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Chapter 1

Introduction

Vehicle-to-infrastructure (V2I) communication offers the potential to

enhance safety and efficiency in urban vehicular networks [1–3]. Combined

with millimeter wave (mmWave) [4–6], V2I has the potential to offer high

data rates and low latency [7–9], to enable massive data sharing among a

great number and diversity of mobile devices in vehicular networks [7, 10].

MmWave communication not only has access to larger bandwidths, it can

also allow compact yet very large antenna arrays at both the transmitter and

receiver to provide high directional beamforming gains and low interference.

Compared to channels at microwave frequencies (<6 GHz), however, mmWave

channels are more sensitive to blockage losses, especially in the urban streets

where signals are blocked by high buildings, vehicles or pedestrians [9], [11],

and sharp transitions from line-of-sight (LOS) to non-line-of-sight (NLOS)

links are more common1. This motivates the study of mmWave microcellular

network performance in the context of vehicular urban areas.

1In the current thesis, LOS is defined as “optical” line of sight between the transmitter
and receiver location as the papers cited here. NLOS happens when the link between the
transmitter and the receiver is blocked by obstructions, specifically in our thesis, is blocked
by urban buildings.
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Stochastic geometry Stochastic geometry has been used extensively

to analyze performance in mmWave cellular networks [12–17]. BS and cellular

user locations are modeled as Poisson point processes on a two-dimensional

plane, based on which the coverage probablity of a typical cellular user is

derived. Also, building blockages are considered as the main source differen-

tiating LOS and NLOS links, with a few papers analyzing different building

blockage models. Unfortunately, prior work analyzing mmWave cellular net-

works in [12–17] employed a pathloss model with a LOS probability function

based on Euclidean distance [18], to determine whether a link was LOS or

NLOS. This works well for randomly oriented buildings [13], but does not

properly model V2I networks where strong LOS interference may result from

infrastructure co-located on the same street.

Recent work has considered alternative topologies that may better

model urban areas. In [19], an approach to determine LOS and NLOS BSs by

approximating a LOS ball was proposed. The model was shown to be able to

better approximate the LOS area than [18]. In [20], three-dimensional Poisson

buildings were modeled using Poisson processes to characterize the correlated

shadowing effects in urban buildings. The idea was to add one more dimension

to the Manhattan Poisson line processes (MPLP), by modeling the floor loca-

tions as Poisson process. This allowed an exact characterization of coverage

of in-door urban cellular networks. In [14], a stochastic geometry model in

a Manhattan type network was analyzed, since it is a tractable yet realistic

model for Manhattan type urban streets. The urban streets were modeled as
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one-dimensional MPLP and the coverage probability was derived considering

the penetration effects of buildings. Unfortunately, the results in [14] used a

pathloss model mainly considering the penetration effects of signals through

urban buildings, with a fixed loss for each penetration. This is not applicable

for mmWave systems where penetration loss is high. In this thesis, we also

use the MPLP for modeling the urban street distribution, but combined with

a mmWave-specific channel model.

Urban mmWave channel modeling There is a vast body of litera-

ture concerning mmWave channel modeling in urban areas, see, e.g., [21] and

references therein. One of the key characteristics of urban environment is the

high density of streets and high-rise buildings. Since mmWave signals are very

sensitive to blockage, which induces significant signal attenuation, LOS and

NLOS links can have sharply different pathloss exponents, as was also shown in

numerous measurements [5][22][23], and is reflected in the standardized chan-

nel models [24]. Investigations in a variety of environments showed that in

general, penetration loss increases with carrier frequency. For modern build-

ings with steel concrete and energy saving windows, in particular, penetration

through just one wall can incur losses on the order of 30 dB; therefore propaga-

tion through buildings is not a relevant effect in mmWave urban environments

[25].

In [26], a spatially consistent pathloss model was proposed for urban

mmWavechannels in microcells. Based on ray tracing, it was shown that the

pathloss exponents differ from street to street and should be modeled as a

3



function of both the street orientation and the absolute location of the BS and

user equipment (UE)2. Hence, the signal is seen as propagating along different

streets, with diffraction effects happening at the corner, instead of penetrating

through the urban buildings. The pathloss is summed up by the individual

pathloss on different segments of the propagation paths, incorporating an ad-

ditional loss at each corner. This shows that the Euclidean distance might

not be a good measure to characterize the pathloss effects in urban microcell

networks at mmWave. In this thesis, we adopt a modified pathloss model sim-

ilar to [26] based on the Manhattan distance, which enables tractable analysis

while still retaining the key features of the channel. In this thesis, we develop

a tractable framework to characterize the downlink coverage performance of

urban mmWave vehicular networks. In specific, we consider snapshots of the

urban microcellular networks, without modeling vehicle mobility. This reduces

the network to an urban mmWave microcellular networks. We model the lo-

cation of urban streets by a MPLP. The width of the street is neglected, and

herein the blockage effects of vehicles are not considered in the analysis. We

extend our previous paper [27] to account for large antenna arrays and di-

rectional beamforming at mmWave. We use a modification of the sectorized

antenna model for tractable analysis [13, 28] and apply the new pathloss model

from [26]. The pathloss model is characterized by the Manhattan distance of

the propagation link, which, with MPLP street modeling, yields tractable re-

sults for coverage analysis.

2Henceforth we assume a downlink so that receiver and UE can be used exchangeably.
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Based on our model, we analyze coverage of randomly located UEs on

the roads formed by the lines, which is different from the conventional approach

where coverage is analyzed conditioned on the links being outdoors [13]. We

adopt a new procedure in the calculation of coverage probability, compared to

the previous work [13]. We analyze the coverage probability by first computing

the cumulative distribution function (CDF) of association link gain and then

the coverage probability conditioned on the associated link gain. By averaging

over the conditioned channel gain, we obtain simple but accurate expression

of coverage probability. We also examine the probability that the link is LOS.

Compared to [27], this thesis also includes the following contributions.

Based on the coverage probability, we obtain useful insights concerning the

scaling laws of coverage probability with street and BS intensities, the sensi-

tivity to propagation environment changes of LOS/NLOS paths and the effects

of LOS/NLOS interference. Also, we derive closed-form expression of the LOS

BS association probability. We then use the data of real streets in Chicago from

OpenStreetMap [29–31] and extract it using Geographical Information System

(GIS) application QGIS [32]. This is used to compare the ergodic rate of re-

alistic streets, MPLP street model and fixed grid models, and MPLP-based

analysis is validated for an outdoor microcell urban network at mmWave.
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Chapter 2

System Model

In this section, we explain the key assumptions and models adopted in

this thesis. First, we explain the street model in urban vehicular networks.

Then, we introduce a modified mmWave sectorized antenna pattern used for

the analysis. We present a tractable form of the pathloss model of mmWave

microcells based on Manhattan distance from [26]. Lastly, we formulate the

signal-to-interference-plus-noise ratio (SINR) of the receiver and demonstrate

the strongest propagation path rule.

2.1 Network Model: MPLP model

We model the urban area as a stochastic Manhattan type network [14],

[33], [34], and the location of the urban streets are modeled by Manhattan

Poisson line process (MPLP). We show in Fig. 2.1 an illustration of the Man-

hattan network in Cartesian coordinate system, with origin denoted as O.

