right turns, improvements at left turns

were also observed. Because US-290 has signals intermittently spaced throughout its

span, vehicles are frequently stopping for signal delays. Using the reservations sys-
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tem, the flow of traffic is stopped less frequently, reducing congestion. The use of AVs

rather than HVs also helped travel times but by less than reservations. In most cases,

using reservations instead of signals doubled the improvements resulting from using

AVs. Reservations appear to have a positive effect on traffic flow and congestion in

networks (freeway and arterial) that use signals to control intersections.

Table 3.2: I-35 freeway network results

I-35
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 50% 0 3998.9 3.75
Signals 50% 1 3893.3 3.65
Reservations 50% 1 3975.2 3.73
Signals 75% 0 10087 6.3
Signals 75% 1 5934.2 3.71
Reservations 75% 1 9861.1 6.16
Signals 85% 0 16127.7 8.89
Signals 85% 0.25 16023.5 8.83
Signals 85% 0.5 15944.3 8.79
Signals 85% 0.75 14545.3 8.02
Signals 85% 1 14101.6 7.77
Reservations 85% 1 16084.7 8.87
Signals 100% 0 31611.7 14.81
Signals 100% 1 9063.3 4.25
Reservations 100% 1 30211.3 14.16

Table 3.3: Mopac freeway network results

Mopac
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 50% 0 373.9 1.61
Signals 50% 1 363.6 1.57
Reservations 50% 1 409.9 1.77
Signals 75% 0 576.6 1.66
Signals 75% 1 554.9 1.6
Reservations 75% 1 616.1 1.77
Signals 85% 0 667.9 1.7
Signals 85% 0.25 651.1 1.65
Signals 85% 0.5 647.8 1.65
Signals 85% 0.75 645.2 1.64
Signals 85% 1 644.1 1.64
Reservations 85% 1 698.7 1.77
Signals 100% 0 1288.3 2.78
Signals 100% 1 752.1 1.62
Reservations 100% 1 825.4 1.78
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Table 3.4: Highway 290 freeway network results

US 290
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 50% 0 557.8 6.03
Signals 50% 1 547.5 5.92
Reservations 50% 1 505.4 5.47
Signals 75% 0 845.7 6.1
Signals 75% 1 827.7 5.97
Reservations 75% 1 759.8 5.48
Signals 85% 0 997.6 6.35
Signals 85% 0.25 952 6.06
Signals 85% 0.5 945.3 6.01
Signals 85% 0.75 942.5 6
Signals 85% 1 939.8 5.98
Reservations 85% 1 860.6 5.47
Signals 100% 0 1518.5 8.21
Signals 100% 1 1108.8 5.99
Reservations 100% 1 1014.1 5.48

3.4 Downtown Network

We tested the downtown network of Austin, shown in Figure 3.3, with 100%

demand, at different proportions of AVs. Downtown Austin differs from the previous

networks in that there are many route choices available. Therefore, we solved dynamic

traffic assignment using the method of successive averages. All scenarios were solved

to a 2% gap, which was defined as the ratio of average excess cost to total system

travel time. Route choice admits issues such as the Braess and Daganzo paradoxes

[8, 9], in which capacity improvements induce selfish route choice that increase travel

times for all vehicles. The downtown network also contains both freeway and arterial

links, with part of I-35 on the east side, a grid structure, and several major arterials.
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Figure 3.3: Downtown Austin network

Results for the Austin network are presented in Table 3.5. Reservations greatly

helped travel times and congestion in the downtown network, cutting travel times by

an additional 55% at 100% demand. When combined with reduced reaction times,

the total reduction in travel time was 78%. Reservations were highly effective in

downtown Austin - more effective than in the freeway or arterial networks - even

with the high congestion. In downtown Austin, most intersections are controlled by

signals, with significant potential for improvement from reservations. Although many

intersections are close together, congested intersections might be avoided by dynamic

user equilibrium route choice decisions, avoiding the issues seen with reservations

in Lamar & 38th Street. The increased capacity from 100% AVs also contributed,

reducing travel times by around 51%.
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Table 3.5: Downtown network results

Downtown Austin
Intersections Demand Proportion of AVs TSTT (hr) Travel time/vehicle (min)
Signals 100% 0 18040.2 17.23
Signals 100% 0.25 13371.4 12.77
Signals 100% 0.5 11522.3 11
Signals 100% 0.75 9905.1 9.46
Signals 100% 1 8824.7 8.43
Reservations 100% 1 3984.3 3.8

3.5 Paradoxes in Reservation Control

Although simple, FCFS properties can lead to paradoxes in reservation-based

control such as was seen in the Lamar & 38th network and the Congress network

at higher demands. Levin, Boyles, & Patel [16] extend these findings and produces

three theoretical examples of signals outperforming reservations. The first shows that

vehicles with lower priority and fewer conflict limitations could move before higher

priority vehicles with more conflict limitations. For example, a vehicle on a small and

empty local road approaching an intersection with a large arterial and long queue

will move before someone farther back in the arterial queue, whereas a signal would

give more green time to the arterial. The second exploits the property that vehicles

cannot request a reservation unless they can execute it. For example, a vehicle at the

back of a platoon can’t make a request until it can enter the intersection. The third

shows once a request is reserved, any request that does not conflict with it can move

as well, which can lead to vehicles moving in a different order than their requests.

