Abstract

State Departments of Transportation, including the Texas Department of Transportation (TxDOT), have been moving towards the development and implementation of pavement management systems that would enable monitoring of the performance of their roadways, as well as assist transportation officials with maintenance budget allocation and planning decisions. Various attempts made in the past focused on using the available performance databases as well as state-of-the-art concepts for the development of such systems. The unique characteristics of Texas, the most prominent of which is the vast size of the managed pavement network—79,696 centerline miles of highways including 49,829 bridges—have made some of the decision-support models and/or algorithms a challenge to implement. This report presents a new approach to the development of such a decision-support system with its focus on maintenance management for TxDOT. The new system is web-based and provides functional capabilities that allow transportation officials and engineers to make informed decisions regarding their budget planning and allocation for pavement maintenance management, fully utilizing available historical data. The developed system has been successfully pilot-tested in the Dallas District of TxDOT.
A Web-Based Pavement Performance and Maintenance Management and GIS Mapping System for Easy Access to Pavement Condition Information

Zhanmin Zhang
Michael R. Murphy

CTR Technical Report: 5-9035-01-1
Report Date: February 2011
Project: 5-9035-01
Project Title: Pilot Implementation of a Web-based GIS System to Provide Information for Pavement Maintenance Decision-Making
Sponsoring Agency: Texas Department of Transportation
Performing Agency: Center for Transportation Research at The University of Texas at Austin

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.
Disclaimers

Author's Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation.

Patent Disclaimer: There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.

Engineering Disclaimer

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES.

Project Engineer: Zhanmin Zhang
P. E. Designation: Research Supervisor
Acknowledgments

The authors express their sincere appreciation to the TxDOT Project Director, Tammy Sims, and members of the Project Monitoring Committee for their guidance and support during the conduct of this project.
Table of Contents

Introduction ... 1
Current State of Pavement Management Systems .. 2
Pavement Management Systems in TXDOT .. 3
The Web-Based System to Support Pavement Maintenance Management Decisions 5
Conclusions and Future Work .. 9
References ... 11
List of Figures

Figure 1: Framework of the Web-based GIS Module .. 5
Figure 2: Data Format and Data Flow Structure for the Decision-Support Module 7
Introduction

Transportation agencies in the United States and around the world have been increasingly using Pavement Management (PM) principles in order to manage their pavement assets and preserve them in a condition acceptable to the traveling public. Pavement Management Systems (PMS) have been developed for that purpose and have been steadily improving with the advent of technological innovations such as personal computers (PCs), the increase of computing power, new referencing and visualization tools (Global Positioning Systems [GPS], Geographic Information Systems [GIS]), as well as the overall increase of robustness and reliability of such systems. In the United States, the importance of PMS has become even more evident, especially since the General Accounting and Standards Board Statement No. 34 (GASB 34) was put in place, establishing a federal requirement for their existence (Maze & Smadi 2003). Around the rest of the world, many western European and Asian countries, as well as Australian provinces, have also developed and implemented such systems in order to enhance the stewardship of their pavements, increase their organizations’ efficiency, and improve their accountability to the public (Pantelias 2005).

The Texas Department of Transportation (TxDOT) was an early proponent of PMS. As a result, a program for the development of a comprehensive, automated inventory and condition database for the entire TxDOT pavement network was undertaken in the late 1980s. The resulting database, termed Pavement Management Information System (PMIS), was created in 1993 and is still used today, getting updated every year with new pavement condition and other inventory data. This database is one of the largest pavement databases in the U.S., containing information for more than 300,000 road sections of roughly 0.5 miles in length.

Recently the Texas Transportation Commission (TTC) set a 10-year statewide goal of having 90% or more of Texas pavements maintained at good or better condition by year 2012 (Saenz 2004). This goal has increased the expectations for managing of the state’s roadways and has bolstered the need for optimizing the already-stretched maintenance funds in order to meet it. As a result, monitoring the TxDOT pavement network and planning the maintenance and rehabilitation (M&R) activities (with the corresponding budgets) have attracted the interest of various TxDOT District maintenance managers, as they are responsible for achieving the TTC goal within their District boundaries. TxDOT is divided into 25 geographical regions termed Districts for administrative reasons. Each District receives maintenance funds based on a formula consisting of three major factors.