Without loss of generality, a typical receiver is placed at O. Then, instead

of modeling streets with fixed spacings in urban areas, we consider the loca-

tion of both the cross and parallel streets to be stochastic. We generate two

individual homogeneous Poisson point processes (PPP) as Ψx and Ψy, with
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Figure 2.1: An illustration of our proposed pathloss model under the Cartesian
coordinate system. Streets are represented by either x = xi (cross streets)
or y = yi (parallel streets). The F is the typical receiver, the diamond �
represents one typical BS, is a cross BS and 4 is a parallel BS. The red line
denotes the shortest propagation link of a parallel BS and the green line is the
shortest propagation path of a cross BS. The pathloss in decibel scale is added
up by the pathloss on each individual segments of the propagation path.

identical street intensity as λS. The streets are assumed to be either perfectly

horizontal or vertical in the given coordinate system. Under the current co-

ordinate system, we define the parallel streets as parallel to the x-axis, and⋃
yi∈Ψy

y = yi, and cross streets as perpendicular to x-axis, and
⋃
xj∈Ψx

x = xj,

where
⋃

represents the union of sets. By Slivnyak’s theorem [14], [33], the

typical street y = 0 is added to the process. In particular, we neglect the

street width in this thesis. BSs on the typical/cross and parallel streets are

also modeled as independent one-dimensional homogeneous PPPs, where we

assume that BS intensities on each street are identical, which is λB.

7



2.2 Sectorized antenna model

To leverage array gains, directional beamforming by multiple antennas

are performed at mmWave BSs. For simplicity, we assume the receiver has an

omni-directional antenna, and the BSs are equipped with Nt transmit anten-

nas. Fig. 2.2 illustrates the sectorized antenna model adopted in this thesis

[13], [28]. The beamwidth of the main lobe is θ and all the other directions

outside the main lobe are assumed to be in the side lobe. In addition, we

assume the antenna gains are identical G for all directions in the main lobe,

and the same as g for all the side lobe directions.

We denote the pointing direction of the center of antenna main lobe as

φ1, and the direction to the receiver from the BS as φ2. The receiver can either

be aligned with the main lobe when φ2 lies inside the main lobe, i.e., |φ2−φ1| <
θ
2
, or aligned with the side lobe, when |φ2−φ1| > θ

2
. In the analysis of mmWave,

uniformly beam angular distribution is widely accepted in pioneering work

of mmWave cellular network analysis with stochastic geometry [13, 17, 35],

which is also adopted in this thesis. Since the beamforming direction of the

BS is assumed to be uniformly distributed in φ1 ∼ uniform(0, 2π), we have

φ2 − φ1 ∼ uniform(0, 2π). Hence, the beamforming antenna gain G of one

typical BS with LOS visibility to the typical receiver can be formulated by

G(φ2 − φ1) = 1φ2−φ1∈(− θ
2
, θ
2

)G+
(

1− 1φ2−φ1∈(− θ
2
, θ
2

)

)
g. (2.1)

Since φ2 − φ1 ∼ uniform(0, 2π), the beamforming gain in (2.1) becomes

G = I(p)G+ (1− I(p))g, (2.2)
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where I(p) is the Bernoulli random variable with parameter p, with

p =
θ

2π
. (2.3)

For a uniform planar array (UPA), the main lobe gain can be approximated

by G = Nt, which is the maximum power gain that can be supported with Nt-

element antenna array. The side-lobe gain is approximated by g =

√
Nt−

√
3

2π
Nt sin

( √
3

2
√
Nt

)
√
Nt−

√
3

2π
sin

( √
3

2
√
Nt

)
[28].

Figure 2.2: An illustration of the simplified sectorized antenna pattern. The
example is drawn from a uniform linear array (ULA) with transmit antenna
number Nt = 8. We only consider the main lobes and the side lobes. Main
lobes and side lobes are assumed to have identical gain on different directions,
respectively denoted by G and g.
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2.3 Pathloss model

We adopt a pathloss model that is based on the Manhattan distance

instead of Euclidean distance. The model is similar to [26], but uses several

modifications to provide tractability. Ray tracing shows that in an urban

microcell, Euclidean distance might not be a dominant parameter in pathloss

modeling. Instead, the street orientation relative to the BS location, and the

absolute position of the BS and receiver are the key parameters to determine

the pathloss.

It is shown by the ray tracing results that to calculate the pathloss

of a propagation link in urban mmWave microcells, the pathloss on different

segments of the propagation paths should be added up, with an additional loss

when the waves couple into a new street canyon, in urban mmWave microcells.

We assume that there are in total M segments of the propagation paths, i.e.,

M − 1 corners along the propagation path where signal change directions.

Note that the value of M depends on the actual position of the BS and the

receiver. The individual length of the ith segment is denoted as di, the pathloss

exponent on the ith segment is αi, the corner loss at the corner of the ith the

street segment and i + 1th segment is ∆ (in decibel scale), where we assume

corner losses at different corners are identical.

We define the LOS segment as the first segment of the propagation

path from the BS and NLOS segment as the remaining segments on the prop-

agation path. We assume that LOS segments on different streets share the

same pathloss exponent αL, while the pathloss exponent for NLOS segments

10



is αN.

Considering the sectorized antenna model at the BS, in this thesis,

we redefine the pathloss as added by an extra beamforming gain besides the

distance-based large scale fading, as

PLdB = 10

(
αL log10 d1 + αN

M∑
i=2

log10 di

)
+ (M − 1)∆− GdB, (2.4)

where the last term GdB is the random beamforming gain of the sectorized

antenna model from (2.1) in decibel scale. With this Manhattan distance based

pathloss model, we can classify the BSs into three categories, as illustrated

in Fig. 2.1: i) BSs on the typical street (typical BSs) that have one direct

propagation path to the typical receiver; ii) NLOS BSs on the cross streets

(cross BSs) that have a propagation path consisting of a LOS segment (green

path d1) and NLOS segment (green path d2) to the typical receiver, and iii)

NLOS BSs on the parallel streets (parallel BSs) that have a propagation path

consisting of a LOS segment (red path d1) and two NLOS segments (red path

d2, d3). This pathloss model also bears a strong relationship to [36], which

considered the pathloss model in urban microcells where waves are coupled at

the street corners with different angles.

2.4 Signal-to-interference-plus-noise ratio (SINR)

SINR coverage analysis is important to determine outage holes and

ergodic throughput of the system. While these metrics in the context of

mmWave-based vehicular networks depend on both mobility and the block-
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age effects due to the vehicles, as mentioned before, in this thesis we simply

consider snapshots of the urban microcelluar network and look at the distribu-

tion of the instantaneous SINR. This approach is taken primarily to confirm

the analytic tractability of the pathloss model described in Section 2.3, which

captures the blockage and shadowing effects due to buildings and accounts for

the geometry of streets in an urban environment.

Based on the pathloss model in Section 2.3, there are three types of

BSs to analyze: typical/cross/parallel BSs. To formulate the SINR, we first

make the following assumption of the BS association rule.