The natural next test case from this study is a network with a mixture of

traditional traffic signals and FCFS reservation-based intersections. Some of these

paradoxical effects are not apparent in larger networks like the downtown Austin

network due to its plethora of alternate route choices, however if signals are kept at

intersections which are susceptible to the above examples, system-wide congestion

improvement may be seen with less reservations than a uniform network.

24



3.6 Conclusions

This chapter presents the first study using the cell transmission model to study

the effects of reservation-based intersection control and reduced following headways

for AVs on large networks. We studied several arterial and freeway networks among

the 100 most congested roads in Texas to study how AVs affected congestion on

different types of roads. For arterial regions, reservations were beneficial in some

situations but not in others. On Congress Avenue, a long arterial without progression,

reservations improved travel times. However, on Lamar & 38th Street, reservations

gave greater priority to vehicles entering from local roads. The close proximity of

intersections created queue spillback and greater congestion from using reservation

controls. This was due to the FCFS policy: vehicles were prioritized according to how

long they had been waiting. In contrast, signals allowed more freedom in capacity

allocation, and were optimized to give arterials a greater share of the capacity. On

freeway networks, the effects of reservations were again mixed. On US-290, which

uses signals to control access, reservations were an overall improvement. In other

freeway networks, reservations were worse than merges/diverges. In the downtown

Austin grid network, reservations resulted in great reductions in travel times.

The negative results for FCFS reservations are surprising considering the work

of Fajardo et al. [13] and Li et al. [14]. However, the major issue with FCFS

reservations is that FCFS allocates capacity in different proportions and at different

times than signals. On arterials, in high demand this resulted in greater capacity given

to local or collector roads. Furthermore, the lack of consistent timing for reservations

disrupted progression along arterials, increasing queues and causing queue spillback

at high demand.

Overall, we conclude that reservations using the FCFS policy have great po-

tential for replacing signals. However, in certain scenarios - local road-arterial in-

tersections that are close together, and at high demand - signals outperform FCFS
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reservations. This might be improved by a reservation priority policy more suited for

the specific intersection. However, reservations were detrimental when used in place

of merges/diverges. Since merges/diverges do not require the same delays as signals,

reservations have limited ability to improve their use of capacity. Furthermore, the

FCFS policy could adversely affect the capacity allocation. Therefore, FCFS reser-

vations should not be used in place of merges/diverges, but other priority policies for

reservations might be considered.

The capacity increases due to reduced reaction times improved travel times

significantly on all networks. Furthermore, regardless of the intersection control, inter-

section bottlenecks mostly benefited from increased capacity. These capacity increases

arise from permitting AVs to use computer reaction times to safely reduce following

headways. Although this might be disconcerting to human drivers in a shared-road

scenario, the potential benefits demonstrated here are a significant incentive.

Using the paradoxes found in this chapter, Levin, Boyles, & Patel [16] de-

veloped three theoretical example of signals outperforming FCFS reservations. An

obvious conclusion suggested by this chapter’s results is that some combination of

signals and reservations in the same network could possibly improve congestion fur-

ther than a uniformly reservation-based network. To avoid some of these adverse

effects, signalized intersections can be chosen strategically, which was the motivation

and parent to the next chapter.
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4 Optimal Placement of

Reservation-Based Intersections
1

4.1 Introduction

With some observed paradoxes in reservation control from the previous chap-

ter, we now find the best sets of reservations and signals in the same downtown

Austin network. This is important for planners as we can achieve more traffic con-

gestion benefit on the same network using less reservation intersections. This means

less money needing to be spent by transportation authorities. The contents of this

chapter are also useful to planners because we discover that solutions with restricted

lower proportions of reservations compared to signals are subsets of solutions with

higher proportions. This means that with a limited budget to be spent on converting

signals to reservations, we are able to provide a ranked list of the best reservation

intersection candidates.

The contributions of this chapter are as follows. We present and assess the

effectiveness of several heuristic methods used to find favorable mixed-configurations

of reservations and signals in a network. We then show that some paradoxical ef-

fects of FCFS reservations exist in a large downtown network by identifying hybrid-

configurations which reduce congestion beyond uniform reservation control in DTA.

Finally, we develop general reservation intersection deployment strategies based on

quantitative and qualitative observations.

These methods include several ranking methods which assign or predict a

score for each intersection to encapsulate its potential benefit to system congestion

1The content from this chapter is pulled from a paper titled Optimal placement of reservation-
based intersections in urban networks of which I was the first and primary author on, and of which
I contributed all methodology, experimentation, results, and analysis. The paper has been accepted
for publication in the 2019 issue of the Transportation Research Record (submission 19-01802) and
will be finalized within the year.
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under reservation vs. signal control. Additionally, a genetic algorithm (GA) is used

to iteratively find effective mixed-configurations in a network. These methods are

evaluated by solving DTA on a city network. Results show mixed-configurations that

outperform the all-reservation case, with reservations placed in chains along highly

demanded roads. We find that the GA provides the higher performing but slower

results, compared to the ranking methods.

The remainder of this chapter is organized as follows. Section 4.2 presents

the optimization problem statement and assumptions. Section 4.3 presents methods

used to find favorable mixed-configurations of reservations and signals. Section 4.4

details experimental results on the downtown Austin, TX network, and we conclude

in Section 5.