1. The pavement lane-miles within the District boundary
2. The vehicles-miles traveled within the individual District
3. The ride and pavement condition scores from the latest available dataset

As is evident, the system is dependent on past condition score data and as such is reactive in nature, therefore allowing less flexibility for maintenance managers to proactively address early pavement issues. Based on this, TxDOT has been working with the Center for Transportation Research (CTR) at The University of Texas at Austin to develop a decision-support system that would help TxDOT Districts determine the best strategy to optimize the use of maintenance funds in meeting their PM objectives.
As part of this effort, the Transportation Infrastructure and Information Systems (TIIS) laboratory at CTR has developed a new, interactive, web-based system for pavement maintenance management. This new system consists of two major modules: 1) a GIS module for displaying the PMIS information, and 2) a decision-support module termed Pavement Performance & Maintenance Management (PPMM) focusing on monitoring the pavement network and managing its M&R activities. The key functions included in the system enable it to:

- Visualize multiple-year pavement condition data in PMIS with an interactive and user-friendly interface;
- Identify pavement sections of interest based on their location characteristics and retrieve their performance history according to available indices (Ride Score\(^1\), Distress Score\(^2\), and Condition Score\(^3\));
- Classify pavement sections according to various levels of “Attention” needs based on their recorded historical performance;
- Allocate available funds to pavement sections based on a prioritization algorithm that takes into account pavement performance and traffic, and estimate the resulting gain or loss in the future performance of the overall network; and
- Estimate future budget needs according to targeted performance goals for the pavement network over a user-defined (short, medium, or long) planning horizon.

The application is currently being pilot-tested by TxDOT personnel for its usability, reliability, and robustness. Because of the large number of computer codes and algorithms employed to develop the web-based system, the presentation of the work is focused on the features of the system rather than the details of the codes and algorithms.

The remainder of this report is structured as follows: first, a brief overview of the current state of the art of PMS applications is presented with a reference also to the current state of the practice. Second, TxDOT’s past efforts to develop a PMS are presented along with the needs that led to the development of the presented system. Then, the features and capabilities of the web-based application are presented with a brief reference to or description (where applicable) of the models and algorithms behind the user interface. Finally, the report concludes with a discussion of the development process and anticipated benefits from the use of the system, as well as recommendations and plans for future work.

Current State of Pavement Management Systems

The state of the art of PM applications has been continuously evolving mostly due to technological advances in terms of computing power, various visualization and map referencing

\(^{1}\) The Ride Score is a measure of pavement functional performance defined by TxDOT based on the Present Serviceability Index (PSI).

\(^{2}\) The Distress Score is a measure of pavement structural performance defined by TxDOT based on the measurement of various surface distresses.

\(^{3}\) The Condition Score is a composite pavement performance index defined by TxDOT based on the combination of the Ride Score and the Distress Score.
techniques, as well as the development of more sophisticated and effective computational methods and applications. The application of such sophisticated modeling, data management, visualization and analysis techniques, and related methodologies has been described in the literature by many states and researchers/engineers. Such examples include but are certainly not limited to the use of Markov probabilistic deterioration models in the Arizona PMS (Golabi et al. 1982) and the city of Coimbra, Portugal PMS (Ferreira et al. 2002); the use of a web-enabled PMS by the Washington State DOT (Muench et al. 2004); the use of GIS visualization and analysis in the Arizona PMS (Medina et al. 1999); and the use of true optimization techniques for budget planning and allocation in the PMS of Arizona (Golabi et al. 1982), Oklahoma (Chen et al. 1996), the Portuguese road network (Golabi & Pereira 2003), Kansas (Testa 2006), and Maryland (Hedfi & Kessler 2007), among others. Similar applications or variations of these employed models, methods and tools exist in abundance in the literature—more often than not as a result of pilot studies—and further reference to them is outside the scope of this report.

However, despite the technological innovations and the continuous development of more sophisticated tools, the state of the practice of PMS continues to lag behind the state of the art. Although theoretically a large number of options and tools are available, in practice the size of the pavement networks and the unavoidable lack of sufficient and good quality data, among other reasons, render most of these options difficult to implement in practice. As a result, many agencies resort to using PMS built around models, techniques, and tools that are not particularly sophisticated but that can be used by their personnel and can nevertheless provide better decision support and solutions than relying just on past agency practices and experience. Finally, an area where the state of the practice has actually started to keep pace with the state of the art is the design and architecture of these decision-support systems. Indeed, the use of web-based system architectures, relational databases, and analysis tools based on sophisticated computer programming platforms and coding represent the cutting edge in the way these systems are designed and implemented in practice.