Assumption 2.4.1. The receiver is associated to the BS with the smallest

pathloss, as defined in (2.4).

We use ΦT to denote the set of LOS link distances xT from the typical

BSs to the receiver. The set of lengths of the horizontal and vertical links,

xC (d1 in green) and yC (d2 in green), constituting the propagation path from

the cross BSs is denoted as ΦC. Similarly, ΦP is used to denote the set of

distances (xP, yP, zP) (d3, d2, d1 in red) corresponding to the propagation path

from parallel BSs (see Fig. 2.1). To simplify demonstration, we define the path

gain of the LOS and NLOS segment respectively as `L(x) and `N(x).

`L(x) = Gx−αL , (2.5)

and

`N(x) = cx−αN , (2.6)
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where x is the length of the propagation segment, G is the random beamforming

gain for each BS defined in (2.1). It should be noted that the beamforming gain

is added only to the LOS segment pathloss. This is based on the definition that

the LOS segment is the first path from the BS, hence with beamforming gain

included; the corner loss term c = 10−∆/10 in the total path gain expression is

also captured along with the propagation loss in the NLOS segment in (2.6),

with αN denoting the NLOS pathloss exponent.

Conditioning on the associated link gain as u, the SINR can be for-

mulated as follows, in terms of interference components, respectively from the

typical BSs IφT , cross BSs IφC and parallel BSs IφP ,

SINR =
hou

N0 + IφT(o) + IφC(o) + IφP(o)
, (2.7)

with IφT(o) =
∑
xiT∈Φ′T

hi`L(xiT), (2.8)

IφC(o) =
∑

(xiC,y
i
C)∈Φ′C

hi`N(xiC)`L(yiC), (2.9)

and IφP(o) =
∑

(xiP,y
i
P,z

i
P)∈Φ′P

hi`N(xiP)`N(yiP)`L(ziP), (2.10)

where ho is the small scale fading of the typical receiver from the associated

BS and hi is the small scale fading of the ith BS of the Poisson point processes.

Based on Assumption 2.4.1 and conditioning on the associated link gain

as u, we have the following constraints for the set Φ′T,Φ
′
C and Φ′P in (2.8) –

(2.10) as

Φ′T = {xT ∈ ΦT

∣∣∣`L(xT) < u}, (2.11)
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Φ′C = {(xC, yC) ∈ ΦC

∣∣∣`N(xC)`L(yC) < u}, (2.12)

and Φ′P = {(xP, yP, zP) ∈ ΦP

∣∣∣`N(xP)`N(yP)`L(zP) < u}. (2.13)

The above constraints are based on the strongest BS association rule in As-

sumption 2.4.1, all interfering BSs should have smaller path gain than u, which

leads to (2.8) – (2.10).

2.4.1 Analysis of strongest path

Though there could be multiple propagation paths to the typical re-

ceiver and the actual received power is the sum of received signal power from

different paths, to make the analysis tractable, we have the following assump-

tion.

Assumption 2.4.2. There is one unique path from any BS to the typical

receiver (for analysis), which provides the smallest pathloss (with beamforming

gain).

To be the strongest path, the path should have i) shorter individual

path segment lengths, ii) fewer individual segments, hence fewer corners and

smaller corner loss (pathloss is calculated by multiplying individual segment

pathloss and one extra multiplication might reduce the pathloss by orders of

magnitude), iii) larger beamforming gain. The strongest path analysis is not

straightforward when including the beamforming gain. For example, Fig. 2.3

and Fig. 2.4 demonstrate potential strongest paths of typical and cross BSs.

In each of the cases, there is one direct path which has fewer corners and
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Figure 2.3: An illustration of the strongest path of typical BSs.

Figure 2.4: An illustration of the strongest path of cross BSs.

Figure 2.5: An illustration of the strongest path of parallel BSs.
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one detoured path which detours its way before reaching the receiver. For

typical BSs, the detoured path has four more corners than the direct path;

while for the cross BSs, there are two more corners. Each corner introduces

an approximately extra 20dB loss, while is much more significant than the

effects compensated by the beamforming gain difference. Therefore, even if

the main lobe beam is pointing in the detoured path direction, the strongest

path should still be the direct path.

For the parallel BSs, one difference here is that both the detoured and

direct paths have two corners, which makes it hard to select out the strongest

path (see Fig. 2.5). In addition, the BS could either be in the same block as

the receiver or different block as the receiver, as shown in Fig. 2.5. The two

types of BSs show completely different selection rule of the strongest path.

For the same block BS, it is clear that the strongest path could either be the

green dashed line or the green solid line. For the different block BS, however,

the strongest path could traverse any of the cross BSs and could point either

left for right. To make the analysis tractable, we first make the following

assumption.

Assumption 2.4.3. For the strongest path of the parallel BSs, the signal trav-

els along the LOS segment (first segment of the path) in the direction towards

the receiver, rather than away from it.

With this assumption, to find the strongest path for the parallel BS at

different blocks as the receiver, we provide the following proposition.
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Proposition 1. The strongest propagation path from a parallel BS is via either

the cross street ΘR closest to the receiver or ΘB closest to the BS.

Proof. Conditioning on the location of the parallel BS, the segment yP and the

corner loss 2∆ of all propagation paths are the same, hence, the pathloss on

the vertical link and the two corner losses can be taken out while formulating

the following optimization problem.

Since G is a random variable taking values of G or g, as defined in (2.1),

we have G ≤ G. Hence, the maximum path gain of the parallel BS Gp can be

upper bounded by

GP ≤ G− 2∆− 10αN log10 yP + 10GM

≤ G− 2∆− 10αN log10 yP + 10 max {GM} . (2.14)

where

GM = −αN log10 xP − αL log10 zP. (2.15)

We then formulate the optimization problem of GM as

maximize
xP,zP∈(0,W )

− αN log10 xP − αL log10 zP

subject to xP + zP = W
(2.16)

The objective function can be expressed as P (x) = −αN log x − αL log(W −

x) , x ∈ (0,W ), whose second order derivative is

P ′′(x) =
αN

x2
+

αL

(W − x)2
, (2.17)
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The second order derivative of P (x) is positive for all αL, αN, and W , which

means P (x) is convex. Denoting the distance from ΘR to the receiver as x1

and the distance from ΘB to the BS as x2, and using the convexity of P (x),

we have

P (λx1 + (1− λ)x2) < λP (x1) + (1− λ)P (x2)

< max {P (x1), P (x2)} ∀λ ∈ (0, 1) and x1, x2 ∈ (0,W ). (2.18)

In (2.18), P (λx1 + (1 − λ)x2) parameterizes all path gains of the propaga-

tion paths via any cross street lying between ΘR and ΘB. From the second

inequality in (2.18), all these propagation paths have smaller path gain than

that going through the streets specified in this proposition, which concludes

the proof.

Since the pathloss exponent of the segment zP is αL and that of the

segment xP is αN, with αL < αN, it is intuitive that the strongest path is more

likely to be via the street closest to the receiver, i.e., ΘR.