4.2 Problem Statement and Assumptions

This section presents the bi-level optimization problem that is the focus of this

chapter and which we attempt to solve using heuristic methods presented in Section

4.3. We then state the major assumptions made for this paper.

Simply put, we want to achieve the lowest total system travel time (TSTT )

in a network with the best configuration of reservations and signals. The optimiza-

tion problem below presents the general bi-level optimization problem. The direct

decision variable ~z defines a network-control configuration in which each zi is an eli-

gible intersection i’s control (reservation or signal), and the indirect decision variable

~x is a DUE link flow mapping. E is the set of eligible intersections defined in the

assumptions below, and is a subset of the set of all intersections in the network.

min TSTT (~x, ~z)

s.t. ~x = F (~z)

zi ∈ {0, 1}∀i

i ∈ E

(4.1)
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1. The upper level is to minimize the TSTT of a city network by assigning each

eligible intersection’s zi as reservation-based {1}, or signalized {0} control.

2. The lower level is to solve for DUE to obtain the link flows ~x for TSTT (·) as

shown in the first constraint of Equation 4.1, where the function F (~z) finds ~x

by using DTA.

To clarify, a feasible solution to this problem zi is a network with a subset

of reservation intersections and a remaining subset of signalized intersections. The

TSTT of the configured network is the solution’s performance measure and is used

to evaluate network congestion effects. Because solving for DUE is itself a difficult

problem, we propose methods to heuristically solve for optimal zi’s.

To compare and evaluate the methods, experiments are conducted with differ-

ent proportions of reservation intersections α on the same city network. For example,

if our test network contains 100 eligible intersections, an α = 0.2 requires 20 reser-

vations and 80 signals. Here, E would be the set of 100 eligible intersections and
100∑
i=1

zi = 20. This restriction also resembles application in practice as transportation

authorities have budgets and will most likely deploy a limited number of reservation

intersections.

Below, we list the assumptions made in this chapter.

• The set of eligible intersections whose controls can be switched is the set of

currently signalized intersections in the real network. The City of Austin uses

pre-timed signals downtown during the peak period. The model does not con-

sider the set of merges, diverges, or stop sign controlled intersections because

reservations provide little system-wide benefit when applied there, as shown in

Chapter 3. The signals in our model reflect the timings and phase patterns

(including offsets for progression) currently used by the city;

• Only CAVs can use the reservation intersections, so all simulations are composed

of 100% CAV demand.
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• All reservation-based control uses a FCFS policy.

4.3 Methods

This section details several ranking methods and a meta-heuristic method

used to obtain solutions to the optimization problem (Equation 4.1). In addition, we

identify differential measures which generalize an intersection’s performance under

reservation vs. signalized control.

The first two methods assign a score to each intersection which allows them to

be ranked in order of the best reservation-control candidates. The scores are represen-

tative of potential benefit to TSTT under reservation vs. signalized control, relative

to other intersections in the network. To assign a score, the first method uses lo-

cal intersection simulation results and the second uses weighted sums of intersection

characteristics obtained from system simulation. The third is a more sophisticated

ranking method that uses multilinear regression to predict an intersection’s score

found from the first method. It chooses a feasible ~z which maximizes the total pre-

dicted score using easily obtainable intersection characteristics. Finally, we propose a

meta-heuristic genetic algorithm which iteratively moves toward higher performing ~z

solutions. This method finds nice solutions, however provides few “pro-reservation”

generalizations and is slowed by long computation times due to the required fitness-

calculation of a DUE solution. On the other hand, ranking methods are easier to

execute and can offer quantitative selection criteria, however may not guarantee good

solutions.

4.3.1 Intersection Ranking Methods

This section details two methods which assign a score to each intersection i

and rank them in order of their differential potential benefit to TSTT under reser-

vation control compared to signal control. The standalone scores may have limited

realistic interpretations, however are used to compare intersections with each other
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and capture inefficient reservation behavior. These inefficiencies are typically seen

in smaller networks with limited route choice, as this exploits FCFS paradoxes, and

motivates more localized scores.

The first ranking method approximates an “effective sub-system travel time”

(∆SSTT ) score by locally simulating each intersection under reservation and signal

control. The ∆SSTT score is shown in Equation refSSTT as the difference between

two sub-system travel times (SSTT ). For each i, an SSTTsig and SSTTFCFS are

obtained by solving DUE on a subnetwork consisting of only i and its incoming

and outgoing links with zi = 0 and zi = 1, respectively. For all subnetworks, origin-

destination (OD) demands are obtained by solving DUE on the whole parent network

with zi = 0∀i and extracting the individual intersection’s flows from the parent ~x.

OD demand is gathered from the all-signal case as it is representative of current real-

world conditions, before any reservation-control has been implemented. This score

estimation process is illustrated in Figure 4.1 for a single intersection. Though this

method involves the DTA simulation of every eligible intersection subnetwork at least

twice, the subnetworks are very small and have little demand compared to their parent

city network. Single-intersection subnetworks, however, assume no interdependencies

between intersections and, as presented in the following section, may be difficult to

predict with a linear regression trend.