Pavement Management Systems in TXDOT

Managing the largest pavement network in the U.S. with more than 190,000 miles of roadways under its jurisdiction, TxDOT was an early champion of PM and has long been investigating the use of PMS for the Texas pavement network. The vast size of this network and its vast corresponding needs have always created an incentive for the consideration of such systems in order for more effective and efficient decision-making to take place. It is estimated that TxDOT is currently spending $2.7 billion annually in M&R activities for its pavements (TxDOT 2007). The enormous size of the budget and the potential for cost savings has been a key driver for TxDOT to fund PMS-related research and development since 1971. As a result, TxDOT currently maintains the largest pavement inventory database in the U.S., known as PMIS: pavement condition is updated on an annual basis through extensive data collection efforts and the recorded data elements encompass both structural and functional pavement conditions for many different types of flexible and rigid pavements (TxDOT 1994).

The initial effort to evaluate TxDOT pavement conditions through an automated process was undertaken as a research project in 1971. It was followed by several research projects that yielded the first TxDOT PMS system called Pavement Evaluation System (PES) in 1982. The primary objectives of this system were to collect and monitor pavement condition data and help monitor the use of funds for pavement maintenance. It was used for almost 10 years and
underwent numerous changes and upgrades until it was replaced by PMIS in 1993. The main reason for abandoning PES was the fact that it was mainly developed as a state-level PMS and was not suitable for project-level PMS purposes, whereas PMIS has been designed to assist with both network- and project-level PM.

The pavement sections are uniquely identified in the PMIS using the Texas Reference Marker (TRM) referencing system. This system has TxDOT highways and roadways divided into roughly 0.5-mile segments (sometimes as small as 0.1 and as long as 1 mile), all of which are identified by a combination of alphanumeric codes. After specifying the corresponding District and County, different roadways are identified by their Highway Roadbed ID, a combination of letters and symbols that denote the highway system they belong to and the lane of interest, e.g., “IH 35 A” refers to Interstate Highway 35, southbound frontage road (A is the code for the frontage road roadbed that travels in the direction of decreasing Reference Markers in the PMIS database). Finally, after the Roadbed ID code, each individual 0.5-mile pavement section is uniquely identified by a set of four numbers: a Beginning Reference Marker (and a corresponding displacement) and an Ending Reference Marker (and a corresponding displacement).

TxDOT officials have long sought to use this enormous database for PM purposes and various attempts to establish that utilization have been made and are ongoing. TxDOT has developed a series of generic deterioration models based on the concept of utility curves, in order to predict future section deterioration (Stampley et al. 1995). These curves, developed in the early 1990s were calibrated to local conditions for all Texas counties using PMIS data but were never widely used in practice due to technical difficulties in their implementation. Furthermore, another PM study was recently conducted focusing on the development of an optimization algorithm for network-level budget planning. However, the vast size of the network was proven to be an insurmountable obstacle, as even with the use of heuristic methods (i.e., genetic algorithms and clustering), a solution for the entire Texas network would not be computationally feasible (Zhang et al. 2004).

The statewide goal for pavement condition put forward by the TTC in 2002 emphasized an already existing need for data-driven decision-making regarding the solicitation of funds for M&R actions. Under this rationale TxDOT decided to work with CTR to develop certain decision-support functionalities based on the PMIS database. These functionalities corresponded to the following:

- The visualization of pavement conditions on the highway network under TxDOT’s jurisdiction using a Web-based system, with the understanding that TxDOT has had a GIS visualization module, MapZapper, that is not Web-based
- The classification of the Dallas District pavement network in “Attention” categories to identify sections in need of M&R actions.
- The development of a tool that could support decisions on multi-year budget planning and single-year budget allocation and project selection.

The result of this currently ongoing effort is the web-based system to support pavement maintenance management decisions.
The Web-Based System to Support Pavement Maintenance Management Decisions

General Description of the System

The most central characteristic of this system is that it is web-based. As such it can be operated by any personal computer that has access to the World Wide Web using a standard web browser. The system is composed of two major modules: a GIS module for visualizing pavement condition data and a decision-support module for assisting in making M&R decisions.

The GIS Module

The purpose of the web-based GIS module is to facilitate user-friendly access to PMIS data essential to maintenance decisions. The module relies on interactive GIS tools that allow the user to select regions of interest and display color-coded information of key data maintained within the PMIS. The user is able to select individual sections from the map to display additional information on section characteristics. The framework of the GIS module is illustrated in Figure 1, followed by an outline of its key features.