To conclude the discussion on the uniqueness of the propagation path in

the system model considered in this thesis, we demonstrated that for both the

typical and cross BSs, the propagation path is unique and also easy to identify

based on the strongest path gain association criterion. For the parallel BS,

irrespective of whether the BS is located in the same block as the receiver,

there are only two potential paths to be the strongest, and for analysis, we

choose the path which traverses the cross street that is closest to the receiver.
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Chapter 3

Coverage Analysis

In this section, we compute the coverage probability of a typical receiver

in the MPLP microcellular network. First, we explain the independent thin-

ning of the BSs considering the sectorized beam pattern of the mmWave BSs.

Then, we analyze the CDF of the associated link path gain based on strongest

BS association rule in Assumption 2.4.1. In addition, we derive an accurate

and concise expression of the coverage probability. Finally, we examine the

effects of LOS and NLOS interference in MPLP network.

3.1 Independent thinning of BSs

Based on the sectorized antenna model in Section 2.2, the BSs are

thinned with probability pT and 1− pT, respectively, which then generate two

independent Poisson point processes of BSs with antenna gain of G and g

respectively. After the independent thinning, the densities of the independent

thinning of BSs with antenna gain of G and g are respectively

λb = pTλB and λ̄b = (1− pT)λB. (3.1)

For typical and cross BSs, the thinning probability is pT = p, which is the

probability that the receiver lies inside the main lobe, as defined in (2.3). This
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is based on the analysis of the strongest path in Section 2.4.1. For the typical

BSs, the thinning probability is obvious; for the cross BSs, we assume only the

BSs that are pointing towards the corner aligned with the typical street have

beamforming gain as G. Hence, typical and cross BSs have identical thinning

probability.

For the parallel BSs, as is shown in Section 2.4.1, we provide an ap-

proximation by bounding the path gain of the parallel BS GP by assuming all

of the parallel BSs’ main lobe beams are pointing towards receiver, i.e., we

assume all of the parallel BSs have beamforming gain as G. Hence, the result

of the thinning probability simply reduces to pT = 1.

3.2 Distribution of associated link gain

To simplify SINR coverage analysis, we assume all links experience

independent and identically distributed (I.I.D.) Rayleigh fading with mean 1,

h ∼ exp(1). We denote the normalized transmit power PB = 1 and represent

the noise by N0. Since the SINR expression in (2.7) is conditioned on the

associated link gain u, we first analyze the distribution of u. Based on the BS

association law in Assumption 2.4.1, the receiver can be associated to either

a typical/cross or parallel BS. The following lemma provides the cumulative

density function (CDF) of the largest gain from the typical/cross/parallel BS

respectively.

Lemma 3.2.1. The CDFs of the largest gain of the typical BSs

u1 = max(xT∈ΦT){`L(xT)}, cross BSs u2 = max(xC,yC)∈ΦC
{`N(xC)`L(yC)} and
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parallel BSs u3 = max(xP,yP,zP)∈ΦP
{`N(xP)`N(yP)`L(xP)} are given or bounded

by

FuT(u) = exp
(
−γTλBu

− 1
αL

)
, (3.2)

FuC(u) = exp

(
−γCλ

αL
αT
B u

− 1
αN

)
, (3.3)

FuP(u) & 2λS

√√√√2γPλ
αL
αN
B u

− 1
αN

λS

K1

(
2

√
2γPλSλ

αL
αN
B u

− 1
αN

)
, (3.4)

where

γT = 2pTG
1
αL + 2(1− pT)g

1
αL , (3.5)

γC = 2λSγ
αL
αN
T c

1
αN Γ

(
1− αL

αN

)
, (3.6)

γP =
γC2

αL
αNG

1
αN c

1
αN

γ
αL
αN
T

, (3.7)

and K1(·) is the 1-st order modified Bessel’s function of the second kind [37].

Proof. Denote the PPP of the BSs on typical street with gain G as ΨT and

with gain g as Ψ̄T, then the CDF of the largest channel gain from BSs on the

typical street is

FuT(u) = P
(

max

{
max
x∈ΨT

Gx−αL ,max
x∈Ψ̄T

gx−αL

}
< u

)
(a)
= P

(
max
x∈ΨT

Gx−αL < u

)
P
(

max
x∈Ψ̄T

gx−αL < u

)
= P

(
min
x∈ΨT

x > G
1
αL u

− 1
αL

)
P
(

min
x∈Ψ̄T

x > g
1
αL u

− 1
αL

)
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(b)
= exp

(
−2
(
λbG

1
αL + λ̄bg

1
αL

)
u
− 1
αL

)
(c)
= exp

(
−2λB

(
pTG

1
αL + (1− pT)g

1
αL

)
u
− 1
αL

)
, (3.8)

where (a) and (c) follows from the independent thinning of BSs on the typical

street of BSs with different antenna gains, (b) is based on the distribution of

closest distance to one fixed point of one-dimensional PPP with intensity λ,

and min{x} follows an exponential distribution, with parameter, min{x} ∼

exp (2λ).

Similarly, for the CDF of the largest channel gain from the BSs on the

cross streets, we consider the BSs with antenna gain as G first as

FuGC (u) = EΦC

(xC,yC∈ΦC)∏
P
(
x−αN

C y−αL
C cG < u

)
= EΦC

(xC,yC)∈ΦC∏
P
(
x−αN

C min(yC)−αLcG < u
)

(a)
= EΦC

[
xC∏

exp

(
−λBγTx

−αN
αL

C c
1
αL u

− 1
αL

)]
(b)
= exp

(
−2λS

∫ ∞
0

1− exp
(
−λBγTx

−αN
αL c

1
αL u

− 1
αL

)
dx

)
= exp

(
−γCλ

αL
αN
B u

− 1
αN

)
, (3.9)

where (a) follows the void probability of the PPP and (b) is based on the prob-

ability generating functional (PGFL). Hence, by the independent thinning, the

proof is concluded.

Here, we provide a lower bound of the CDF of the associated link path

gain, where the lower bound is achieved when we assume the strongest path
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has beamforming gain G. Also, from the demonstration in Section 2.4.1, the

strongest path is always via the cross street closest to the receiver. Based on

this assumption, the lower bound of the CDF can be derived as

FuP(u) & P

(xP,yP,zP)∈ΦP⋂
x−αN

P y−αN
P z−αL

P c2G < u


= ExP

{
yP∏

exp

(
−2λBG

1
αL u

− 1
αL c

2
αL x

−αN
αL

P y
−αN
αL

P

)}

= ExP
{

exp

(
−γPλ

αL
αN
B x−1

P

)}
=

∫ ∞
0

2λS exp

(
−γPλ

αL
αN
B x−1 − 2λSx

)
dx

= 2λS

√√√√2γPλ
αL
αN
B u

− 1
αN

λS

K1

(
2

√
2γPλSλ

αL
αN
B u

− 1
αN

)
, (3.10)

where
⋃

denotes the intersection of all of the events defined in the set (xP, yP, zP) ∈

ΦP, and the last equation follows from the equation [37].∫ ∞
0

exp

(
β

4x
− γx

)
dx =

√
β

γ
K1

(√
βγ
)

(3.11)

by simple calculate, we can conclude the proof.