∆SSTT = SSTTsig − SSTTFCFS (4.2)
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Figure 4.1: Method of data collection for one intersection’s ∆SSTT score

The second ranking method uses a simplified score composed of a weighted

combination of intersection turning demands. Several results presented in Section

4.4 show that through, left, and right demands were the most significant predic-

tors of reservation-based performance for any intersection. If combined effectively

according to relative importance, demand-based scores (dscore) can be calculated for

intersections. However, finding these initial weights may require an existing favorable

~z solution. Equation 4.3 below defines a possible dscore, where µtFCFS
is the average

through, left, or right turning demand of all zi = 1 from an existing ~z solution. Simi-

larly, µtsig is the same average, but of all zi = 0. These two averages form a constant

weight which is applied to each i’s turning demands dt to get a score for each i. As

will be shown, favorably selected reservation intersections tend to have much higher

turning demand than signalized intersections. Although this ranking method requires

an existing ~z solution, it can prove powerful once effective weights are obtained as

it only requires intersection turning demands extracted from the parent network’s ~x

DUE solution. As mentioned in Section 4.4, this method offers less than average per-

forming configurations, but is very time efficient using the most significant predictors
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of reservation control benefit.

dscore =
∑

t∈{through,left,right}

µtFCFS

µtsig

∗ dt (4.3)

Other weighted scores may be formulated using other intersection characteris-

tics. If an effective score which captures the differential performance of an intersection

under reservation vs. signal control can be found, the ranking of intersections is intu-

itive and can allow for simple deployment strategies. Finding an efficient and accu-

rate ranking method can be difficult however, due to few readily available intersection

metrics which may also ignore the interdependent complexities that intersections may

share with each other.

4.3.2 Multilinear Regression for Scoring

This section presents another, more complex intersection ranking method

which uses a multilinear regression to predict an intersection’s ∆SSTT score. If

effective and extensible, this method may allow “pro-reservation” intersections to be

generalized and make for easy reservation deployment strategies as the regression can

be used on any signalized intersection with easily obtainable characteristics.

Later presented results show that regression rankings performed worse than

all other methods in terms of minimizing TSTT , however the original ∆SSTT data

performed well. Despite this, we are still able to draw generalizations from significant

predictor variables.

Formulation

Essentially, the linear regression predicts an intersection’s ∆SSTT score us-

ing predictor variables which characterize the currently signalized intersection in the

real network. Recall that the higher the ∆SSTT , the more likely an intersection is

to benefit local congestion under reservation control beyond signal control. Results

in Section 4.4 show that the first mentioned ∆SSTT ranking method’s ~z solutions

perform quite well making this score favorable to predict performance as it also en-
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capsulates localized congestion effects.

Predictor variables were chosen based on descriptive power of the real signal-

ized intersection as well as ease of collection. All predictor variables are described in

Table 4.1 and are moderately easy to obtain from city and transportation authori-

ties, or through simulation. Cumulative through, left, and right turn demand are the

only variables obtained through DTA simulation and are later shown to be the most

significant. Link length variables are considered because previous studies indicate

that FCFS reservation inefficiencies are exacerbated by queue spillback onto close-

proximity roads and intersections. Several signal and traffic control-specific variables

such as cycle length and number of unrestricted turning movements are considered

in an effort to surface inefficiencies in current controls.

The general regression formula is as follows in Equation 4.4, where ∆SSTT ∗

is the predicted “effective sub-system travel time” score, ~β is the vector of estimated

variable coefficients, ~X is the vector of predictor variables, and FFTT (free-flow

travel time) is the regression constant.

∆SSTT ∗ = FFTT + ~β ∗ ~X (4.4)

Regression Training

The dataset used to estimate variable coefficients consists of |E| entries, each

of which contains an intersection i’s mentioned predictor variables and ∆SSTT score.

The ∆SSTT for each i is obtained using the ∆SSTT ranking method from Section

4.3.1. We train two separate regressions using our testbed network data and a different

downtown network’s data, and apply both to the same testbed network. The non-

testbed-trained regression is estimated to evaluate the extensibility of the regression

to intersections in other networks and the testbed-trained regression assesses data-

fitting. Section 4.4.2 details a regression model trained on the Dallas network.
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Table 4.1: Multilinear regression predictor variables considered

Predictor Variable Variable Description Units

Number of phases The total number of signal phases across a cycle Number of
phases

Cycle length The time of one complete signal phasing cycle Seconds

Number of moves The total number of non-restrictive turning
movements for the intersection. Turning move-
ments are defined by an approach link and an
exit link.

Number
of turning
movements

Number of through
turns

The total cumulative through demand of the
intersection across all approaches

Number of
vehicles

Number of left turns The total cumulative left turn demand of the
intersection across all approaches

Number of
vehicles

Number of right
turns

The total cumulative right turn demand of the
intersection across all approaches

Number of
vehicles

Minimum length The minimum length of a link entering or exit-
ing the intersection

Length in
feet

Maximum length The maximum length of a link entering or exit-
ing the intersection

Length in
feet

Average length The average length of a link entering or exiting
the intersection

Length in
meters

Minimum link capac-
ity

The minimum capacity of a link entering or ex-
iting the intersection

Number
of vehi-
cles/hour

Total link capacity The total cumulative capacity of all links enter-
ing or exiting the intersection

Number
of vehi-
cles/hour

4.3.3 Genetic Algorithm

This section presents a genetic algorithm (GA) which, unlike previous meth-

ods, attempts to directly solve the bi-level optimization problem heuristically. We

implement a GA that evaluates and alters configurations of the same network using

DTA and a “survival of the fittest” policy to determine improvement search directions
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to iteratively approach an optimal ~z solution. We begin with a general introduction

to GAs followed by the formulation of our own GA model. In addition to finding

~z solutions with fixed reservation proportions (α), we formulate an “unconstrained”

GA which allows for change in α. Although this method by far requires the most

computation time of any other method presented due to solving DTA many times, it

generally provides the best ~z solutions at each reservation proportion.