Figure 1: Framework of the Web-based GIS Module
a) Overview Map: This overview of the entire map can be turned on and off by the “Toggle Overview” button, which is located at the top right corner of the toolbar.

b) Layer List Button: The layer list button is used to show the symbology for each layer in the information system. Users can toggle between the layer list and legends using this button.

c) Layer List: It supplies the users with the different layers present in the map and indicates which layers are active.

d) Simplified Selection Tool: This feature presents the user with a simplified tool to select and view the information for a particular District/County.

e) Refresh Map Button: After checking or unchecking the radio button for any of the layers, this function button must be pressed to see the changes in the map.

f) Scale Bar: The scale bar shows the relationship between the actual and scaled-down map distances.

g) Tool Bar: This feature contains various tools for the data extraction and map manipulation.

h) Print Buttons: The bottom two buttons of the tool bar are used to generate printable versions of the maps and tables. The left print button allows the user to print the map and the right one is for printing the table.

The Decision-Support Module

The decision-support module has been programmed in PHP v.5 from the server side and JavaScript from the user side and uses a variety of structured query language (SQL) queries and other graphing functions in order to provide the required functions and features. The Performance Monitoring Module is much simpler in terms of programming, as it is only used to retrieve, classify, and display information already available in the PMIS. On the other hand, the Maintenance Management Module is far more complicated as new information has to be generated (such as projected network/section performance) in order for the application to perform the budget allocation and budget planning functions.

Data

The PPMM is an application developed to mine, analyze, and display data originally stored in the PMIS database. For ease of use with PHP, a copy of the latest PMIS data was transformed to SQL format and stored at the PPMM web-server. The PMIS database used for developing the PPMM system contains data from 1995 to 2007. The data used for the various requested analyses are initially mined from the PPMM SQL database, then analyzed with the analysis tools. Finally, the results are displayed to the end users through a client-server structure. The complete data flow structure of the PPMM is shown in Figure 2.
Capabilities and Features

The PPMM employs various algorithms and models for its internal functions to run, according to the corresponding tool used. Following is a more detailed discussion of the capabilities and features of the four PPMM tools.

Performance Monitoring Module – Section Tool
The section tool is for the purpose of visualization. With it the user can specify the location characteristics of a particular pavement section and obtain a visualization of the entire historic performance for which data are available. As mentioned earlier, three performance indices from the PMIS are available, namely Ride Score, Distress Score, and Condition Score. The tool uses SQL to sequentially identify a section of interest and retrieve and display the corresponding performance information in a chart form.

Performance Monitoring Module – Network Tool
The network tool is developed for the classification of pavement sections into predefined levels of condition requiring varying degrees of “Attention.” Three levels of “Attention” have been defined, namely “No Attention,” “Vigilance,” and “Immediate Attention.” The
classification can be performed by performance criterion of interest (Ride Score, Distress Score, or Condition Score), by pavement type (10 different individual ones or 2 generic groups), and by fiscal year of interest. The classification algorithm is based on the consideration of two performance parameters for every section in the pavement network of interest: (1) the absolute value of the selected performance criterion for the selected fiscal year; and (2) the change of the selected performance criterion between the selected fiscal year and the year before. For both these parameters three performance levels have been defined (Good, Fair, Bad condition, and Slow, Medium, Fast deterioration, respectively), based on user-controlled threshold values. The two parameters assessed together thus form a 3x3 matrix of nine possible combinations. The user is then capable of assigning these combinations to the three different attention categories, thus classifying the pavement sections accordingly.

The user can obtain performance plots for any of the classified pavement sections by simply clicking on that section in the results screen. Furthermore, for both the section tool and the network tool, the generated results and plots can be printed by clicking on the corresponding links.

Maintenance Management Module – Budget Allocation Tool

The budget allocation and budget planning modules in the PPMM system are for demonstrating the concept only. Full development of the two modules is not in the scope of the current project.

The budget allocation tool is intended to assist in allocating a (user-defined) total budget to a regional or sub-regional pavement network of interest. The tool initially ranks the pavement sections in order of their importance for receiving M&R actions based on three criteria: their Ride Score, their Distress Score, and their traffic volumes. Furthermore, each section is also assigned an M&R action (Needs Nothing, Preventive Maintenance, Light Rehabilitation, Medium Rehabilitation, and Heavy Rehabilitation). The M&R action is based on the combination of the section’s Ride Score absolute value in the fiscal year of interest and the change of Ride Score between the selected fiscal year and the prior year. Finally, an estimated implementation cost is calculated for each section based on the section’s length, number of lanes, and assigned M&R action.