Based on properties of the modified Bessel function, when the argument

µ of K1(µ) becomes small, we can approximate it as [38]

K1(µ) ∼ µ−1. (3.12)

Since γP scales with λSλ
αL
αN
B , which is generally very small, we have γP � 1.

Hence, the argument γPλ
αL
αN
B inside the modified Bessel function in (3.4) is also
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negligible. The corner loss term c
1
αN further reduces the value to a large extent,

so that (3.12) applies. Consequently, we can approximate (3.4) as

FuP(u) ≈ 2λS

√√√√2γPλ
αL
αN
B u

− 1
αN

λS

(
2

√
2γPλSλ

αL
αN
B u

− 1
αN

)−1

= 1, (3.13)

which implies that generally the largest gain from a parallel BS is very small,

that is, the probability of associating with a parallel BS is negligible.

Using Lemma 3.2.1, the distribution of the associated link path gain

U = max {uT, uC, uP} can be evaluated as

FU(u) = P (max{uT, uC, uP} < u)

(a)
= P (max{uT} < u)P (max{uC} < u)P (max{uP} < u)

(b)
≈ exp

(
−γTλBu

− 1
αL

)
exp

(
−γCλ

αL
αN
B u

− 1
αN

)
, (3.14)

where (a) is based on the fact that the locations of the typical/cross/parallel

BSs are mutually independent, (b) follows the results of Lemma 3.2.1 that the

association with parallel BSs is negligible.

We then give the parameters used in this thesis in Table 3.1. The

simulation parameters are applicable to all of the following simulation results,

unless stated otherwise.

Fig. 3.1 compares the numerically evaluated CDF of the associated

link gain of association only with typical BSs, with typical/cross BSs and

considering all association cases, against the theoretical result given in (3.14).

It is seen that the analytic result matches well with the numerical result. It
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Table 3.1: Simulation Parameters
PARAMETERS VALUES

UPA Antenna Number Nt 8× 8

LOS Pathloss Exponent αL 2.5
NLOS Pathloss Exponent αN 7

Corner Loss ∆ 20dB
Intensity of Street λS 0.01
Intensity of BS λB, 0.01

can also be seen that the empirical CDF curves obtained with and without the

association with the parallel BSs coincide. This verifies the analysis in Lemma

3.2.1 and the subsequent approximation for largest gain seen by parallel BSs.

Also, the curve shows that the cross BSs association is very small compared

to the typical BSs association.

3.3 Coverage probability

In this section, we derive a closed-form expression for the coverage

probability pc(u, T ) conditioned on the associated link gain as u. The coverage

probability conditioned on u is defined as

pc(u, T ) = P (SINR > T |u) . (3.15)

Using (2.7) – (2.10), (3.15) can be expanded in terms of the Laplace transforms

of interference and noise as follows.

pc(u, T ) = P
(
h > Tu−1(N0 + IφT(o) + IφV(o) + IφH(o))

)
(a)
= exp(−Tu−1N0)LIφT

(Tu−1)LIφC+IφP
(Tu−1), (3.16)
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Figure 3.1: Comparison of analytic and numerical associated link gain distri-
bution. The black dashed line represents the association with only the typical
BSs, the red solid line is the CDF considering association with both typical and
cross BSs, and the black solid line is the result of considering all association
cases. The red circle and black circle respectively denote the analytic result
of CDF of associated gain with only typical BS association and typical/cross
BS association.

where (a) is based on the assumption of i.i.d. Rayleigh fading channels, and

L(·) is the Laplace transform (LT) of random variable (·). Note that we cannot

completely decouple the interference terms since the propagation links from

the cross and parallel BSs share the same path segments thus making their

individual interference not independent. To analyze the problem, we start

with examining the parallel BS interference.

Proposition 2. A lower bound of LT of the interference from the parallel BSs
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IφP is

LIφP
(T, u) & 2λS

√
2γP (λB%(T ))

αL
αN u

− 1
αN

λS

×K1

(
2

√
2γPλS (λB%(T ))

αL
αN u

− 1
αN

)
≈ 1, (3.17)

where γP is defined in (3.5), and

%(T ) =

∫ ∞
1

1

1 + T−1µαL
dµ. (3.18)

Proof. The LT of the parallel BS is similar, and is given as follows.

LIφP
(Tu−1)

= EφP

exp

− ∑
(xP,yP,zP)∈ΦP

Tu−1hx−αN
P y−αN

P z−αL
P c2G


(a)
= ExP

{
yP∏

exp
(
−2λBG

1
αL %(T )u

− 1
αL c

2
αL (xy)

−αN
αL

)}
(b)
= ExP

{
exp

(
−γP%(T )

αL
αN λ

αL
αN
B x−1

P

)}
=

∫ ∞
0

2λS exp

(
−γP%(T )

αL
αN λ

αL
αN
B x−1 − 2λSx

)
dx

= 2λS

√√√√2γP%(T )
αL
αN λ

αL
αN
B

λS

K1

(
2

√
2γP%(T )

αL
αN λ

αL
αN
B

)
, (3.19)

where (a) and (b) follow the traditional procedures in analysis of stochastic

geometry and are similar to the proof of Laplace transform of IφT and IφC

above.
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Since the LT of the parallel interference evaluates to 1 approximately,

which indicates that the interference from parallel BSs is small enough to be

neglected, i.e., IφP ≈ 0. Hence, the coverage probability in (3.20) can be

reformulated as

pc(u, T ) = exp(−Tu−1N0)LIφT
(Tu−1)LIφC

(Tu−1), (3.20)

which is derived in the following Theorem.

Theorem 3.3.1. The coverage probability conditioned on the channel gain u

of the associated link is

pc(u, T ) = exp(−β1u
−1) exp(−β2λBu

− 1
αL ) exp

(
−β3λ

αL
αN
B u

− 1
αN

)
, (3.21)

where

β1 = TN0, β2 = γT%(T ), β3 = γC%(T )
αL
αN , (3.22)

and %(T ) is defined in (3.18).

Proof. We respectively give the LT of the typical and cross interference IφT ,

IφC . The LT of the typical BS interference LIφT
(s) with beamforming gain as

G can be given by

LIφT
(s) = E

[
exp

(
−s

∑
xT∈ΦT

hx−αL
T

)]

= exp

(
−2λb

∫ ∞
( uG)

− 1
αL

E
(
1− exp

(
−sGhx−αL

T

)))

= exp

(
−2λb

∫ ∞
( uG)

− 1
αL

1

1 + s−1G−1xαL
T

dxT

)
. (3.23)
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Then plugging in s = Tv−1 and by change of variables µ = x
(
u
G

) 1
αL the result

can be simplifed by

LIφT
(s) = exp

(
−γTλBu

− 1
αL

∫ ∞
1

1

1 + T−1µαL
dµ

)
. (3.24)

The LT of the NLOS interferers on cross streets with beamforming gain G

follows the similar proof above and proof of IφT , which is

LIφC
(s) = E

exp

− ∑
(xC,yC)∈ΦC

shx−αN
C y−αL

C cG


= E

[∏
xC

exp

(
−γTλBx

−αN
αL

C u
− 1
αL c

1
αL %(T )

)]

= exp

(
−2λS

(
γTλBc

1
αL %(T )

) αL
αN Γ

(
1− αL

αN

)
u
− 1
αN

)
. (3.25)

Using Theorem 3.3.1 and the distribution of the associated link path

gain in (3.14), the SINR coverage probability can be evaluated as

Pc(T ) =

∫ ∞
0

pc(u, T )fU(u)du, (3.26)

where pc(u, T ) is provided in (3.21), and the probability density function

(PDF) fU(u) can be obtained from the CDF derived in (3.14).