A Background on Genetic Algorithms

A genetic algorithm is a class of metaheuristic computational methods in-

spired by genetic evolution used to solve constrained and unconstrained optimization

problems. The algorithm starts with an initial population of individuals, measures

each individual’s performance, and then iteratively creates new and better performing

generations by combining the best traits of older generations. The algorithm then

theoretically ends with the best performing individual.

Formulation

This section details our implementation of a GA to directly and heuristically

solve the bi-level optimization problem stated in Equation 4.1. We first detail our

constrained GA which is used for the bulk of experimentation, and then present the

modified unconstrained version.

At the root of our GA implementation, each individual n in the population N

is a different feasible configuration ~zn of the same network. Each individual possesses

|E| total genes which are defined by zni ∈ {0, 1}∀i ∈ E and are what the GA modifies

during initial population generation, crossover, and mutation. TSTTn is used as

an individual’s fitness value (or effectiveness), and is found by solving DUE (F (~zn))

using DTA to obtain ~xn and then TSTT ( ~xn, ~zn). Because this GA is constrained, we

enforce
∑
i

zni = r ∀n ∈ N , where r is the number of required reservations found by

r = |E| ∗ α. The following is an overview of the algorithm’s steps.

1. Initial population: Generate an initial population of randomly generated indi-

viduals, each satisfying
∑
i

zni = r.
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2. Population evaluation: Calculate the TSTT ∀n ∈ N and then rank N in order

of TSTT . Store the individual with the lowest TSTT as the best.

3. Parent selection: Select the best performing proportion k of N as eligible par-

ents and eliminate the bottom 1−k proportion. Randomly choose |N | ∗ (1−k)

pairs of parents from the eligible list, removing parents as they are chosen.

4. Crossover : To create a new child, iterate through each zi of both selected

parents. For the constrained GA, randomly choose an i to look at. If zParent1
i =

zParent2
i , then give zChild

i the same control. Else, use the crossover probability

p, shown by Equation 4.5 below, to determine the child’s control.

p is a linear probability density function that creates a p ∈ [0.5, 1] and gives the

child a higher probability of inheriting the higher performing parent’s control

as the difference in between the two parents increases.

p = 0.5 + 0.5 ∗ |TSTTParent1 − TSTTParent2|
TSTTall−signals − TSTTall−reservations

(4.5)

Do this until the limit has been reached for the child and assign everything else

as signals.

5. Mutation: Each new child is chosen to be mutated with probabilitym. If chosen,

each zni of the individual has a probability b of being switched to the opposite

control. This is to introduce randomness into the population and avoid falling

into a local minimum.

6. Children fitness evaluation: Find the TSTT of each new child and add them to

the set of parents to create the new N and re-rank N . The individual with the

lowest TSTT is stored and the algorithm loops back to Step 3 for u iterations.

Next, the unconstrained GA essentially follows the same steps as the con-

strained, however, the initial population has no
∑
i

zni = r ∀n constraint and each zni
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has an equally likely chance of being {0} or {1}. Then, at each crossover and muta-

tion step, every zi is considered. The unconstrained GA theoretically approaches the

highest-performing network configuration which yields the minimum possible TSTT ,

however we later show during experimentation that it falls into a possible local mini-

mum and is eventually outperformed by the “constrained” GA and ∆SSTT ranking

at even lower reservation proportions.

Because the GA uses no intersection-specific characteristics or performance

measures, it essentially just provides a highly effective ~z and does not offer many

“pro-reservation” generalizations. For this reason and long computation times, GA

solutions are primarily used as a benchmark for high ~z performance and is the main

method used to visually identify control-placement trends, such as those shown in

Section 4.4.5.

4.4 Experimental Results

This section presents experimental results of testing the ∆SSTT ranking,

linear regression (∆SSTT ∗) ranking, and GA methods on the large-scale city network

of downtown Austin, TX. All methods obtain feasible mixed-configurations (~z) of

reservations and signals in the network in an effort to reduce congestion and minimize

TSTT , evaluated using DTA.

We first show network-specific implementations of each method and their

TSTT results. We then compare the methods in terms of effectiveness and efficiency.

We finally link visual and quantitative network-wide intersection trends, finding bet-

ter reservation placement in consecutive chains on highly trafficked streets.

The downtown Austin network used for all experimentation, shown in Figure

3.3, contains 1,247 links, 546 nodes (174 signalized intersections), 171 zones, and

62,783 vehicle trips over a 4-hour observation period. This is the same network used

for experimentation in the previous chapter. This network includes several large

arterials and a large downtown grid. This is a useful testbed as flow on the grid
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is primarily restricted by intersections, and the large network allows for alternative

route choices. In addition, to train a regression, we use the downtown Dallas net-

work containing 152 signalized intersections and 167,592 vehicle trips over a 4-hour

period. The DTA models used in this paper are described in Chapter 2 and solved

using the method of successive averages to a 2% gap, defined in Equation 4.6. The

shortestpathtime refers to a total travel time experienced if all demand were to be

loaded onto the simulation’s current shortest paths.

gap =
TSTT − shortestpathtime

TSTT
(4.6)

Experiments were run for every method at each α ∈ 0.2, 0.4, 0.6, 0.8 (defined

in Section 4.2). For comparison, we simulate the Austin network with both all-signals

and all-reservations yielding TSTT s of 6443.22 hrs and 4560.14 hrs respectively, la-

beled in Figure 4.2. We also test a random configuration method in which, for each α,

we evaluate 10 randomly generated ~z solutions and average their TSTT s, also shown

in Figure 4.2 as Random. This method is used as a benchmark given that effective

methods should at least beat complete randomization.