Once the ranking is completed, the user can then allocate the total budget to the various pavement sections. The allocation algorithm starts at the top of the ranking list and goes down sequentially, each time adding a section and subtracting the estimated M&R cost from the total budget. If a section’s required M&R exceeds the remaining budget, the algorithm moves to the next one. The algorithm terminates when the budget has been exhausted.

This tool also estimates the overall performance of the selected pavement network in terms of Ride Score before and after the application of the M&R actions. This feature allows for a “what-if” scenario analysis: by using different total budgets, the user can observe their corresponding impact on the overall network condition and draw related conclusions. The overall performance is determined with the use of specific deterioration models obtained from previous TxDOT research efforts (Stampley et al. 1995). These models are based on a generic s-shaped curve, calibrated with the PMIS data, and stratified by pavement type (flexible, rigid) and level of traffic (Low, Medium, High). Finally, the total number of treated sections and the amount of remaining funds, if any, are also estimated and displayed.
Maintenance Management Module – Budget Planning Tool

The budget planning tool is used to determine future budget needs in order for the pavement network of interest to achieve certain user-defined performance goals. The tool is based on sequential year prioritization utilizing in essence the same algorithm as the budget allocation tool but for a series of consecutive years. The user can initially specify the network of interest and base year of analysis, as well as the type of performance target for the network. The two available types of performance targets are the “Overall Network Ride Score,” or specific “Percentage(s) of Network Sections” in various performance categories (Good, Fair, Bad). The user can also specify the planning horizon as 3, 5, or 10 years. Once these parameters are specified, the tool performs the budget planning and displays the following summary results by year of the planning horizon:

- Target performance score
- Achieved performance score
- Number of sections treated
- Overall estimated budget

The analysis is conducted by utilizing the same deterioration models used in the budget allocation tool for the annual deterioration of the pavement sections, as well as by considering the improvement in the performance score that is achieved from the application of projected M&R actions. The assignment of projected M&R actions and the sequential selection of sections for the achievement of the yearly target performance score are conducted identically to the budget allocation tool. All the parameters that affect the ranking of the sections, their assigned M&R action, their cost, and the corresponding gains in performance score are included in matrices that the user can review and modify, if desired.

Furthermore, from the summary results page the user can navigate to a detailed results page where all treated sections are classified by type of M&R action. In that same page subtotal costs and lane miles treated per M&R type are also estimated and displayed.

In both the budget allocation and budget planning tools, the user can obtain performance plots for any of the analyzed pavement sections by simply clicking on a section on any of the results screens. Finally, most of the generated results and plots can be printed by clicking on the corresponding link on the results page.

Conclusions and Future Work

Many conclusions can be drawn from the development of this web-based system. These conclusions refer to the cooperative approach with which the system was developed as well as its features and capabilities, the accuracy and flexibility of its components, and future work underway to supplement its current functionalities.

- The development of the web-based system to support pavement maintenance management decisions and its adoption by TxDOT has so far been a story of success. The system development started by responding to requests from TxDOT engineers for a simple but robust decision-support system that could utilize PMIS
data, for M&R budget allocation. The management of TxDOT’s Maintenance Division and the Dallas District have both shown appreciation for and strong support of the developed application. This success story highlights the benefits of working closely with TxDOT, understanding the agency’s needs and requests, and responding to those requests by producing a solution that can be easily used and understood by both administrators and technical personnel. Once an initial version of the solution is accepted, then upgrades in terms of functionality and sophistication can be made. Furthermore, the system has been adopted as part of its four-year pavement management plan development by the Austin District.

- The system features and capabilities were determined based on requests from TxDOT engineers and administrators. As such, the degree of sophistication has been customized to meet the diverse needs of the various user groups. In addition, the system has been developed with the potential to be upgraded in the future, depending on the need for increased detail and precision. In that respect, the system has been successfully designed in a modular way so as to maintain this flexibility and accommodate modifications and upgrades in the underlying models upon request.

- The system tools were based on models and algorithms that can produce valuable results to support maintenance management decisions by using data available from the existing PMIS database. Certainly, future upgrades to these models through further calibration and research are anticipated in order to increase the sophistication and accuracy of the analysis results.
References

Zhang, Z. et al. (2004). “Network-Level Budget Planning Using Large-Scale Optimization Techniques,” Research Report Number 0-4186-7, Center for Transportation Research, The University of Texas at Austin