3.3.1 The effect of LOS and NLOS interferers

In Proposition 2, we showed that the parallel BSs interference can be

neglected in the analysis. In this section, we further compare the effects of
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typical interference IφT and cross interference IφC . For tractable analysis, we

assume the receiver is associated to the typical BS, so that we can have simpler

associated link gain distribution. The analysis is based on the application of

Jensen’s inequality to the individual LT of IφT and IφC .

From Theorem 1, the LT of the interference of BSs on the typical street

is LIφT
(T, u) = Eu

[
exp

(
−β2λBu

− 1
αL

)]
and the LT of the interference due to

the NLOS BSs on the cross streets is LIφC
(T, u) = Eu

[
exp

(
−β3

(
λBu

− 1
αL

) αL
αN

)]
.

Define two convex functions ϕ1(u) = exp(−u) and ϕ2(u) = exp(−u
αL
αN ). Since

we assume the BS is associated to the typical BS in this case, the CDF of the

associated link path gain u becomes

F (u) = exp
(
−γTλBu

− 1
αL

)
. (3.27)

By change of variables, we can obtain

Eu
[
u
− 1
αL

]
=

1

γTλB

, (3.28)

hence, by Jensen’s inequality, the lower bound of LIφT
(T, u) becomes

LIφT
(Tu−1) ≥ LLB

IφT
(T, u) = exp

(
−β2

γT

)
= exp (−%(T )) . (3.29)

Similarly, we have

Eu
[
(λBu

− 1
αL )

αL
αN

]
=

(
1

γT

) αL
αN

Γ

(
1 +

αL

αN

)
, (3.30)

with the lower bound of LIφC
(Tu−1) evaluated as

LLB
IφC

(Tu−1) = exp

(
−
(

1

γT

) αL
αN

β3Γ

(
1 +

αL

αN

))

30



= exp

(
−2λSc

1
αN Γ

(
1− αL

αN

)
Γ

(
1 +

αL

αN

)
%(T )

αL
αN

)
. (3.31)

Note that the argument inside (3.31) scales with λS and c
1
αN , which makes the

inside argument very small, therefore, it holds

LLB
IφT

(Tu−1)� LLB
IφC

(Tu−1) ≈ 1. (3.32)

From (3.31), it can be seen that the lower bound of LT of IφC scales

exponentially with β3 = γC%(T )
αL
αN , which further scales with λSc

1
αN . This leads

to an intuitive insight that when the street intensity increases, the effects by

cross BS interference grow larger. It should be noted from (3.32), that the

cross BS interference is very small compared to typical BSs. And generally,

the cross interference can be neglected, with a relatively large corner loss ∆.

Fig. 3.2 gives a comparison between the analytic and simulation re-

sults of the coverage probability when considering no interference (noise only),

considering interference from only typical BSs, and both typical and cross BS

interference, and all of the interference. It is shown that the coverage prob-

abilities with and without the parallel BSs completely coincide. This verifies

the corresponding proof in Proposition 2 that the parallel interference can

be neglected. It can also be observed that the cross BS interference is also

negligible compared to the typical BS interference, which is demonstrated in

the Jensen’s inequality lower bound analysis in (3.29) and (3.31). We set the

corner loss in the simulation as ∆ = 20dB, and in this setting, we can con-

clude that under the Manhattan distance based pathloss model, the NLOS
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interference (from cross/parallel BSs) is negligible. It will also be shown in

Section 3.4 that with the corner loss ranging from 30dB to 0dB (no shadowing

loss case), the coverage probability does not vary significantly. This indicates

that whatever the corner loss is, the NLOS interference is always very small

compared to the LOS interference.
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Figure 3.2: Comparison of the numerical and analytic coverage probability.
The black/red/blue solid lines respectively represent the coverage probability
considering only typical BS interference, both typical and cross BS interfer-
ence and all interference. The black dashed line is the coverage probability
simulated considering noise only. Red circles are the analytic expression of
coverage probability in (3.21) – (3.26) considering interference from typical
and cross BSs.
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3.4 Scaling Laws with Network Densities

In this section, we analyze the scaling laws of the coverage probability

and the association probability with the network densities, i.e., street inten-

sity λS and BS intensity λB. We apply tight approximations to the relevant

metrics and reveal interesting interplays of the performance with the network

deployment.

3.4.1 Scaling laws with coverage probability

The coverage probability serves as an important metric in evaluating

system performance, since it is closely related to ergodic rate and throughput

outage. In this section, we focus on answering the following questions: i)

how densely should BSs be deployed in urban streets to maximize coverage at

a minimum cost? ii) how does the coverage probability change for different

densities in different cities?

3.4.1.1 Scaling law with BS intensity

The interference limited scenario targets an asymptotic case, where the

noise can be neglected and thus focus fully on the interplay between network

intensities. This scenario can either be achieved by very high BS intensity or

by very dense streets deployment.

Based on the coverage probability given in (3.21) and (3.22), after ne-

glecting the noise term and changing variables by x = λBu
− 1
αL , the expression
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Figure 3.3: Asymptotic behavior of coverage probability with large BS inten-
sity λB. Solid red, green and blue curves are respectively the coverage proba-
bility under different street intensities, λS = 0.1, 0.01 and 0.001. Dashed curves
represent the analytic asymptotic value of the coverage probability when BS
intensity grows very large.

of the coverage probability becomes

Pc(T ) =

∫ ∞
0

exp (−(β2 + γT)x) exp
(
−(β3 + γC)x

αL
αN

)(
γT +

γCαL

αN

x
αL
αN
−1

)
dx,

(3.33)

where β2, β3, γT and γC are provided in Section 3.

Under the modeling of BSs as PPPs and the Manhattan distance pathloss

model, one interesting observation from (3.33) is that the coverage probability

is independent of the BS intensity. On one hand, when both street and BSs

intensities grow very large, it is intuitive that with ultra dense deployment of

BSs, i.e., λB →∞, both the associated path gain and interference become very

large, and their effects on the coverage probability cancel out, which leads to
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an asymptotic value of the coverage probability. On the other hand, when only

the street intensity itself grows very large, the scenario could also be interfer-

ence limited. In this case, the coverage probability is still a constant, however

densely the BSs are deployed. This reveals an important insight that when

street intensity grows large, the increase of coverage probability by deploying

denser BSs is less significant. We plot Fig. 3.3 to demonstrate the above two

observations in an ultra-dense network where intensity of BS grows very large.