4.4.1 ∆SSTT Ranking Results

This ranking method uses subnetwork simulation results to assign a ∆SSTT

score to each eligible intersection in a network to capture a localized benefit to travel

times under reservation vs. signal control. The 174 eligible intersections were then

ranked in order of descending scores and the top α ∗ 174 are assigned as reservations

and the rest signals.

The ∆SSTT ranking method performed well on the Austin network, improv-

ing TSTT beyond the all-reservation case with just over a 40% reservation proportion

and clearly outperforming the Random method. This trend continued as the ∆SSTT

configurations decreased in TSTT at a decreasing rate as α increased.

All previous experiments with this network showed improved travel times with
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no signs of paradoxical inefficiencies associated with reservation-based control, how-

ever such inefficiencies may have not been apparent due to the copious alternative

route choices. This experiment’s results show that such paradoxes can exist in a

large-scale DTA network with more congestion benefits than the all-reservation case

at less than half the reservation control. This also supports the validity of using

∆SSTT scores to train a regression, detailed in the next section.

4.4.2 Multilinear Regression Scoring (∆SSTT ∗ Ranking) Results

The ∆SSTT ∗ ranking method uses linear regression to predict an intersection’s

∆SSTT score (∆SSTT ∗) given a set of significant but easily obtainable predictor

variables, ~X. Two regressions are estimated, one regressing Dallas intersection data

and the other regressing Austin data. The purpose of using a Dallas regression to

predict Austin scores is to test transferability of one city’s reservation intersection

behavior to another’s making deployment easier in practice. This may also surface

common trends seen in variables. The purpose of an Austin regression predicting

its own scores is to validate the linear trend assumption. ∆SSTT training data is

obtained as described in Section 4.3.1 and predictor variables are obtained from the

City of Austin and simulation, described in Section 4.3.2.

Table 4.2: Dallas-trained multilinear regression summary

Variable β (coeff) Std. error t-score

(Constant) -717.3 -717.3 -717.3

Cycle length 3.286 3.286 3.286

Number of moves 9.495 9.495 9.495

Number of through turns 0.261 0.261 0.261

Number of left turns 0.43 0.43 0.43

Number of right turns 0.414 0.414 0.414

Minimum length 0.409 0.409 0.409

Table 4.2 details the Dallas-trained regression model which includes only the

significant predictors of ∆SSTT from the pool in Table 4.1. Relative significance of
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variables was evidenced from t-values at a 95% confidence level (|tvar| ≥ 1.645). The

model had an R = 0.868, R2 = 0.754, adjusted R2 = 0.752, and standard error of the

estimate = 360.818. It is evident that cycle length and all three turning demand vari-

ables proved to be significant predictors in the model. The cycle length coefficient is

positive implying an increase in ∆SSTT . Demand is expectedly significant and posi-

tive as major arterials tend to have higher through demands and large queue spillback

at peak times. A positive coefficient suggests an increase in ∆SSTT with increased

turning demand, implying more benefit under reservation control. The regression

indicates that heavily demanded intersections perform better as reservations.

Two experiments were run on Austin’s network, each with intersections ranked

according to either the Austin-trained or Dallas-trained regression. Both ∆SSTT ∗

rankings performed similarly, as shown in Figure 4.2. Although TSTT s steadily de-

creased as α increased, this was to be expected and the ∆SSTT ∗ rankings performed

worse than even the Random method. The result shows a linear trend cannot be fit

to the ∆SSTT scores. Complex interdependencies between proximal intersections

most likely attribute to this non-linear trend.

4.4.3 Genetic Algorithm Results

The GA takes in a set of model parameters and iteratively tends towards

optimal ~z solutions with minimal travel times. In this paper, we use a custom Java GA

code to create our model. Model parameters used in the Austin network experiments

include an initial population h = 100, eligible parent proportion of the population

k = 0.75, individual mutation probability m = 0.1, and gene mutation probability b =

0.07. Given parameters were found based on trial-and-error methods and computation

time assumptions, however low mutation probabilities are typically used in GA models

as to prevent oscillation.

Results in Figure 4.2 show that the GA overall obtained the best results. The

GA mostly outperformed the ∆SSTT ranking method with larger improvements over
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the method at lower reservation proportions, however the two came close in TSTT

performance and the ∆SSTT method marginally beat the GA at α = 0.8. At just

under α = 0.4, the GA also outperforms the all-reservation case.

An additional unconstrained GA case was run which attempted to solve the

bi-level optimization problem using any proportion of reservations. This system op-

timal, unconstrained GA therefore approaches the optimal α as well. The resulting

configuration gave α = 0.86 and a TSTT of 4229.2 hours which was marginally out-

performed by both the constrained GA and the ∆SSTT ranking method at a lower

α = 0.8.

Figure 4.3 shows the GA’s performance for the unconstrained, α = 0.2, and

α = 0.4 cases over 100 iterations, with the latter two showing slightly more of a

flattening in TSTT . Though the steeper convergence graph may imply opportunity

for more improvement, Figure 4.4 shows a relatively steady increase in reservation

proportion over the iterations, possibly leading to a local minimum.
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Figure 4.2: Downtown Austin results summary

4.4.4 Comparative Performance of Methods

As shown by results, the GA obtained the highest performing and most effec-

tive ~z which had the lowest TSTT s, the ∆SSTT ranking method obtained very close

travel times, and finally the ∆SSTT ∗ ranking method had the worst travel times.

However, the most effective methods were not necessarily the most efficient methods.

Though the GA provided results with the most system-wide benefit, it was by

far the most computationally expensive method. 100 iterations of the GA meant 2600

runs of DTA (100 initial population + 25 new children/iteration) to solve DUE on

the same large-scale network. At an average run’s convergence time of 15 min/run,

a single GA result requires about 22 hours of computation. On the other hand,

the ∆SSTT ranking method achieved results similar to the GA and is much more

time efficient. Although we are running DTA on 174 subnetworks under both con-
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trols, the single-intersection subnetworks each converge in 2-3 seconds, making for

a conservative computation time of 17.5 minutes to obtain all scores. Finally, the

∆SSTT ∗ method is the most time efficient of the three as it only entails applying

a regression equation to a data set, but the discovered solutions perform worse than

even randomly generated ones. However, the regressions revealed important “pro-

reservation” intersection characteristics which may allow for development of better

methods.

Note that this section does not include the dscore ranking method as it did not

yield significant results. Turning demand coefficients were found based on GA result

data and intersections were ranked based on the calculated dscore’s. This method

was outperformed by the ∆SSTT ranking method, however performed better than

randomized configurations. The dscore method’s minimal computation time does not

outweigh the predictive power of the ∆SSTT ranking. Because of this and because

the method didn’t reveal any additional “pro-reservation” intersection characteristics,

it was not tested further. For reference, at α = 0.2 and 0.4 the dscore method gave a

TSTT of 5458.2 hrs and 4950.0 hrs respectively.
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Figure 4.3: GA performance over 100 iterations

Figure 4.4: Unconstrained GA variation of α over 100 iterations

4.4.5 Trends in Reservation-based Intersection Placement

Because finding many quantitative trends and metrics in reservation placement

is difficult, it is hard to develop deployment strategies solely on these metrics to be
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used by transportation planners and policymakers. Using visual observations and

observed quantitative data, we are able to generalize trends in reservation placement.

We take the highest performing ~z solutions from the constrained GA and place them

on an Austin city street map.

Figure 4.5 shows mappings of the GA’s resulting configurations with reserva-

tion (TBR) intersections in green and signalized intersections in red. Even though

all GA experiments are independent of each other, we see that every reservation from

the α = 0.2 (35 reservations) case remained a reservation (except for 1) in the α = 0.4

(70 reservations) case. This set overlap supports similar configuration patters seen

in ∆SSTT ranking results. We notice that reservation intersections were typically

kept together, typically in consecutive chains or corridors. We also notice that these

chains are along highly congested corridors in the peak periods such as 15th St, Cesar

Chavez St, Lamar Blvd, Congress Ave and MLK Blvd. GA results show almost 5.2

times the number of through turns on average at reservation intersections compared

to signalized intersections and 2 to 4 times the number of left and right turns.

As we move to higher reservation proportions, the reservation chains began to

intersect. In the right-side map of Figure 4.5, reservation chains going from 15th St,

MLK Blvd, Cesar Chavez St and others go directly to large orthogonal arterial and

freeway roads (Lamar and I35 frontage road).

These reservation chains are seemingly placed at these locations to promote

progression of major arterial streets and avoid potential FCFS inefficiencies previously

seen. With multiple reservations in a row, a progression similar to that of pre-timed

signals is possible and could prevent queue spillback onto smaller streets as many

attempt to enter arterials during peak periods.
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Figure 4.5: Constrained GA control configurations at α = 0.2 (left) & α = 0.4
(right)

4.5 Conclusions

This chapter presented and tested methods for finding favorable mixed-control

configurations of FCFS reservation-based and signalized intersections in the large-

scale city network of downtown Austin. The optimization problem of minimizing

TSTT is challenging as it requires solving for DTA, so we proposed several heuristic

methods. We present three different methods for obtaining favorable network configu-

rations including an effective sub-system travel time ranking, a multilinear regression

intersection ranking, and a genetic algorithm.

First, a ranking method assigns scores to intersections (∆SSTT ) which rep-

resent a differential performance measure of the individual intersection under reser-

vation vs. signal control in terms of travel time. Austin test intersections were then

ranked accordingly and results show the method worked well to improve travel times,

outperforming the all-reservation case but with just over 40% reservations. This
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method proved more tedious than applying a readily available regression equation,

however is still relatively quick.

Next, a multilinear regression was trained with data from a separate down-

town Dallas network, to test extensibility of the regression to other networks, with

its predictor variables being easily attainable intersection characteristics. Significant

variables were primarily turning demand-related except for signal cycle length. Austin

intersection ∆SSTT ∗ scores were estimated using the regression and were ranked ac-

cordingly. However, when tested in simulation, regression ranking results did not

perform well and were outperformed by a random intersection selection method. The

dependent variable was concluded to not fit a linear trend, however if correct, a regres-

sion equation could prove useful as it would allow any set of signalized intersections

to be ranked easily.

Finally, a genetic algorithm to successively create better performing configura-

tions is proposed. The GA solved DTA to evaluate fitness over 100 iterations, proving

to be very computationally expensive requiring nearly 22 hours to complete. This

method also only gives a solution and no insight into significant “pro-reservation”

characteristics. However, the GA provided the lowest TSTT results, just marginally

lower than the ∆SSTT ranking method, also beating the base all-reservation case

with 60% less smart intersections.