First, it is shown that from approximately λB = 0.05 (BS spacing of 20m)

for different street intensities, the coverage probability starts to converge to

the asymptotic value. Second, with denser street distribution (e.g., λS = 0.1,

red curve), the increase of coverage probability is less prominent. Also, denser

street distribution leads to lower asymptotic coverage probability.

3.4.1.2 Scaling law with street intensity

In the last section, we demonstrated the impact of different city streets

(with different intensities) on the coverage probability enhancement. Next, we

reveal the relationship between the coverage probability and the urban street

intensity. One important thing to note is that in the dense street case, the

street intensity λs is not arbitrarily large, where the most dense street might be

at least 20m spacing, with λS = 0.05. We provide the following proposition to

quantify how the coverage probability changes under different street intensities

and prove it herein.

Proposition 3. 1) When the BS intensity λB is large, the coverage probability
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decreases linearly with the street intensity λS. 2) When λB is small, the

coverage probability increases linearly with λS.

Proof. In terms of the linear scaling law and its dependence on the BS intensity,

we provide the following steps of the proof:

Linear scaling law First, from (3.21) – (3.26), the coverage probability can

be rewritten as

Pc(T ) = P1 + P2, (3.34)

where

P1 =

∫ ∞
0

exp
(
−β1u

−1
)

exp
(
−(β2 + γT)λBu

− 1
αL

)
× exp

(
−(β3 + γC)λ

αL
αN
B u

− 1
αN

)(
λBγT

αL

u
− 1
αL
−1

)
du, (3.35)

and

P2 =

∫ ∞
0

exp
(
−β1u

−1
)

exp
(
−(β2 + γT)λBu

− 1
αL

)
× exp

(
−(β3 + γC)λ

αL
αN
B u

− 1
αN

)(
γC

αN

λ
αL
αN
B u

− 1
αN
−1

)
du. (3.36)

We then rewrite the second part in (3.36), by integration by parts, as

P2 =
γC

γC + β3

∫ ∞
0

exp
(
−β1u

−1
)

exp
(
−(β2 + γT)λBu

− 1
αL

)

×
∂

[
exp

(
−(β3 + γC)λ

αL
αN
B u

− 1
αN

)]
∂u
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=
γC

γC + β3

− γC

γC + β3

∫ ∞
0

exp

(
−(β3 + γC)λ

αL
αN
B u

− 1
αN

)

×
∂
[
exp (−β1u

−1) exp
(
−(β2 + γ1)λBu

− 1
αL

)]
∂u

. (3.37)

In both (3.37) and (3.35), only β3 = ζ1λS, and γC = ζ2λS depend on λS.

Further, β3 scales linearly with γC, which itself is very small due to the terms λS

and c
1
αN . Then, by applying a first-order Taylor approximation exp(−x) ≈ 1−

x to exp

(
−(β3 + γC)λ

αL
αN
B u

− 1
αN

)
≈ 1−λs(ζ1+ζ2)λ

αL
αN
B u

− 1
αN in (3.35) and (3.37),

we can see P1 and P2 scale linearly with λS, hence proving the linear scaling

law of coverage probability with λS. Fig. 3.4 compares the exact coverage

probability in (3.34) and that with Taylor approximation. It is shown that

under different street intensities λS = 0.001, 0.01, 0.02, the exact results match

well with the Taylor approximations. This verifies the accuracy of using Taylor

approximation to prove the linear scaling law. Another observation here is

when the street density is relatively small, e.g., λS = 0.001, the coverage

probability is insensitive to the NLOS pathloss exponent αN, since the coverage

almost remains a constant with αN ranging from 3 to 10. When streets become

dense, the coverage probability decreases faster with growing αN. This is

consistent with the fact that αN only affects pathloss of the NLOS links.

Dependence on BS intensity To demonstrate the different scaling laws of

coverage probability with BS intensities, we take out the components in (3.33),
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which are dependent on λS of the integral, and define it as Υ(λS), which is

Υ(λS) = exp

(
−λS (ζ1 + ζ2)λ

αL
αN
B u

− 1
αN

)λBγT

αL

u
− 1
αL
−1

+
λsζ2λ

αL
αN
B

αN

u
− 1
αN
−1

 ,

(3.38)

the derivative of which is

Υ′(λS) =
λ
αL
αN
B

αN

u
− 1
αN
−1

exp

(
−λS (ζ1 + ζ2)λ

αL
αN
B u

− 1
αN

)

×

ζ2 − (ζ1 + ζ2)αN

γTλB

αL

u
− 1
αL +

λSζ2λ
αL
αN
B

αN

u
− 1
αN

 . (3.39)
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Figure 3.4: Comparison of the exact and Taylor approximation of coverage
probability. Solid blue curves plot exact coverage probability in Theorem 3.3.1
under different street intensities, i.e., λS = 0.02, 0.01 and 0.001. The blue stars
are the exact coverage probability and the red dashed curves are the Taylor
approximations to (3.35) and (3.37).
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Since the exponential part from (3.39) is always positive, and ζ2 and ζ1

are independent of λB, it is clear that there exists a threshold λ∗B, satisfying

γTλ
∗
B

αL

u
− 1
αL +

λSζ2λ
∗
B

αL
αN

αN

u
− 1
αN =

ζ2

(ζ1 + ζ2)αN

. (3.40)

Hence, when λB > λ∗B, Υ′(λS) < 0, which indicates when intensity of BSs

grows large, coverage probability decreases with λS. Also, when λB < λ∗B,

denser streets lead to higher coverage probability.

Fig. 3.5 illustrates the linear scaling of the coverage probability with

the intensity of streets λS. It first can be observed that the coverage proba-

bility scales linearly with the intensity of streets, and the coverage probability

increases with λS while decreases with corner loss ∆, when the BS intensity

is relatively small λB = 0.01. Also, the coverage probability decreases with

λS with large BS intensity λB = 0.1, while it increases with corner loss in the

meantime. This implies that when the BS deployment is dense, interference

becomes dominant and larger corner loss reduces the interference; when BSs

are relatively sparse, small corner loss strengthens the signal from the cross

BSs, thus making the associated link received power stronger and enhancing

the coverage probability. Also, it can be observed that when the corner loss

becomes small (e.g., the no shadowing loss case ∆ = 0dB), the coverage prob-

ability becomes more sensitive to the change of street intensities, which is

shown by a larger slope of the curve of coverage probability. This is because

the smaller corner loss makes the cross BS interference more prominent, thus

increasing the sensitivity of coverage probability to the street intensities.
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Figure 3.5: Scaling of coverage probability with different street intensity λS.
Comparison is made between sparse/dense BS intensities λB = 0.01, 0.1 and
different corner losses, considering no corner shadowing loss and very severe
corner loss cases ∆ = 0, 10, 20, 30dB.

It is clear from Section 3.4.1.2 that the microcellular network does

not work efficiently in a scenario where both BS and street intensities are

very large. When the BSs are very sparse on each street, increased street

intensity makes it more likely to be associated with a BS on cross streets,

thus leading to a larger associated path gain. When λB grows large, however,

the system becomes interference-limited, thus denser streets only contribute to

more interference and lower the coverage probability. This sheds light on how

to deploy BSs more efficiently under different street intensities. Specifically,

when the streets are very dense, relatively sparse BSs should be deployed since

coverage probability increases more slowly with more BSs; when the streets are
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sparse, we could deploy denser BSs to enhance coverage probability (however,

too many BSs are inefficient due to the asymptotic behavior of coverage in

ultra-dense network).

3.4.2 Scaling law with BS association

In this section, we analyze the BS association under the Manhattan

distance based pathloss model in MPLP. We start with the analysis of associ-

ation probability. Given the CDF of the associated link path gain in Section

3.2, we derive the probability the receiver is associated with a LOS BS on the

typical street.

Corollary 3.4.0.1. The probability χT that the receiver is associated with a

typical BS is

χT
(a)
= Eu

{
P
(
uC < u

∣∣∣uT = u
)}

= EuT {P (uC < uT)}

(b)
=

∫ ∞
0

exp

(
−γCλ

αL
αN
B u

− 1
αN − γTλBu

− 1
αL

)
γTλB

αL

u
− 1
αL
−1
du

(c)
= γT

∫ ∞
0

exp
(
−γCx

αL
αN − γTx

)
dx, (3.41)

where (a) is conditioned of maximum path gain of typical BSs is u, (b) is based

on the CDF of the maximum path gain of typical/cross BSs, (c) follows by

change of variables x = λBu
− 1
αL .

Since the argument of the second exponential function in (3.41) is the

multiplication of λS and an additional attenuation of corner loss, the argument

inside tends to be very small. Similar to the approximation in Section 3.4, we
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approximate the association probability by

χApprox
T =

∫ ∞
0

exp (−µ)

1− ζ2

γ
αL
αN
T

λSµ
αL
αN

 dµ

= 1− 2
αL
αN

+1
γC

γ
αL
αN
T

[
sinc

(
αL

αN

)]−1

λS, (3.42)

where sinc(x) = sinπx
πx

. Because the sinc function monotonously decreases with

x (0 < x < 1), the association probability with a typical BS decreases with αL.

Fig. 3.6 shows the comparison of the exact association probability in (3.41)

and the approximation results in (3.42). The approximation in (3.42) is tight

when there exists corner loss ∆ = 20dB, while the gap increases in the no

shadowing case. There exists a linear scaling law for the association proba-

bility with the street intensity in the scenarios with significant shadowing loss

at corner, which is shown in Fig. 3.6. Different from αN which only impacts

on the NLOS BS pathloss, the LOS pathloss exponent αL is involved in both

the calculation of typical/cross BS pathloss. The decrease of LOS association

probability with larger αL implies that the LOS link pathloss is more sensitive

to the changing pathloss exponents. Also, it is intuitive that the increase of αN

enhances the association probability since it further attenuates the transmit

signal from cross street BSs. It should be noted that it is meaningful to exam-

ine the interplay between the coverage probability and these exponents values,

since the pathloss exponent in reality is not fixed (we extract two reasonable

parameters for the ease of analysis in this thesis), but is a random variable

varying from streets to streets [26]. The interplay of pathloss exponents and
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LOS probability sheds light on the different BS association behaviors on dif-

ferent streets in an urban area.
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Figure 3.6: Illustration of the association probability with an optically LOS
BS. The solid lines represent the simulation result and the dashed lines are
the approximations in (3.42).

In addition, from (3.42) there is a linear scaling law of LOS association

probability with the intensity of cross streets in Fig. 3.6. Also, it should be

noted that with the corner shadowing loss, even in an extremely dense street

network, e.g., λS = 0.1, the association probability with typical BSs χT is

still greater than 0.8. Only when in the case with no shadowing loss, the

association probability χT decreases significantly the street intensity λS. The

above association probability analysis illuminates another important observa-

tion that considering shadowing loss at a reasonable value, cross BSs play a

very minor role in BS association under the Manhattan distance based mi-
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crocellular pathloss model. Similar effects on coverage probability have been

demonstrated in Section 3.3.

Hence, we can make the following conclusions about the BS associa-

tion. First, the BS association probability is independent of the BS intensities.

Second, the association probability decreases linearly with the intensity of the

cross streets. Also, LOS association is less likely when the LOS pathloss ex-

ponent αL increases.

44



Chapter 4

Comparison of Different Street Models

In this section, we compare the ergodic rate under three different street

models. The MPLP street modeling in this thesis, fixed grid model (fixed

spacing between streets) and realistic street deployments in Chicago. The raw

street data is obtained OpenStreetMap powered by open source software and

Figure 4.1: A snapshot of part of Chicago area from OpenStreetMap (Lati-
tude: 41.762N - 41.78N, Longitude: -87.678W →- 87.658W), with a size of
1.659×2.002 (km2).

[29], [?]. The simulated area is a part of Chicago given in Fig. 4.1, and map
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Figure 4.2: Streets abstracted from OpenStreetMap by QGIS. The red points
are the intersections obtained from QGIS and the plot is obtained by lining
up the intersections that has one common intersected street.

exported to Matlab is plotted in Fig. 4.2.

The comparison of the ergodic rate under the three models is given

in Fig. 5.1. From this figure, it is clear that the capacities are very close

under these different street models, which nearly coincide. Also, compared

to the fixed grid model, which is widely adopted in Manhattan-kind urban

street modeling, the MPLP model has the merit of yielding fairly tractable

analysis. Its accuracy and tractability hence make MPLP a strong candidate

in modeling urban street networks.
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Chapter 5

Conclusion

In this thesis, we proposed a mathematical framework to model a

Manhattan-type microcellular network under the urban mmWave communi-

cation system by stochastic geometry. We first analyze the distribution of the

path gain to the BS. We then derive an exact yet concise expression of the

coverage probability. The LOS interference from the BSs on the same street

as the serving BS is the dominating factor in determining the coverage proba-

bility, while BSs on cross and parallel streets have insignificant effects. It was

shown that in the ultra-dense network where intensity of BSs grows large,

the network is interference-limited and the coverage probability ap-

proaches an asymptotic value. Also, the coverage probability scales linearly

with the intensity of streets, and displays an interesting interplay with the

BS intensity: i) when BS deployment is dense, coverage probability decreases

with street intensity; ii) when BS intensity is small, the coverage probability

increases with street intensity. This implies that the system does not work

efficiently when both BS and street intensities are very large. Therefore, there

is no need to deploy many BSs in an already dense urban street environment.

In addition, we showed that the LOS BSs still dominate the performance of the
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Figure 5.1: Comparison of ergodic rate among MPLP street modeling, fixed
grid model and real streets obtained from Chicago city.

whole system, from the perspective of both BS association, as well as cover-

age. Also, it was shown that the probability that a receiver associates to LOS

BSs is independent of the intensity of BSs, while it decreases linearly with the

intensity of streets. Further, the LOS link is more sensitive to the change of

propagation environments, i.e., the change of LOS pathloss exponent. Finally,

we numerically compared the ergodic rates under MPLP, fixed spacing and a

realistic Chicago street model. It was shown that the ergodic rate under these

street models match well, reinforcing the validity of MPLP as a realistic yet

accurate urban street model.
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