Mapping the GA results revealed a placement of reservation intersections in

chains of consecutive reservations along very highly congested roads at peak hours.

This most likely was to provide progression along large arterials and mitigate para-

doxical effects seen with FCFS reservations. These trends and congestion benefits

can be very useful in terms of planning and policy, especially with the deployment of

reservations into our infrastructure.

48



5 Conclusions

5.1 Summary of Contributions

To evaluate the large-scale traffic congestion impacts of AVs and reservation-

based intersection control, this thesis presented simulation results of these technolo-

gies in DTA under UE conditions on some of the top most congested roadways and

networks in Texas. Results confirmed congestion benefits of reduced following head-

ways of AVs and uncovered paradoxical inefficiencies of FCFS reservation control.

Furthermore, this thesis developed models and guidelines for the efficient, gradual

deployment of reservations and confirmed paradoxes in reservation control.

To evaluate congestion effects of AV behavior, we varied AV demand propor-

tions and simulated reduced following headways using quicker reaction times in DTA.

In all networks and demand scenarios tested, we observed consistently decreasing

travel times as AV proportions increased. The consequent increased capacity [3, 4, 5]

resulted in more efficient freeway, arterial and downtown networks. We then tested

reservation-based control on the same networks by using 100% CAV demand and re-

placing all intersection control with Dresner & Stone’s reservation-based control with

FCFS priority [10, 11]. Reservations performed well at low demands, outperforming

traditional signals, however did not always perform well at high demands. Several

arterial networks resulted in more congestion using reservations at higher demands

due to some paradoxes in FCFS reservation control. The FCFS priority gave more

capacity allocation to local roads intersecting with arterials, interrupting the progres-

sion of the arterial and causing queue spillback on adjacent links due to their close

proximities. Levin, Boyles, & Patel [16] explored these paradoxes further by providing

three theoretical examples.

We concluded from the discovery of FCFS priority inefficiencies that some in-
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tersections might be better suited for reservation control and that some combination

of reservations and signals in a network may result in congestion benefits beyond those

of a fully reservation-controlled network. This thesis then developed several methods

to find the optimal configuration of reservations and signals in a network, as well as

characterize “pro-reservation” traits of intersections. This optimization problem is

difficult to solve given its second level of solving DTA, and led to the formulation

of heuristic methods including several intersection ranking methods and a genetic

algorithm. The first method assigned scores to intersections representing their differ-

ential performance under reservation vs. signal control and ranked them. Scores were

obtained through the simulation of single intersection subnetworks under both con-

trols. This method performed well and a second method was proposed to predict the

assigned scores using linear regression. The regression used easily obtainable intersec-

tion characteristics as predictor variables and indicated that intersections with high

turning demands tend to be better suited for reservation control. The final method

was a computationally expensive genetic algorithm which found progressively better

solutions through the emulation of natural selection, however did not provide insight

into why intersections performed better as one control or the other. We then tested

the methods and observed that the initial ranking method and genetic algorithm

perform very well, finding solutions with less congestion than the 100% reservation

case at just 40% of intersections being reservation-controlled. The regression ranking

method performed poorly, confirming nonlinear interdependencies between intersec-

tions, however provided valuable insight into the “pro-reservation” characteristics of

intersections. Mapped solutions revealed that reservation intersections were placed

in consecutive chains along highly trafficked corridors, most likely to promote flow

progression during the rush hours.

Overall, we conclude that AV technologies can greatly benefit traffic congestion

and reservations using the FCFS priority have great potential for replacing signals

in the future. However, FCFS reservations can actually worsen network conditions
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and reservation intersection candidates must be chosen carefully. Transportation

planners could use methods such as the ranking method we develop in this thesis to

select subsets of currently signalized intersections to convert to reservation-control in

order to gain the most congestion benefits.

5.2 Future Work

These results and methods motivate the need for further analysis of reservation

performance trends and intersection characteristics for proper deployment techniques.

Although FCFS performs well in some situations, it does worse than optimized signals

in others and these results can be taken further to develop system optimal control poli-

cies. Although improvements were seen in mixed-configurations, further mesoscopic

modeling studies on other reservation-based control policies would be likely more ef-

ficient. Additionally, the assumption of a 100% CAV penetration rate may not be

achieved until well into the future. For this reason, further experimentation needs

to be done using hybrid-reservation control as some work has shown its inefficiency

compared to fully autonomous reservation control [15].

51



Bibliography

[1] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver model to

access the impact of driving strategies on traffic capacity,” Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

vol. 368, no. 1928, pp. 4585–4605, 2010.

[2] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive cruise

control on freeway traffic flow,” Transportation Research Record, vol. 2324, no. 1,

pp. 63–70, 2012.

[3] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adaptive

cruise control on traffic-flow characteristics,” IEEE Transactions on intelligent

transportation systems, vol. 7, no. 4, pp. 429–436, 2006.

[4] W. J. Schakel, B. Van Arem, and B. D. Netten, “Effects of cooperative adaptive

cruise control on traffic flow stability,” in 13th International IEEE Conference

on Intelligent Transportation Systems, pp. 759–764, IEEE, 2010.

[5] P. Y. Li and A. Shrivastava, “Traffic flow stability induced by constant time

headway policy for adaptive cruise control vehicles,” Transportation Research

Part C: Emerging Technologies, vol. 10, no. 4, pp. 275–301, 2002.
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